首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phosphoinositide-specific phospholipase C (PI-PLC) is an important component of the inositol phosphate/diacylglycerol signaling pathway. A newly discovered Trypanosoma cruzi PI-PLC (TcPI-PLC) is lipid modified in its N terminus, targeted to its plasma membrane, and believed to play a role in differentiation of the parasite because its expression increases during the differentiation of trypomastigote to amastigote stages. To determine whether TcPI-PLC is involved in this differentiation step, antisense inhibition using phosphorothioate-modified oligonucleotides, and overexpression of the gene were performed. Antisense oligonucleotide-treated parasites showed a reduced rate of differentiation in comparison to controls, as well as accumulation of intermediate forms. Overexpression of TcPI-PLC led to a faster differentiation rate. In contrast, overexpression of a mutant TcPI-PLC that lacked the lipid modification at its N terminus did not affect the differentiation rate. Therefore, TcPI-PLC is involved, when expressed in the plasma membrane, in the differentiation of trypomastigotes to amastigotes, an essential step for the intracellular replication of these parasites.  相似文献   

2.
A mammalian vesicular neurotransmitter transporter has been expressed in the yeast Saccharomyces cerevisiae. The gene encoding the rat vesicular monoamine transporter (rVMAT(1)) was cloned in several expression plasmids. The transporter was expressed at detectable levels only when short sequences using codons favored by S. cerevisiae were fused preceding the start of translation of rVMAT(1). The scarce expression of the wild-type protein was, most likely, due to the fact that part of the N-terminus of the protein is encoded by codons not preferred in S. cerevisiae. Furthermore, low growth temperatures increased rVMAT(1) expression and altered its processing. Whereas at 30 degrees C the protein is not glycosylated, at lower temperatures ( approximately 16 degrees C) half of the expressed transporters undergo core glycosylation. In addition, under these conditions the levels of protein expression significantly increase. Using a functional chimeric protein composed by VMAT and the green fluorescent protein (GFP), it is shown that the punctate pattern of intracellular distribution remains invariable at the different temperatures. Using a similar fusion sequence, the bovine VMAT isoform 2 (bVMAT(2)) was also expressed in yeast. The yeast-expressed bVMAT(2) binds [(3)H]dihydrotetrabenazine ([(3)H]TBZOH) with the same characteristics found in the native protein from bovine chromaffin granules. Dodecyl maltoside-solubilized bVMAT(2) retains the conformation required for [(3)H]TBZOH binding. We exploited the robust binding to follow the transporter during purification assays on a Ni(2+)-chelating column. In this report we describe for the first time the heterologous expression of a neurotransmitter transporter in the yeast S. cerevisiae.  相似文献   

3.
4.
5.
Bacterial peptidyl-tRNA hydrolase (Pth) activity ensures the rapid recycling of peptidyl-tRNAs that result from premature termination of translation. Pth has been shown to be essential for growth in Escherichia coli suggesting that its homologue in Staphylococcus aureus is a potential molecular therapeutic target for the development of antibacterial agents. In this report we describe the cloning of a DNA fragment (573 bp) containing the pth gene from a S. aureus (strain ISP3) genomic DNA library. Analysis of the predicted polypeptide sequence from the pth gene showed that the protein shared complete conservation of the three residues thought to be involved in the active site of E. coli Pth. The gene was cloned into a pQE-60 expression vector and expressed in E. coli, and the resulting His-tagged Pth protein was purified to greater than 95% purity from the soluble portion of the E. coli lysate in a single chromatographic step. His-tagged Pth was shown to be biologically active by its ability to hydrolyze diacetyl-[(3)H]Lys-tRNA(Lys) in a time- and concentration-dependent manner. Optimum hydrolyzing activity of Pth occurred at a pH value of 7.0 and a MgCl(2) concentration of 5 mM. The K(m) of the diacetyl-[(3)H]-Lys-tRNA(Lys) substrate for S. aureus Pth was determined to be 2.8 microM. A far UV circular dichroism spectrum revealed that His-tagged S. aureus Pth appears to have a structured core predominated by beta-sheet.  相似文献   

