首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of adenosine triphosphate (ATP)-sensitive potassium (KATP) channel activation by Mg-nucleotides was studied using a mutation (G334D) in the Kir6.2 subunit of the channel that renders KATP channels insensitive to nucleotide inhibition and has no apparent effect on their gating. KATP channels carrying this mutation (Kir6.2-G334D/SUR1 channels) were activated by MgATP and MgADP with an EC50 of 112 and 8 µM, respectively. This activation was largely suppressed by mutation of the Walker A lysines in the nucleotide-binding domains of SUR1: the remaining small (∼10%), slowly developing component of MgATP activation was fully inhibited by the lipid kinase inhibitor LY294002. The EC50 for activation of Kir6.2-G334D/SUR1 currents by MgADP was lower than that for MgATP, and the time course of activation was faster. The poorly hydrolyzable analogue MgATPγS also activated Kir6.2-G334D/SUR1. AMPPCP both failed to activate Kir6.2-G334D/SUR1 and to prevent its activation by MgATP. Maximal stimulatory concentrations of MgATP (10 mM) and MgADP (1 mM) exerted identical effects on the single-channel kinetics: they dramatically elevated the open probability (PO > 0.8), increased the mean open time and the mean burst duration, reduced the frequency and number of interburst closed states, and eliminated the short burst states. By comparing our results with those obtained for wild-type KATP channels, we conclude that the MgADP sensitivity of the wild-type KATP channel can be described quantitatively by a combination of inhibition at Kir6.2 (measured for wild-type channels in the absence of Mg2+) and activation via SUR1 (determined for Kir6.2-G334D/SUR1 channels). However, this is not the case for the effects of MgATP.  相似文献   

2.
Zinc at micromolar concentrations hyperpolarizes rat pancreatic beta-cells and brain nerve terminals by activating ATP-sensitive potassium channels (KATP). The molecular determinants of this effect were analyzed using insulinoma cell lines and cells transfected with either wild type or mutated KATP subunits. Zinc activated KATP in cells co-expressing rat Kir6.2 and SUR1 subunits, as in insulinoma cell lines. In contrast, zinc exerted an inhibitory action on SUR2A-containing cells. Therefore, SUR1 expression is required for the activating action of zinc, which also depended on extracellular pH and was blocked by diethyl pyrocarbonate, suggesting histidine involvement. The five SUR1-specific extracellular histidine residues were submitted to site-directed mutagenesis. Of them, two histidines (His-326 and His-332) were found to be critical for the activation of KATP by zinc, as confirmed by the double mutation H326A/H332A. In conclusion, zinc activates KATP by binding itself to extracellular His-326 and His-332 of the SUR1 subunit. Thereby zinc could exert a negative control on cell excitability and secretion process of pancreatic beta-and alpha-cells. In fact, we have recently shown that such a mechanism occurs in hippocampal mossy fibers, a brain region characterized, like the pancreas, by an important accumulation of zinc and a high density of SUR1-containing KATP.  相似文献   

3.
Calcium signalling through store-operated calcium (SOC) entry is of crucial importance for T-cell activation and the adaptive immune response. This entry occurs via the prototypic Ca2+ release-activated Ca2+ (CRAC) channel. STIM1, a key molecular component of this process, is located in the membrane of the endoplasmic reticulum (ER) and is initially activated upon Ca2+ store depletion. This activation signal is transmitted to the plasma membrane via a direct physical interaction that takes place between STIM1 and the highly Ca2+-selective ion channel Orai1. The activation of STIM1 induces an extended cytosolic conformation. This, in turn, exposes the CAD/SOAR domain and leads to the formation of STIM1 oligomers. In this study, we focused on a small helical segment (STIM1 α3, aa 400–403), which is located within the CAD/SOAR domain. We determined this segment’s specific functional role in terms of STIM1 activation and Orai1 gating. The STIM1 α3 domain appears not essential for STIM1 to interact with Orai1. Instead, it represents a key domain that conveys STIM1 interaction into Orai1 channel gating. The results of cysteine crosslinking experiments revealed the close proximity of STIM1 α3 to a region within Orai1, which was located at the cytosolic extension of transmembrane helix 3, forming a STIM1-Orai1 gating interface (SOGI). We suggest that the interplay between STIM1 α3 and Orai1 TM3 allows STIM1 coupling to be transmitted into physiological CRAC channel activation.  相似文献   

4.
Molecular and Cellular Biochemistry - Cardioprotective effect of ischemic preconditioning (IPC) and ischemic postconditioning (IPoC) in adult hearts is mediated by mitochondrial-K-ATP channels and...  相似文献   

