首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim The role of dispersal in structuring biodiversity across spatial scales is controversial. If dispersal controls regional and local community assembly, it should also affect the degree of spatial species turnover as well as the extent to which regional communities are represented in local communities. Here we provide the first integrated assessment of relationships between dispersal ability and local‐to‐regional spatial aspects of species diversity across a large geographical area. Location Northern Eurasia. Methods Using a cross‐scale analysis covering local (0.64 m2) to continental (the Eurasian Arctic biome) scales, we compared slope parameters of the dissimilarity‐to‐distance relationship in species composition and the local‐to‐regional relationship in species richness among three plant‐like groups that differ in dispersal ability: lichens with the highest dispersal ability; mosses and moss allies with intermediate dispersal ability; and seed plants with the lowest dispersal ability. Results Diversity patterns generally differed between the three groups according to their dispersal ability, even after controlling for niche‐based processes. Increasing dispersal ability is linked to decreasing spatial species turnover and an increasing ratio of local to regional species richness. All comparisons supported our expectations, except for the slope of the local‐to‐regional relationship in species richness for mosses and moss allies which was not significantly steeper than that of seed plants. Main conclusions The negative link between dispersal ability and spatial species turnover and the corresponding positive link between dispersal ability and the ratio of local‐to‐regional species richness support the idea that dispersal affects community structure and diversity patterns across spatial scales.  相似文献   

2.
1. Differing responses in riparian species richness and composition to disturbance have been reported as a possible explanation for the differences along and between rivers. This paper explores the role of physical disturbance in shaping landscape‐scale patterns of species distribution in riparian vegetation along a free‐flowing river in northern Sweden. 2. To test whether sensitivity to disturbance varies across large landscapes, we experimentally disturbed riparian vegetation along an entire, free‐flowing river by scouring the soil and the vegetation turf, cutting vegetation, applying waterborne plant litter, and after a period of recovery we measured vegetation responses. The experiment was repeated for two consecutive years. 3. We found no significant effect of disturbance on species composition, but all three forms of disturbance significantly reduced species richness. There was no downstream variation in community responses to disturbance but morphological groups of species responded differently to different kinds of disturbance. Graminoids were most resistant, suppressed only by litter burial. All forms of disturbance except cutting reduced the density of herbaceous species, and species density of trees + shrubs and dwarf shrubs was negatively affected by both scouring and cutting. We also evaluated the effects of disturbance in relation to varying levels of species richness. In nearly all cases, responses were significantly negatively correlated with control plot species richness, and relative responses indicated that species‐rich plots were less resistant to scouring and cutting. 4. Our results suggest that although all disturbance treatments had an effect on species richness, variation in sensitivity to disturbance is not the most important factor shaping landscape‐scale patterns of riparian plant species richness along rivers.  相似文献   

3.
Planning riparian restoration to resemble historic reference conditions requires an understanding of both local and regional patterns of plant species diversity. Thus, understanding species distributions at multiple spatial scales is essential to improve restoration planting success, to enhance long‐term ecosystem functioning, and to match restoration planting designs with historic biogeographic distributions. To inform restoration planning, we examined the biogeographic patterns of riparian plant diversity at local and regional scales within a major western U.S.A. drainage, California's Sacramento—San Joaquin Valley. We analyzed patterns of species richness and complementarity (β‐diversity) across two scales: the watershed scale and the floodplain scale. At the watershed scale, spatial patterns of native riparian richness were driven by herbaceous species, whereas woody species were largely cosmopolitan across the nearly 38,000 km2 study area. At the floodplain scale, riparian floras reflected species richness and dissimilarity patterns related to hydrological and disturbance‐driven successional sequences. These findings reinforce the importance of concurrently evaluating both local and regional processes that promote species diversity and distribution of native riparian flora. Furthermore, as restoration activities become more prevalent across the landscape, strategies for restoration outcomes should emulate the patterns of species diversity and biogeographic distributions found at regional scales.  相似文献   