6.
Trehalose synthase (TreS) catalyzes the reversible interconversion of trehalose (glucosyl-alpha,alpha-1,1-glucose) and maltose (glucosyl-alpha1-4-glucose). TreS was purified from the cytosol of Mycobacterium smegmatis to give a single protein band on SDS gels with a molecular mass of approximately 68 kDa. However, active enzyme exhibited a molecular mass of approximately 390 kDa by gel filtration suggesting that TreS is a hexamer of six identical subunits. Based on amino acid compositions of several peptides, the treS gene was identified in the M. smegmatis genome sequence, and was cloned and expressed in active form in Escherichia coli. The recombinant protein was synthesized with a (His)(6) tag at the amino terminus. The interconversion of trehalose and maltose by the purified TreS was studied at various concentrations of maltose or trehalose. At a maltose concentration of 0.5 mm, an equilibrium mixture containing equal amounts of trehalose and maltose (42-45% of each) was reached during an incubation of about 6 h, whereas at 2 mm maltose, it took about 22 h to reach the same equilibrium. However, when trehalose was the substrate at either 0.5 or 2 mm, only about 30% of the trehalose was converted to maltose in >or= 12 h, indicating that maltose is the preferred substrate. These incubations also produced up to 8-10% free glucose. The K(m) for maltose was approximately 10 mm, whereas for trehalose it was approximately 90 mm. While beta,beta-trehalose, isomaltose (alpha1,6-glucose disaccharide), kojibiose (alpha1,2) or cellobiose (beta1,4) were not substrates for TreS, nigerose (alpha1,3-glucose disaccharide) and alpha,beta-trehalose were utilized at 20 and 15%, respectively, as compared to maltose. The enzyme has a pH optimum of about 7 and is inhibited in a competitive manner by Tris buffer. [(3)H]Trehalose is converted to [(3)H]maltose even in the presence of a 100-fold or more excess of unlabeled maltose, and [(14)C]maltose produces [(14)C]trehalose in excess unlabeled trehalose, suggesting the possibility of separate binding sites for maltose and trehalose. The catalytic mechanism may involve scission of the incoming disaccharide and transfer of a glucose to an enzyme-bound glucose, as [(3)H]glucose incubated with TreS and either unlabeled maltose or trehalose results in formation of [(3)H]disaccharide. TreS also catalyzes production of a glucosamine disaccharide from maltose and glucosamine, suggesting that this enzyme may be valuable in carbohydrate synthetic chemistry.  相似文献   

7.
FUI1 and function unknown now 26 (FUN26) are proteins of uncertain function with sequence similarities to members of the uracil/allantoin permease and equilibrative nucleoside transporter families of transporter proteins, respectively. [(3)H]Uridine influx was eliminated by disruption of the gene encoding FUI1 (fui1) and restored by expression of FUI1 cDNA, whereas influx in transport-competent and fui1-negative yeast were unaffected, respectively, by disruption of the FUN26 gene or overexpression of FUN26 cDNA. FUI1 transported uridine with high affinity (K(m), 22 +/- 3 micrometer) and was unaffected or inhibited only partially by high concentrations (1 mm) of a variety of ribo- and deoxyribonucleosides or nucleobases. When FUN26 cDNA was expressed in oocytes of Xenopus laevis, inward fluxes of [(3)H]uridine, [(3)H]adenosine, and [(3)H]cytidine were stimulated, and uridine influx was independent of pH and not inhibited by dilazep, dipyridamole, or nitrobenzylmercaptopurine ribonucleoside. Fractionation of yeast membranes containing immunotagged recombinant FUN26 (shown to be functional in oocytes) demonstrated that the protein was primarily in intracellular membranes. These results indicated that FUI1 has high selectivity for uracil-containing ribonucleosides and imports uridine across cell-surface membranes, whereas FUN26 has broad nucleoside selectivity and most likely functions to transport nucleosides across intracellular membranes.  相似文献   

8.
Raimo G  Lombardo B  Masullo M  Lamberti A  Longo O  Arcari P 《Biochemistry》2004,43(46):14759-14766
The elongation factor Ts was isolated from the psychrophilic Antarctic eubacterium Pseudoalteromonas haloplanktis TAC 125 strain (PhEF-Ts), and its functional properties were studied. At 0 degrees C PhEF-Ts enhanced the [(3)H]GDP/GDP exchange rate on the preformed PhEF-Tu.[(3)H]GDP complex by 2 orders of magnitude even at very low Tu:Ts ratio, by lowering the energy of activation of the exchange reaction. PhEF-Ts is a monomeric protein, and in solution it forms a stable dimeric complex with PhEF-Tu. The PhEF-Ts encoding gene was cloned and sequenced. Its structural organization was similar to that of Escherichia coli because it showed at its 5' end the gene encoding the ribosomal protein S2. The translated amino acid sequence had a calculated molecular weight of 30762, and showed a high sequence identity with E. coli (68%) and Thermus thermophilus (44%) EF-Ts. The PhEF-Ts primary structure contains well-preserved almost all the amino acid residues interacting at the interfaces of the E. coli EF-Ts.EF-Tu complex. Finally, the high concentration of PhEF-Ts in this psychrophilic eubacterium might represent an adaptive tool to ensure an efficient nucleotide exchange even at low temperature.  相似文献   