5.
ATP-sensitive K(+) (K(ATP)) channels are oligomeric complexes of pore-forming Kir6 subunits and regulatory Sulfonylurea Receptor (SUR) subunits. SUR, an ATP-Binding Cassette (ABC) transporter, confers Mg-nucleotide stimulation to the channel via nucleotide interactions with its two cytoplasmic domains (Nucleotide Binding Folds 1 and 2; NBF1 and NBF2). Regulation of K(ATP) channel expression is a complex process involving subunit assembly in the ER, SUR glycosylation in the Golgi, and trafficking to the plasma membrane. Dysregulation can occur at different steps of the pathway, as revealed by disease-causing mutations. Here, we have addressed the role of SUR1 NBF1 in gating and expression of reconstituted channels. Deletion of NBF1 severely impairs channel expression and abolishes MgADP stimulation. Total SUR1 protein levels are decreased, suggestive of increased protein degradation, but they are not rescued by treatment with sulfonylureas or the proteasomal inhibitor MG-132. Similar effects of NBF1 deletion are observed in recombinant K(ATP) channels obtained by "splitting" SUR1 into two separate polypeptides (a N-terminal "half" and a C-terminal "half"). Interestingly, the location of the "splitting point" in the vicinity of NBF1 has marked effects on the MgADP stimulation of resulting channels. Finally, ablation of the ER retention motif upstream of NBF1 (in either "split" or full-length SUR1) does not rescue expression of channels lacking NBF1. These results indicate that, in addition to NBF1 being required for MgADP stimulation of the channel, it plays an important role in the regulation of channel expression that is independent of the ER retention checkpoint and the proteasomal degradation pathway.  相似文献   

6.
7.
ATP-sensitive K(+) (K(ATP)) channels are activated by several vasodilating hormones and neurotransmitters through the PKA pathway. Here, we show that phosphorylation at Ser1387 of the SUR2B subunit is critical for the channel activation. Experiments were performed in human embryonic kidney (HEK) 293 cells expressing the cloned Kir6.1/SUR2B channel. In whole cell patch, the Kir6.1/SUR2B channel activity was stimulated by isoproterenol via activation of beta(2) receptors. This effect was blocked in the presence of inhibitors for adenylyl cyclase or PKA. Similar channel activation was seen by exposing inside-out patches to the catalytic subunit of PKA. Because none of the previously suggested PKA phosphorylation sites accounted for the channel activation, we performed systematic mutational analysis on Kir6.1 and SUR2B. Two serine residues (Ser1351, Ser1387) located in the NBD2 of SUR2B were critical for the channel activation. In vitro phosphorylation experiments showed that Ser1387 but not Ser1351 was phosphorylated by PKA. The PKA-dependent activation of cell-endogenous K(ATP) channels was observed in acutely dissociated mesenteric smooth myocytes and isolated mesenteric artery rings, where activation of these channels contributed significantly to the isoproterenol-induced vasodilation. Taken together, these results indicate that the Kir6.1/SUR2B channel is a target of beta(2) receptors and that the channel activation relies on PKA phosphorylation of SUR2B at Ser1387.  相似文献   

8.
Cyclin-binding motifs are essential for the function of p21CIP1.   总被引:8,自引:9,他引:8       下载免费PDF全文
The cyclin-dependent kinase (Cdk) inhibitor p21 is induced by the tumor suppressor p53 and is required for the G1-S block in cells with DNA damage. We report that there are two copies of a cyclin-binding motif in p21, Cy1 and Cy2, which interact with the cyclins independently of Cdk2. The cyclin-binding motifs of p21 are required for optimum inhibition of cyclin-Cdk kinases in vitro and for growth suppression in vivo. Peptides containing only the Cy1 or Cy2 motif partially inhibit cyclin-Cdk kinase activity in vitro and DNA replication in Xenopus egg extracts. A monoclonal antibody which recognizes the Cy1 site of p21 specifically disrupts the association of p21 with cyclin E-Cdk2 and with cyclin D1-Cdk4 in cell extracts. Taken together, these observations suggest that the cyclin-binding motif of p21 is important for kinase inhibition and for formation of p21-cyclin-Cdk complexes in the cell. Finally, we show that the cyclin-Cdk complex is partially active if associated with only the cyclin-binding motif of p21, providing an explanation for how p21 is found associated with active cyclin-Cdk complexes in vivo. The Cy sequences may be general motifs used by Cdk inhibitors or substrates to interact with the cyclin in a cyclin-Cdk complex.  相似文献   