4.
The river domain: why are there more species halfway up the river?   总被引:2,自引:0,他引:2  
Biologists have long noted higher levels of species diversity in the longitudinal middle‐courses of river systems and have proposed many explanations. As a new explanation for this widespread pattern, we suggest that many middle‐course peaks in richness may be, at least in part, a consequence of geometric constraints on the location of species’ ranges along river courses, considering river headwaters and mouths as boundaries for the taxa considered. We demonstrate this extension of the mid‐domain effect (MDE) to river systems for riparian plants along two rivers in Sweden, where a previous study found a middle‐course peak in richness of natural (non‐ruderal) species. We compare patterns of empirical richness of these species to null model predictions of species richness along the two river systems and to spatial patterns for six environmental variables (channel width, substrate fineness, substrate heterogeneity, ice scour, bank height, and bank area). In addition, we examine the independent prediction of mid‐domain effects models that species with large ranges, because the location of their ranges is more constrained, are more likely to produce a mid‐domain peak in richness than are species with small ranges. Species richness patterns of riparian plants were best predicted by models including both null model predictions and environmental variables. When species were divided into large‐ranged and small‐ranged groups, the mid‐domain effect was more prominent and the null model predictions were a better fit to the empirical richness patterns of large‐ranged species than those of small‐ranged species. Our results suggest that the peak in riparian plant species richness in the middle courses of the rivers studied can be explained by an underlying mid‐domain effect (driven by geometric constraints on large‐ranged species), together with environmental effects on richness patterns (particularly on small‐ranged species). We suggest that the mid‐domain effect may help to explain similar middle‐course richness peaks along other rivers.  相似文献   

5.
6.
Many aquatic and riparian plant species are characterized by the ability to reproduce both sexually and asexually. Yet, little is known about how spatial variation in sexual and asexual reproduction affects the genotypic diversity within populations of aquatic and riparian plants. We used six polymorphic microsatellites to examine the genetic diversity within and differentiation among 17 populations (606 individuals) of Sparganium emersum, in two Dutch-German rivers. Our study revealed a striking difference between rivers in the mode of reproduction (sexual vs. asexual) within S. emersum populations. The mode of reproduction was strongly related to locally reigning hydrodynamic conditions. Sexually reproducing populations exhibited a greater number of multilocus genotypes compared to asexual populations. The regional population structure suggested higher levels of gene flow among sexually reproducing populations compared to clonal populations. Gene flow was mainly mediated via hydrochoric dispersal of generative propagules (seeds), impeding genetic differentiation among populations even over river distances up to 50 km. Although evidence for hydrochoric dispersal of vegetative propagules (clonal plant fragments) was found, this mechanism appeared to be relatively less important. Bayesian-based assignment procedures revealed a number of immigrants, originating from outside our study area, suggesting intercatchment plant dispersal, possibly the result of waterfowl-mediated seed dispersal. This study demonstrates how variation in local environmental conditions in river systems, resulting in shifting balances of sexual vs. asexual reproduction within populations, will affect the genotypic diversity within populations. This study furthermore cautions against generalizations about dispersal of riparian plant species in river systems.  相似文献   

7.
Hood  W. Gregory  Naiman  Robert J. 《Plant Ecology》2000,148(1):105-114
We compared the invasibility of riparian plant communities high on river banks with those on floodplain floors for four South African rivers. Analyses of abundant and significant riparian species showed that the floors have 3.1 times more exotic plants than the banks. The percent exotics ranges from 5% to 11% of total species richness for the banks, and from 20% to 30% for the floors. Species richness and percent exotics are negatively correlated for the banks, but not correlated for the floors.Despite great differences in climate, species richness, and landuse history, the percentages of exotic plants in three rivers in the Pacific Northwest of the USA and one river in southwestern France are similar to those in South Africa (24-30% vs. 20-30%, respectively). Furthermore, the high proportions of exotic species in these riparian plant communities are comparable to those reported for vascular plant communities on islands. We conclude that the macro-channel floor regions of the riparian zones of South African rivers are highly vulnerable to invasion by exotic vascular plants.  相似文献   