9.
10.
To establish a simple and sensitive method to detect protein N-myristoylation, the usefulness of a newly developed cell-free protein synthesis system derived from insect cells for detecting protein N-myristoylation by in vitro metabolic labeling was examined. The results showed that in vitro translation of cDNA coding for N-myristoylated protein in the presence of [(3)H]myristic acid followed by SDS-PAGE and fluorography is a useful method for rapid detection of protein N-myristoylation. Differential labeling of N-myristoylated model proteins with [(3)H]leucine, [(3)H]myristic acid, and [(35)S]methionine revealed that the removal of the initiating Met during the N-myristoylation reaction could be detected using this system. Analysis of the N-myristoylation of a series of model proteins with mutated N-myristoylation motifs revealed that the amino acid sequence requirements for the N-myristoylation reaction in this system are quite similar to those observed in the rabbit reticulocyte lysate system. N-myristoylation of tBid (a posttranslationally N-myristoylated cytotoxic protein that could not be expressed in transfected cells) was successfully detected in this assay system. Thus, metabolic labeling in an insect cell-free protein synthesis system is an effective strategy to detect co- and posttranslational protein N-myristoylation irrespective of the cytotoxicity of the protein.  相似文献   

11.
We have isolated the full-length cDNA of a novel human serine threonine protein kinase gene. The deduced protein sequence contains two cysteine-rich motifs at the N terminus, a pleckstrin homology domain, and a catalytic domain containing all the characteristic sequence motifs of serine protein kinases. It exhibits the strongest homology to the serine threonine protein kinases PKD/PKCmicro and PKCnu, particularly in the duplex zinc finger-like cysteine-rich motif, in the pleckstrin homology domain and in the protein kinase domain. In contrast, it shows only a low degree of sequence similarity to other members of the PKC family. Therefore, the new protein has been termed protein kinase D2 (PKD2). The mRNA of PKD2 is widely expressed in human and murine tissues. It encodes a protein with a molecular mass of 105 kDa in SDS-polyacrylamide gel electrophoresis, which is expressed in various human cell lines, including HL60 cells, which do not express PKCmicro. In vivo phorbol ester binding studies demonstrated a concentration-dependent binding of [(3)H]phorbol 12,13-dibutyrate to PKD2. The addition of phorbol 12,13-dibutyrate in the presence of dioleoylphosphatidylserine stimulated the autophosphorylation of PKD2 in a synergistic fashion. Phorbol esters also stimulated autophosphorylation of PKD2 in intact cells. PKD2 activated by phorbol esters efficiently phosphorylated the exogenous substrate histone H1. In addition, we could identify the C-terminal Ser(876) residue as an in vivo phosphorylation site within PKD2. Phosphorylation of Ser(876) of PKD2 correlated with the activation status of the kinase. Finally, gastrin was found to be a physiological activator of PKD2 in human AGS-B cells stably transfected with the CCK(B)/gastrin receptor. Thus, PKD2 is a novel phorbol ester- and growth factor-stimulated protein kinase.  相似文献   