9.
In order to test the requirement of Na channel inactivation for the action of local anesthetics, we investigated the inhibitory effects of quaternary and tertiary amine anesthetics on normally inactivating and noninactivating Na currents in squid axons under voltage clamp. Either the enzymatic mixture pronase, or chloramine-T (CT), a noncleaving, oxidizing reagent, was used to abolish Na channel inactivation. We found that both the local anesthetics QX-314 and etidocaine, when perfused internally at 1 mM, elicited a "tonic" (resting) block of Na currents, a "time-dependent" block that increased during single depolarizations, and a "use-dependent" (phasic) block that accumulated as a result of repetitive depolarizations. All three effects occurred in both control and CT-treated axons. As in previous reports, little time-dependent or phasic block by QX-314 appeared in pronase-treated axons, although tonic block remained. Time-dependent block was greatest and fastest at large depolarizations (Em greater than +60 mV) for both the control and CT-treated axons. The recovery kinetics from phasic block were the same in control and CT-modified axons. The voltage dependence of the steady state phasic block in CT-treated axons differed from that in the controls; an 8-10% reduction of the maximum phasic block and a steepening and shift of the voltage dependence in the hyperpolarizing direction resulted from CT treatment. The results show that these anesthetics can bind rapidly to open Na channels in a voltage-dependent manner, with no requirement for fast inactivation. We propose that the rapid phasic blocking reactions in nerve are consequences primarily of channel activation, mediated by binding of anesthetics to open channels, and that the voltage dependence of phasic block arises directly from that of channel activation.  相似文献   

10.
11.
T Iglesias  E Rozengurt 《FEBS letters》1999,454(1-2):53-56
Protein kinase D is a serine/threonine kinase that binds phorbol esters in a phospholipid-dependent manner via a tandemly repeated cysteine-rich, zinc finger-like motif (the cysteine-rich domain). Here, we examined whether the cysteine-rich domain plays an additional role in the control of the catalytic kinase activity independently of the binding of allosteric effectors. We found that deletion of cys1, cys2 or the entire cysteine-rich domain increases the basal activity of protein kinase D leading to a constitutively active form of this enzyme. Our results demonstrate, for the first time, that the cysteine-rich domain of Protein kinase D plays a negative role in the regulation of protein kinase D kinase activity.  相似文献   

12.
ATP-sensitive potassium (KATP) channels comprise four pore-forming Kir6.2 subunits and four modulatory sulfonylurea receptor (SUR) subunits. The latter belong to the ATP-binding cassette family of transporters. KATP channels are inhibited by ATP (or ADP) binding to Kir6.2 and activated by Mg-nucleotide interactions with SUR. This dual regulation enables the KATP channel to couple the metabolic state of a cell to its electrical excitability and is crucial for the KATP channel’s role in regulating insulin secretion, cardiac and neuronal excitability, and vascular tone. Here, we review the regulation of the KATP channel by adenine nucleotides and present an equilibrium allosteric model for nucleotide activation and inhibition. The model can account for many experimental observations in the literature and provides testable predictions for future experiments.  相似文献   

13.
Transient receptor potential vanilloid 1 (TRPV1) ion channel serves as the detector for noxious temperature above 42 °C, pungent chemicals like capsaicin, and acidic extracellular pH. This channel has also been shown to function as an ionotropic cannabinoid receptor. Despite the solving of high-resolution three-dimensional structures of TRPV1, how endocannabinoids such as anandamide and N-arachidonoyl dopamine bind to and activate this channel remains largely unknown. Here we employed a combination of patch-clamp recording, site-directed mutagenesis, and molecular docking techniques to investigate how the endocannabinoids structurally bind to and open the TRPV1 ion channel. We found that these endocannabinoid ligands bind to the vanilloid-binding pocket of TRPV1 in the “tail-up, head-down” configuration, similar to capsaicin; however, there is a unique interaction with TRPV1 Y512 residue critical for endocannabinoid activation of TRPV1 channels. These data suggest that a differential structural mechanism is involved in TRPV1 activation by endocannabinoids compared with the classic agonist capsaicin.  相似文献   