8.
Aim We analysed the interdependence of avian frugivore‐ and fruited plant‐species richness at the scale of major river basins across Europe, taking into account several environmental factors along different spatial gradients. Location Continental Europe and the British Isles. Methods We focused on wintering birds and autumn/winter fruiting plants, and used major river basins as geographical units and Structural Equation Modelling as the principal analytical tool. Results The statistical influence of disperser species richness on fleshy‐fruited plant species richness is roughly double that of the reverse. Broad‐scale variation in frugivore richness is more dependent on environmental factors than on fruited plant richness. However, the influence of disperser richness on plant richness is four times higher than the influence of environmental factors. Environmental influences on both birds and plants are greater than purely spatial influences. Main conclusions Our results are interpreted as indicating that biotic dispersal of fruits strongly affects broad‐scale geographical trends of fleshy‐fruited plant species richness, whereas richness of fruited plants moderately affects frugivore richness.  相似文献   

9.
The distribution of water across landscapes affects the diversity and composition of ecological communities, as demonstrated by studies on variation in vascular plant communities along river networks and in relation to groundwater. However, non-vascular plants have been neglected in this regard. Bryophytes are dominant components of boreal flora, performing many ecosystem functions and affecting ecosystem processes, but how their diversity and species composition vary across catchments is poorly known. We asked how terrestrial assemblages of mosses and liverworts respond to variation in (i) catchment size, going from upland-forest to riparian settings along increasingly large streams and (ii) groundwater discharge conditions. We compared the patterns found for liverworts and mosses to vascular plants in the same set of study plots. Species richness of vascular plants and mosses increased with catchment size, whereas liverworts peaked along streams of intermediate size. All three taxonomic groups responded to groundwater discharge in riparian zones by maintaining high species richness further from the stream channel. Groundwater discharge thus provided riparian-like habitat further away from the streams and also in upland-forest sites compared to the non-discharge counterparts. In addition, soil chemistry (C:N ratio, pH) and light availability were important predictors of vascular plant species richness. Mosses and liverworts responded to the availability of specific substrates (stones and topographic hollows), but were also affected by soil C:N. Overall, assemblages of mosses and vascular plants exhibited many similarities in how they responded to hydrological gradients, whereas the patterns of liverworts differed from the other two groups.  相似文献   

10.
Aims Factors limiting distributions of species are fundamental to ecology and evolution but have rarely been addressed experimentally for multiple species. The conspicuous linear distribution patterns of plant species confined to river corridors in the Central European lowlands constitute an especially long-standing distribution puzzle. We experimentally tested our novel hypothesis that the tolerance of species to river corridor conditions is independent of the degree of confinement to river corridor habitats, but that species not confined to river corridors are better able to take advantage of the more benign non-river corridor conditions.Methods We grew 42 herbaceous species differing in their confinement to river corridors in a common garden experiment on loamy soil typical for river corridor areas and sandy soil typical for non-river corridor areas, and with and without a flooding period. For a subset of species, we grew plants of both river corridor and non-river corridor origin to test for adaptation to river corridor conditions.Important findings Species more confined to river corridor areas benefited less from the more benign non-flooded and non-river corridor soil conditions than species of wider distributional range did. For subsets of 7 and 12 widespread species, the response to flooding and soil origin, respectively, did not differ between plants from river corridor sites and plants from other sites, suggesting that the habitat tolerance of widespread species is due to phenotypic plasticity rather than to local adaptation. Overall, we found clear support for our novel hypothesis that species not confined to river corridors are more able to take advantage of the more benign non-river corridor conditions. Our study provides a general hypothesis on differences between species confined to stressful habitats and widespread species out for test in further multispecies comparative experiments.  相似文献   