12.
The polysaccharide chains of enterobacterial common antigen (ECA) are comprised of the trisaccharide repeat unit Fuc4NAc-ManNAcA-GlcNAc, where Fuc4NAc is 4-acetamido-4,6-dideoxy-D-galactose, ManNAcA is N-acetyl-D-mannosaminuronic acid, and GlcNAc is N-acetyl-D-glucosamine. Individual trisaccharide repeat units are assembled as undecaprenyl-linked intermediates in a sequence of reactions that culminate in the transfer of Fuc4NAc from TDP-Fuc4NAc to ManNAcA-GlcNAc-pyrophosphorylundecaprenol (lipid II) to yield Fuc4NAc-ManNAcA-GlcNAc-pyrophosphorylundecaprenol (lipid III), the donor of trisaccharide repeat units for ECA polysaccharide chain elongation. Most of the genes known to be involved in ECA assembly are located in the wec gene cluster located at ca. 85.4 min on the Escherichia coli chromosome. The available data suggest that the structural gene for the TDP-Fuc4NAc:lipid II Fuc4NAc transferase also resides in the wec gene cluster; however, the location of this gene has not been unequivocally defined. Previous characterization of the nucleotide sequence of the wec gene cluster in the region between o416 and wecG revealed that it contained three open reading frames: o74, o204, and o450. In contrast, the results of experiments described in the current investigation revealed that it contains only two open reading frames, o359 and o450. Mutants of E. coli possessing null mutations in o359 were unable to synthesize ECA, and they accumulated lipid II. In addition, the in vitro incorporation of [(3)H]FucNAc from TDP-[(3)H]Fuc4NAc into lipid II was not observed in reaction mixtures using cell extracts obtained from these mutants as a source of enzyme. The ECA-negative phenotype of these mutants was complemented by plasmid constructs containing the wild-type o359 allele, and Fuc4NAc transferase activity was demonstrated by using cell extracts obtained from the complemented mutants. Furthermore, partially purified o359 gene product, expressed as recombinant C-terminal His-tagged protein, was able to catalyze the in vitro transfer of [(3)H]Fuc4NAc from TDP-[(3)H]Fuc4NAc to lipid II. Our data support the conclusion that o359 of the wec gene cluster of E. coli is the structural gene for the TDP-Fuc4NAc:lipid II Fuc4NAc transferase involved in the synthesis ECA trisaccharide repeat units.  相似文献   

13.
[(3)H]4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine (TDBzcholine) was synthesized and used as a photoaffinity probe to map the orientation of an aromatic choline ester within the agonist binding sites of the Torpedo nicotinic acetylcholine receptor (nAChR). TDBzcholine acts as a nAChR competitive antagonist that binds at equilibrium with equal affinity to both agonist sites (K(D) approximately 10 microM). Upon UV irradiation (350 nm), nAChR-rich membranes equilibrated with [(3)H]TDBzcholine incorporate (3)H into the alpha, gamma, and delta subunits in an agonist-inhibitable manner. The specific residues labeled by [(3)H]TDBzcholine were determined by N-terminal sequence analysis of subunit fragments produced by enzymatic cleavage and purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and/or reversed-phase high-performance liquid chromatography. For the alpha subunit, [(3)H]TDBzcholine photoincorporated into alphaCys-192, alphaCys-193, and alphaPro-194. For the gamma and delta subunits, [(3)H]TDBzcholine incorporated into homologous leucine residues, gammaLeu-109 and deltaLeu-111. The photolabeling of these amino acids suggests that when the antagonist TDBzcholine occupies the agonist binding sites, the Cys-192-193 disulfide and Pro-194 from the alpha subunit Segment C are oriented toward the agonist site and are in proximity to gammaLeu-109/deltaLeu-111 in Segment E, a conclusion consistent with the structure of the binding site in the molluscan acetylcholine binding protein, a soluble protein that is homologous to the nAChR extracellular domain.  相似文献   

14.
Taxol binds to polymerized tubulin in vitro   总被引:20,自引:8,他引:12       下载免费PDF全文
Taxol, a natural plant product that enhances the rate and extent of microtubule assembly in vitro and stabilizes microtubules in vitro and in cells, was labeled with tritium by catalytic exchange with (3)H(2)O. The binding of [(3)H]taxol to microtubule protein was studied by a sedimentation assay. Microtubules assembled in the presence of [(3)H]taxol bind drug specifically with an apparent binding constant, K(app), of 8.7 x 19(-7) M and binding saturates with a calculated maximal binding ration, B(max), of 0.6 mol taxol bound/mol tubulin dimer. [(3)H]Taxol also binds and assembles phosphocellulose-purified tubulin, and we suggest that taxol stabilizes interactions between dimers that lead to microtubule polymer formation. With both microtubule protein and phosphocellulose- purified tubulin, binding saturation occurs at approximate stoichiometry with the tubulin dimmer concentration. Under assembly conditions, podophyllotoxin and vinblastine inhibit the binding of [(3)H]taxol to microtubule protein in a complex manner which we believe reflects a competition between these drugs, not for a single binding site, but for different forms (dimer and polymer) of tubulin. Steady-state microtubules assembled with GTP or with 5’-guanylyl-α,β-methylene diphosphonate (GPCPP), a GTP analog reported to inhibit microtubule treadmilling (I.V. Sandoval and K. Weber. 1980. J. Biol. Chem. 255:6966-6974), bind [(3)H]taxol with approximately the same stoichiometry as microtubules assembled in the presence of [(3)H]taxol. Such data indicate that a taxol binding site exists on the intact microtubule. Unlabeled taxol competitively displaces [(3)H]taxol from microtubules, while podophyllotoxin, vinblastine, and CaCl(2) do not. Podophyllotoxin and vinblastine, however, reduce the mass of sedimented taxol-stabilized microtubules, but the specific activity of bound [(3)H]taxol in the pellet remains constant. We conclude that taxol binds specifically and reversibly to a polymerized form of tubulin with a stoichiometry approaching unity.  相似文献   