14.
Using polarized microfluorometry techniques, a study was made on the orientation and mobility of fluorescent probes 1,5-IAEDANS and rhomadin-phalloidin, located in various parts of actin, muscle fibers free of myosin, tropomyosin and troponin (ghost fibres) being used. It was found that the binding of a myosin subfragment 1 (S1) to actin induced changes in polarized fluorescence of the fibers. The analysis of these data showed that the formation of actin-S1 and actin-S1-ADP complexes in a muscle fiber resulted in a decrease in the angle between the thin filaments and the emission dipole of phalloidin-rhodamine, as well as in an increase of the mobility of this dye. In the experiments with the 1,5-IAEDANS label the angle of emission dipole increased, while the mobility of the label decreased. These changes were smaller in the presence of Mg-ADP than in its absence. It is assumed that the changes in actin monomer structure occur when a myosin head interacts with actin. These changes are expressed as those in orientation and mobility of large and small domains of actin in thin filaments. The domain orientation in actomyosin complex changes, influenced by Mg-ADP. The data obtained allow to propose the involvement of interdomain motions of some parts of actin monomer in the mechanisms of muscle contraction.  相似文献   

15.
Vascular ATP-sensitive K(+) channels are activated by multiple vasodilating hormones and neurotransmitters via PKA. A critical PKA phosphorylation site (Ser-1387) is found in the second nucleotide-binding domain (NBD(2)) of the SUR2B subunit. To understand how phosphorylation at Ser-1387 leads to changes in channel activity, we modeled the SUR2B using a newly crystallized ABC protein SAV1866. The model showed that Ser-1387 was located on the interface of NBD2 with TMD1 and physically interacted with Tyr-506 in TMD1. A positively charged residue (Arg-1462) in NBD2 was revealed in the close vicinity of Ser-1387. Mutation of either of these three residues abolished PKA-dependent channel activation. Molecular dynamics simulations suggested that Ser-1387, Tyr-506, and Arg-1462 formed a compact triad upon Ser-1387 phosphorylation, leading to reshaping of the NBD2 interface and movements of NBD2 and TMD1. Restriction of the interdomain movements by engineering a disulfide bond between TMD1 and NBD2 prevented the channel activation in a redox-dependent manner. Thus, a channel-gating mechanism is suggested through enhancing the NBD-TMD coupling efficiency following Ser-1387 phosphorylation, which is shared by multiple vasodilators.  相似文献   

16.
Micromolar concentrations of tolbutamide will inhibit (SUR1/K(IR)6. 2)(4) channels in pancreatic beta-cells, but not (SUR2A/K(IR)6.2)(4) channels in cardiomyocytes. Inhibition does not require Mg(2+) or nucleotides and is enhanced by intracellular nucleotides. Using chimeras between SUR1 and SUR2A, we show that transmembrane domains 12-17 (TMD12-17) are required for high-affinity tolbutamide inhibition of K(ATP) channels. Deletions demonstrate involvement of the cytoplasmic N-terminus of K(IR)6.2 in coupling sulfonylurea-binding with SUR1 to the stabilization of an interburst closed configuration of the channel. The increased efficacy of tolbutamide by nucleotides results from an impairment of their stimulatory action on SUR1 which unmasks their inhibitory effects. The mechanism of inhibition of beta-cell K(ATP) channels by sulfonylureas during treatment of non-insulin-dependent diabetes mellitus thus involves two components, drug-binding and conformational changes within SUR1 which are coupled to the pore subunit through its N-terminus and the disruption of nucleotide-dependent stimulatory effects of the regulatory subunit on the pore. These findings uncover a molecular basis for an inhibitory influence of SUR1, an ATP-binding cassette (ABC) protein, on K(IR)6.2, a ion channel subunit.  相似文献   

17.
DSL proteins are transmembrane ligands of the Notch receptor. They associate with a RING (really interesting new gene) family E3 ubiquitin ligase, either Neuralized (Neur) or Mindbomb 1 (Mib1), as a prerequisite to signaling. Although Neur and Mib1 stimulate internalization of DSL ligands, it is not known how ubiquitylation contributes to signaling. We present a molecular dissection of the intracellular domain (ICD) of Drosophila melanogaster Delta (Dl), a prototype DSL protein. Using a cell-based assay, we detected ubiquitylation of Dl by both Neur and Mib1. The two enzymes use distinct docking sites and displayed different acceptor lysine preferences on the Dl ICD. We generated Dl variants that selectively perturb its interactions with Neur or Mib1 and analyzed their signaling activity in two in vivo contexts. We found an excellent correlation between the ability to undergo ubiquitylation and signaling. Therefore, ubiquitylation of the DSL ICD seems to be a necessary step in the activation of Notch.  相似文献   