11.
Aim We compare the distribution patterns of native and exotic freshwater fish in Europe, and test whether the same mechanisms (environmental filtering and/or dispersal limitation) govern patterns of decrease in similarity of native and exotic species composition over geographical distance (spatial species turnover). Locations Major river basins of Europe. Methods Data related to geography, habitat diversity, regional climate and species composition of native and exotic freshwater fish were collated for 26 major European river basins. We explored the degree of nestedness in native and exotic species composition, and quantified compositional similarity between river basins according to the beta‐sim (independent of richness gradient) and Jaccard (dependent of richness gradient) indices of similarity. Multiple regression on distance matrices and variation‐partitioning approaches were used to quantify the relative roles of environmental filtering and dispersal limitation in shaping patterns of decreasing compositional similarity over geographical distance. Results Native and exotic species exhibited significant nested patterns of species composition, indicating that differences in fish species composition between river basins are primarily the result of species loss, rather than species replacement. Both native and exotic compositional similarity decreased significantly with increasing geographical distance between river basins. However, gradual changes in species composition with geographical distance were found only for exotic species. In addition, exotic species displayed a higher rate of similarity decay (higher species turnover rate) with geographical distance, compared with native species. Lastly, the majority of explained variation in exotic compositional similarity was uniquely related to geography, whereas native compositional similarity was either uniquely explained by geography or jointly explained by environment and geography. Main conclusions Our study suggests that large‐scale patterns of spatial turnover for exotic freshwater fish in Europe are generated by human‐mediated dispersal limitation, whereas patterns of spatial turnover for native fish result from both dispersal limitation relative to historical events (isolation by mountain ranges, glacial history) and environmental filtering.  相似文献   

12.
1. Flow dynamics is a major determinant of riparian plant communities. Therefore, flow regulation may heavily affect riparian ecosystems. Despite the large number of dams worldwide, little specific information is available on the longitudinal impacts of dams on vegetation, for example how far downstream and at what degree of regulation a dam on a river can influence riparian woodlands. 2. We quantified the long‐term responses of riparian trees and shrubs to flow regulation by identifying their lateral distribution and habitat conditions along a boreal river in northern Sweden that has been regulated by a single dam since 1948. The regulation has reduced annual flow fluctuations, this effect being largest at the dam, downstream from which it progressively decreases following the entrance of free‐flowing tributaries. 3. We related changes in the distribution patterns, composition, abundance and richness of tree and shrub species to the degree of regulation along the river downstream from the dam. Regulation has triggered establishment of trees and shrubs closer to the channel, making it possible to measure ecological impacts of flow regulation as differences in vegetation attributes relative to the positions of tree and shrub communities established before and after regulation. 4. Trees and shrubs had migrated towards the mid‐channel along the entire study reach, but the changes were largest immediately downstream of the dam. Shrubs were most impacted by flow regulation in terms of lateral movement, but the effect on trees extended furthest downstream. 5. The species composition of trees progressively returned to its pre‐regulation state with distance downstream, but entrance of free‐flowing tributaries and variation in channel morphology and substratum caused local deviations. Species richness after regulation increased for trees but decreased for shrubs. The changes in species composition and richness of trees and shrubs showed no clear downstream patterns, suggesting that other factors than the degree of regulation were more important in governing life form.  相似文献   

13.
Aim To examine the role of multiple landscape factors on the species richness patterns of native and introduced freshwater fish. Location Mediterranean streams, south‐western Iberian Peninsula, Europe (c. 87,000 km2). Methods We used a dataset of fish occurrences from 436 stream sites. We quantified the incremental explanatory power of multiple landscape factors in native, introduced, and overall local species richness using regression analysis. First, we related variation in local species richness across river basins to regional species richness (here, the basin species pool), area and factors of climate and topography. Second, we related within‐river basin local species richness to site’s climate and topography, and spatial structure derived from Principal Coordinates of Neighbour Matrices approach, after testing for species richness spatial autocorrelation; predicted local richness was mapped. Results Patterns of local species richness across river basins were strongly associated with regional species richness for overall, native and introduced species; annual rainfall showed a significant incremental contribution to variation in introduced species richness only. Within river basins, environmental factors were associated with local richness for the three species groups, though their contributions to the total explained variation were inferior to those of spatial factors; rainfall seasonality and stream slope were the most consistent environmental correlates for all species groups, while the influence of spatial factors was most prevalent for native species. Main conclusions Landscape factors operating among and within river basins seem to play a relevant role in shaping local species richness of both native and introduced species, and may be contingent on basin‐specific contexts. Nevertheless, local factors, such as habitat characteristics and biotic interactions and human‐induced disturbances may also be at play. Multiscale approaches incorporating a multitude of factors are strongly encouraged to facilitate a deeper understanding of the biodiversity patterns of Mediterranean streams, and to promote more effective conservation and management strategies.  相似文献   