15.
Functional expression of recombinant wild-type phosphatase 2A catalytic subunit has been unsuccessful in the past. A nine-amino-acid peptide sequence (YP-YDVPDYA) derived from the influenza hemagglutinin protein was used to modify the NH2 and/or COOH terminus of the phosphatase 2A catalytic subunit. Addition of the nine-amino-acid sequence at the NH2 terminus allowed recombinant phosphatase 2A expression as a predominantly cytosolic phosphatase 2A enzyme. The 12CA5 monoclonal antibody that recognizes the nine-amino-acid hemagglutinin peptide sequence was used to immunoprecipitate the epitope-tagged phosphatase 2A catalytic subunit. Assay of the immunoprecipitated epitope-tagged phosphatase 2A demonstrated an okadaic acid-sensitive dephosphorylation of [32P] histone H1 and [32P]myelin basic protein similar to that measured with the wild-type enzyme. Functional phosphatase activity could be demonstrated for the NH2-terminal modified phosphatase 2A catalytic subunit following transient expression in COS cells or stable expression in Rat1a cells. In contrast, the COOH-terminal-modified phosphatase 2A catalytic subunit was very poorly expressed. The NH2-, COOH-modified subunit, having the nine-amino-acid hemagglutinin peptide sequence encoded at both termini of the polypeptide, was also expressed as a functional phosphatase 2A enzyme. Thus, NH2-terminal modification of the phosphatase 2A catalytic subunit results in a functional plasmid-expressed enzyme. The unique nine-amino-acid epitope-tag sequence also provides a method to easily resolve the recombinant phosphatase 2A from the endogenous wild-type gene product and related phosphatases expressed in cells.  相似文献   

16.
A cDNA encoding a high-affinity Na(+)-dependent choline transporter (TrnCHT) was isolated from the CNS of the cabbage looper Trichoplusia ni using an RT-PCR-based approach. The deduced amino acid sequence of the CHT cDNA predicts a 594 amino acid protein of 64.74 kDa prior to glycosylation. TrnCHT has 80%, 79%, 76%, and 58% amino acid identity to putative CHTs from Anopheles gambiae, Drosophila melanogaster and Apis mellifera, and a cloned CHT from Limulus polyphemus, respectively. In situ hybridization of TrnCHT cRNA in whole-mount preparations of caterpillar CNS revealed that TrnCHT mRNA is expressed by hundreds of presumably cholinergic neurons present in both the brain and cortex of all segmental ganglia. Na(+)-dependent [(3)H]-choline uptake was induced in Sf9 cells in vitro following infection with a TrnCHT-expressing recombinant baculovirus. Virally induced [(3)H]-choline uptake was found to approximately equal the endogenous rate of choline uptake in insect cells, seen either after infection with a control virus or in TrnCHT-infected cells exposed to [(3)H]-choline in the absence of Na(+). The Na(+)-dependent component of [(3)H]-choline uptake by TrnCHT-infected cells was saturable with a K(m) for choline transport of 8.4 microM. Several compounds reported to be potent blockers of [(3)H]-choline uptake by cloned vertebrate choline transporters proved to be relatively weak inhibitors of choline uptake by Sf9 cells expressing TrnCHT. Hemicholinium-3 (K(i)=4.1 microM) and two oxoquinuclidium analogues of choline, quireston-A (K(i) approximately 10 microM) and quireston (K(i) approximately 100 microM) inhibited 50% of control uptake only at micromolar concentrations. The endogenous low-affinity Na(+)-independent uptake of [(3)H]-choline was also inhibited by high micromolar concentrations of hemicholinium-3.  相似文献   