18.
Cytokinesis in animal cells is mediated by a cortical actomyosin-based contractile ring. The GTPase RhoA is a critical regulator of this process as it activates both nonmuscle myosin and a nucleator of actin filaments [1]. The site at which active RhoA and its effectors accumulate is controlled by the microtubule-based spindle during anaphase [2]. ECT-2, the guanine nucleotide exchange factor (GEF) that activates RhoA during cytokinesis, is regulated by phosphorylation and subcellular localization [3-5]. ECT2 localization depends on interactions with CYK-4/MgcRacGAP, a Rho GTPase-activating protein (GAP) domain containing protein [5, 6]. Here we show that, contrary to expectations, the Rho GTPase-activating protein (GAP) domain of CYK-4 promotes activation of RhoA during cytokinesis. Furthermore, we show that the primary phenotype caused by mutations in the GAP domain of CYK-4 is not caused by ectopic activation of CED-10/Rac1 and ARX-2/Arp2. However, inhibition of CED-10/Rac1 and ARX-2/Arp2 facilitates ingression of weak cleavage furrows. These results demonstrate that?a GAP domain can contribute to activation of a small GTPase. Furthermore, cleavage furrow ingression is sensitive to the balance of contractile forces and cortical tension.  相似文献   

19.
The role of monocytes in human lymphocyte activation by mitogens.   总被引:9,自引:0,他引:9  
Studies were performed to determine the role of monocytes in human lymphocyte activation by mitogens. Velocity sedimentation at 1 x G in a new apparatus was utilized to obtain highly purified lymphocyte fractions (LF) nearly free of monocytes (0.02 to 0.4%) and a fraction (MF) enriched for monocytes (64 to 92%). The average peak responses of the lymphocyte fractions to phytohemagglutinin, concanavalin A, and pokeweed mitogen were 19, 10, and 9% of the responses achieved with unfractionated lymphocyte cultures containing approximately 20% monocytes. These changes were not attributable to altered dose requirements. When mitomycin-C-treated MF cells were used to reconstitute LF cultures, it was found that 4% monocytes fully restored the response to phytohemagglutinin whereas 8 to 16% monocytes were required for a normal response to the other mitogens. Higher numbers of MF cells produced supranormal responses, with 35 to 50% monocytes resulting in the optimal stimulation. Allogeneic monocytes were able to fully reconstitute the response of LF, and 2-mercaptoethanol (50 microM) was only slightly effective. In exploring possible mechanisms by which monocytes potentiate the mitogenic activity of lymphocytes, it was found that the supernatants of MF cultures could partially, but not completely, reconstitute LF responses, suggesting that contact with MF may be required for optimal effectiveness. Addition of graded numbers of monocytes to LF altered both the kinetics of the response and the peak level of proliferation. Monocyte depletion also resulted in markedly decreased survival of cultured unstimulated LF. These observations suggest a variety of possible effects of monocytes in potentiating mitogenic responses, including contact-mediated interactions with lymphocytes (possibly to present the mitogen optimally); enhancement of proliferation kinetics and the size of the responding subpopulation, and maintenance of a requisite growth factor(s) in the culture. Small differences in the monocyte content of cultured lymphocyte preparations may thus account for many of the often observed variations in mitogen responsiveness.  相似文献   

20.
Abstract The effect of interleukin-1 (IL-1) and bacterial endotoxin (lipopolysaccharide, LPS) on the activation of phosphoinositidase C (PIC) and on prostaglandin E2 release was studied in monocytes (Mø). Both IL-1α and IL-1β increased the release of PGE2 in a concentration-dependent manner, with EC50s of 0.48 nM and 0.12 nM, respectively. Intact Mø were prelabelled with [3H]inositol and the formation of inositol phosphates (IPs) was estimated by ion exchange chromatography. PIC activity was estimated directly by measuring the conversion of [3H]phosphatidylinositol-4,5,-bisphosphate to aqueous soluble radioactivity by Mø homogenates. IL-1α (5.8 nM) increased the accumulation of IPs within 1–4 minutes and increases in IP3 and IP4 occured before the increase in IP1+2 whereas LPS only increased the IPs level after at least 30 min. IL-1α increased PIC activity in Mø homogenates within 15 min with an EC50 of 0.58 nM and IL-1β (0.1 nM) also increased activity. Neither IL-1α nor IL-1β affected the PIC activity of membrane or cytosolic fractions. LPS decreased activity in all fractions. These data indicate that IL-1, but not LPS, can directly lead to an increased activity of PIC which may be involved in eicosanoid formation in Mø.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号