14.
Aim We evaluate how closely diversity patterns of endemic species of vascular plants, beetles, butterflies, molluscs and spiders are correlated with each other, and to what extent similar environmental requirements or survival in common glacial refugia and comparable dispersal limitations account for their existing congruence. Location Austria. Methods We calculated pairwise correlations among species numbers of the five taxonomic groups in 1405 cells of a 3′ × 5′ raster (c. 35 km2) using the raw data as well as the residuals of regression models that accounted for: (1) environmental variables, (2) environmental variables and the occurrence of potential refugia during the Last Glacial Maximum, or (3) environmental variables, refugia and spatial filters. Results Pairwise cross‐taxonomic group Spearman’s rank correlations in the raw data were significantly positive in most cases, but only moderate (0.3 < ρ < 0.5) to weak (ρ < 0.3) throughout. Correlations were closest between plants and beetles, plants and butterflies, and plants and snails, respectively, whereas the distribution of endemic spiders was largely uncorrelated with those of the other groups. Environmental variables explained only a moderate proportion of the variance in endemic richness patterns, and the response of individual groups to environmental gradients was only partly consistent. The inclusion of refugium locations and the spatial filters increased the goodness of model fit for all five taxonomic groups. Moreover, removing the effects of environmental conditions reduced congruence in endemic richness patterns to a lesser extent than did filtering the influence of refugium locations and spatial autocorrelation, except for spiders, which are probably the least dispersal‐limited of the five groups. Main conclusions The moderate to weak congruence of endemic richness patterns clearly limits the usefulness of a surrogacy approach for designating areas for the protection of regional endemics. On the other hand, our results suggest that dispersal limitations still shape the distributions of many endemic plant, snail, beetle and butterfly species, even at the regional scale; that is, survival in shared refugia and subsequent restricted spread retain a detectable signal in existing correlations. Concentrating conservation efforts on well‐known Pleistocene refugia hence appears to be a reasonable first step towards a strategy for protecting regional endemics of at least the less mobile invertebrate groups.  相似文献   

15.
Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon-specific functional traits define large-scale richness gradients is a fundamental issue in understanding spatial patterns of species diversity, but has not been well documented. Using a large dataset on the regional flora from China, we examine the contrast spatial patterns and environmental determinants between pteridophytes and seed plants which differ in dispersal capacity and environmental requirements. Pteridophyte richness shows more pronounced spatial variation and stronger environmental associations than seed plant richness. Water availability generally accounts for more spatial variance in species richness of pteridophytes and seed plants than energy and heterogeneity do, especially for pteridophytes which have high dependence on moist and shady environments. Thus, pteridophyte richness is disproportionally affected by water-related variables; this in turn results in a higher proportion of pteridophytes in regional vascular plant floras (pteridophyte proportion) in wet regions. Most of the variance in seed plant richness, pteridophyte richness, and pteridophyte proportion explained by energy is included in variation that water and heterogeneity account for, indicating the redundancy of energy in the study extent. However, heterogeneity is more important for determining seed plant distributions. Pteridophyte and seed plant richness is strongly correlated, even after the environmental effects have been removed, implying functional linkages between them. Our study highlights the importance of incorporating biological traits of different taxonomic groups into the studies of macroecology and global change biology.  相似文献   