17.
We have investigated the transport characteristics of dehydroepiandrosterone sulfate (DHEAS), a neuroactive steroid, at the blood-brain barrier (BBB) in a series of functional in vivo and in vitro studies. The apparent BBB efflux rate constant of [(3)H]DHEAS evaluated by the brain efflux index method was 2.68 x 10(-2) min(-1). DHEAS efflux transport was a saturable process with a Michaelis constant (K:(m)) of 32.6 microM: Significant amounts of [(3)H]DHEAS were determined in the jugular venous plasma by HPLC, providing direct evidence that most of the DHEAS is transported in intact form from brain to the circulating blood across the BBB. This efflux transport of [(3)H]DHEAS was significantly inhibited by common rat organic anion-transporting polypeptide (oatp) substrates such as taurocholate, cholate, sulfobromophthalein, and estrone-3-sulfate. Moreover, the apparent efflux clearance of [(3)H]DHEAS across the BBB (118 microl/min-g of brain) was 10.4-fold greater than its influx clearance estimated by the in situ brain perfusion technique (11.4 microl/min-g of brain), suggesting that DHEAS is predominantly transported from the brain to blood across the BBB. In cellular uptake studies using a conditionally immortalized mouse brain capillary endothelial cell line (TM-BBB4), [(3)H]DHEAS uptake by TM-BBB4 cells exhibited a concentration dependence with a K:(m) of 34.4 microM: and was significantly inhibited by the oatp2-specific substrate digoxin. Conversely, [(3)H]digoxin uptake by TM-BBB4 cells was significantly inhibited by DHEAS. Moreover, the net uptake of [(3)H]DHEAS at 30 min was significantly increased under ATP-depleted conditions, suggesting that an energy-dependent efflux process may also be involved in TM-BBB4. RT-PCR and sequence analysis suggest that an oatp2 is expressed in TM-BBB4 cells. In conclusion, DHEAS efflux transport takes place across the BBB, and studies involving in vitro DHEAS uptake and RT-PCR suggest that there is oatp2-mediated DHEAS transport at the BBB.  相似文献   

18.
Hepatic lipase (HL) plays a role in the catabolism of apolipoprotein (apo)B-containing lipoproteins through its lipolytic and ligand-binding properties. We describe a potential intracellular role of HL in the assembly and secretion of VLDL. Transient or stable expression of HL in McA-RH7777 cells resulted in decreased (by 40%) incorporation of [(3)H]glycerol into cell-associated and secreted triacylglycerol (TAG) relative to control cells. However, incorporation of [(35)S]methionine/cysteine into cell and medium apoB-100 was not decreased by HL expression. The decreased (3)H-TAG synthesis/secretion in HL expressing cells was not attributable to decreased expression of genes involved in lipogenesis. Fractionation of medium revealed that the decreased [(3)H]TAG from HL expressing cells was mainly attributable to decreased VLDL. Expression of catalytically-inactive HL (HL(SG)) (Ser-145 at the catalytic site was substituted with Gly) in the cells also resulted in decreased secretion of VLDL-[(3)H]TAG. Examination of lumenal contents of microsomes showed a 40% decrease in [(3)H]TAG associated with lumenal lipid droplets in HL or HL(SG) expressing cells as compared with control. The microsomal membrane-associated [(3)H]TAG was decreased by 50% in HL expressing cells but not in HL(SG) expressing cells. Thus, expression of HL, irrespective of its lipolytic function, impairs formation of VLDL precursor [(3)H]TAG in the form of lumenal lipid droplets. These results suggest that HL expression in McA-RH7777 cells result in secretion of [(3)H]TAG-poor VLDL.  相似文献   

19.
20.
Diacylglycerol acyltransferase (DGAT) catalyses the acylation of the sn-3 hydroxy group of sn-1,2-diacylglycerol using acyl-CoA. The gene encoding DGAT from Arabidopsis thaliana has been cloned and the function of the enzyme proved by expression of the coding sequence using a bacculovirus expression system in insect cell cultures. The expressed protein catalysed the synthesis of [(14)C]triacylglycerol from [(14)C]diacylglycerol and oleoyl-CoA. The heterologously expressed DGAT activity was found mostly associated with the 100000 g pellet. The optimum activity was achieved at a neutral pH, in the presence of Mg2+, and at an optimum oleoyl-CoA concentration of 20 microM. The DGAT used the substrates palmitoyl-CoA and oleoyl-CoA equally effectively. In these experiments, the inclusion of recombinant acyl-CoA binding protein had a relatively small effect upon DGAT activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号