16.
Aim Understanding the history of the mesic‐adapted plant species of eastern British Columbia and northern Idaho, disjunct from their main coastal distribution, may suggest how biotas reorganize in the face of climate change and dispersal barriers. For different species, current evidence supports establishment of the disjunction via an inland glacial refugium, via recent dispersal from the coast, or via a combination of both. In this study, the modern distributions of the coastal‐disjunct vascular plants are analysed with respect to modern climate to examine how refugia and/or dispersal limitation control regional patterns in species richness. Location North‐west North America. Methods The distributions of nine tree and 58 understorey species with a coastal‐disjunct pattern were compiled on a 50‐km grid. The relationship between species richness and an estimate of available moisture was calculated separately for formerly glaciated and unglaciated portions of the coastal and inland regions. Growth habit and dispersal mode were assessed as possible explanatory variables for species distributions. Results Species richness shows a strong relationship to climate in coastal‐unglaciated areas but no relationship to climate in inland‐glaciated areas. In inland‐glaciated areas, richness is c. 70% lower than that expected from climate. Species with animal‐dispersed seeds occupy a larger portion of coastal and inland regions than species with less dispersal potential. Main conclusions Modern patterns of diversity are consistent with both refugia and dispersal processes in establishing the coastal‐disjunct pattern. The inland glacial refugium is marked by locally high diversity and several co‐distributed endemics. In the inland‐glaciated area, dispersal limitation has constrained diversity despite the nearby refugia. Onset of mesic climate within only the last 3000 years and the low dispersal capacity of many species in the refugium may explain this pattern. This study suggests that vascular plant species will face significant challenges responding to climate change on fragmented landscapes.  相似文献   

17.
Covariation in species richness and community structure across taxonomical groups (cross‐taxon congruence) has practical consequences for the identification of biodiversity surrogates and proxies, as well as theoretical ramifications for understanding the mechanisms maintaining and sustaining biodiversity. We found there to exist a high cross‐taxon congruence between phytoplankton, zooplankton, and fish in 73 large Scandinavian lakes across a 750 km longitudinal transect. The fraction of the total diversity variation explained by local environment alone was small for all trophic levels while a substantial fraction could be explained by spatial gradient variables. Almost half of the explained variation could not be resolved between local and spatial factors, possibly due to confounding issues between longitude and landscape productivity. There is strong consensus that the longitudinal gradient found in the regional fish community results from postglacial dispersal limitations, while there is much less evidence for the species richness and community structure gradients at lower trophic levels being directly affected by dispersal limitation over the same time scale. We found strong support for bidirectional interactions between fish and zooplankton species richness, while corresponding interactions between phytoplankton and zooplankton richness were much weaker. Both the weakening of the linkage at lower trophic levels and the bidirectional nature of the interaction indicates that the underlying mechanism must be qualitatively different from a trophic cascade.  相似文献   

18.
Aim The aim of our study was to reveal relationships between richness patterns of native vs. alien plant species and spatial heterogeneity across varying landscape patterns at a regional scale. Location The study was carried out in the administrative district of Dessau (Germany), covering around 4000 km2. Methods Data on plant distribution of the German vascular flora available in grid cells covering 5′ longitude and 3′ latitude (c. 32 km2) were divided into three status groups: native plants, archaeophytes (pre 1500 AD aliens) and neophytes (post 1500 AD aliens). Land use and abiotic data layers were intersected with 125 grid cells comprising the selected area. Using novel landscape ecological methods, we calculated 38 indices of landscape composition and configuration for each grid cell. Principal components analysis (PCA) with a set of 29 selected, low correlated landscape indices was followed by multiple linear regression analysis. Results PCA reduced 29 indices to eight principal components (PCs) that explained 80% cumulative variance. Multiple linear regression analysis was highly significant and explained 41% to 60% variance in plant species distribution (adjusted R2) with three significant PCs (tested for spatial autocorrelation) expressing moderate to high disturbance levels and high spatial heterogeneity. Comparing the significance of the PCs for the species groups, native plant species richness is most strongly associated with riverine ecosystems, followed by urban ecosystems, and then small‐scale rural ecosystems. Archaeophyte and neophyte richness are most strongly associated with urban ecosystems, followed by small‐scale rural ecosystems and riverine ecosystems for archaeophytes, and riverine ecosystems and small‐scale rural ecosystems for neophytes. Main conclusions Our overall results suggest that species richness of native and alien plants increases with moderate levels of natural and/or anthropogenic disturbances, coupled with high levels of habitat and structural heterogeneity in urban, riverine, and small‐scale rural ecosystems. Despite differences in the order of relevance of PCs for the three plant groups, we conclude that at the regional scale species richness patterns of native plants as well as alien plants are promoted by similar factors.  相似文献   

19.
Abstract. We analysed the structure and diversity of the vegetation along an Arctic river to determine the relationship between species richness and plant community structure. We examined whether variation in species richness along the corridor is structured as (1) an increase in the number of communities due to increasing landscape heterogeneity, (2) an increase in the floristic distinctiveness (β-diversity) of communities, or (3) an increase in within-community richness (α-diversity) as species-poor communities are replaced by species-rich communities. We described 24 community types and analysed the relationship between site vascular species richness (γ-diversity) and β-diversity, α-diversity, site environmental heterogeneity, and the number of distinct plant communities. We also measured diversity patterns of vascular, bryophyte, and lichen species within communities and examined their relationship to community-level estimates of environmental factors. We found that an increase in site species richness correlated with an increase in the number of communities (r2= 0.323, P= 0.0173) and β-diversity (r2= 0.388, P= 0.0075), rather than an increase in the α-diversity of individual communities. Moisture and pH controlled most of the differences in composition between communities. Measures of species richness and correlations with moisture and pH within communities differed among vascular, bryophyte, and lichen species. Bryophyte richness was positively correlated with moisture (r2= 0.862, P= 0.0010) and lichen richness was negatively correlated with moisture (r2= 0.809, P= 0.0031). Vascular plants had a peak in richness at pH 6.5 (r2= 0.214, P < 0.0001). We conclude that site variation in vascular richness in this region is controlled by landscape heterogeneity, and structured as variation in the number and distinctiveness of recognizable plant communities.  相似文献   

20.
Aim Urbanization is a major driver of global land‐use change, substantially modifying patterns of biodiversity. Managing these impacts has become a conservation priority. The creation and maintenance of greenways, such as river corridors, is frequently promoted as a strategy for mitigating habitat fragmentation in urban areas by bringing semi‐natural habitat cover into city centres. However, there is little evidence to support this assertion. Here, we examine whether riparian zones maintain semi‐natural habitat cover in urban areas and how species richness varies along such zones. Location Sheffield, Northern England. Methods Multiple taxonomic groups (birds, butterflies, plants) were surveyed at 105 sites spanning seven riparian corridors that transect the study system. For all groups, we model the relationships between species richness and environmental variables pertinent to an urban system. To test whether riparian zones can act to maintain semi‐natural habitats within a city, we modelled the proportion of semi‐natural land cover within 250 m grid squares that do, and do not, contain a river. Results Species richness varied markedly in relation to distance from the urban core. Trends differed both between taxonomic groups and between rivers, reflecting the complex patterns of environmental variation associated with cities. This suggests that biodiversity surveys that focus on a single group or transect cannot reliably be used as surrogates even within the same city. Nonetheless, there were common environmental predictors of species richness. Plant, avian and butterfly richness all responded positively to Habitat Diversity and the latter two declined with increases in sealed surface. Main conclusions Multiple transects and taxonomic groups are required to describe species richness responses to urbanization as no single pattern is evident. Although riparian zones are an important component of the mosaic of urban habitats, we find that river corridors do not disproportionately support tree and Natural Surface Cover when compared to non‐riverine urban areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号