共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of 2-hydroxybenzoate on the maintenance of naphthalene-degrading pseudomonads in seeded and unseeded soil. 总被引:1,自引:0,他引:1
O A Ogunseitan I L Delgado Y L Tsai B H Olson 《Applied and environmental microbiology》1991,57(10):2873-2879
The addition of specific nontoxic inducers of catabolic operons to contaminated sites is an approach that may enhance the efficiency of in situ biodegradation. We determined the genetic response of six pseudomonads to salicylate (also known as 2-hydroxybenzoate) added directly to 50 g of nonsterile soil samples. The strains, isolated from a polyaromatic hydrocarbon-contaminated soil, metabolized naphthalene as the sole source of available carbon, and their DNA sequences show significant homology to the nahAB genes of the degradative plasmid NAH7. Duplicate nonsterile soil cultures were incubated for up to 30 days. Experimental soil cultures were seeded with naphthalene-degrading strains (10(8) CFU g-1) originally isolated from the soil and amended with salicylate (16 or 160 micrograms g-1). Soil samples were analyzed periodically for the population density of heterotrophic bacteria and naphthalene degraders and for the abundance of the naphthalene-degradative genotype in the bacterial community. At 160 micrograms g-1, salicylate sustained the density of naphthalene degraders at the introduced density for 30 days in addition to producing a two- to sixfold increase in the occurrence in the bacterial community of DNA sequences homologous to the nah operon. No change in recoverable bacterial population densities was observed when soil samples were amended with 16 micrograms of salicylate g-1, but this concentration of salicylate induced a significant increase in the level of nah-related genes in the population. 相似文献
2.
The effect of 2-hydroxybenzoate (2-OHB, salicylate) on the mineralization rate of [14C]naphthalene, the population density of naphthalene-degrading bacteria, and the concentration of genes encoding for naphthalene dioxygenase in a soil bacterial community was investigated. Six different concentrations of 2-OHB (10, 20, 50, 100, 150 and 200 g g–1 soil) were tested in 100-g portions of soil. The addition of 10, 20 or 50 g 2-OHB g–1 soil produced a general increase in total soil bacterial population density, whereas the addition of 100 g or 200 g 2-OHB g–1 soil specifically increased the proportion of naphthalene degraders relative to the total population. The addition of 50 g 2-OHB g–1 soil produced a fourfold increase (the maximum observed) in the rate of naphthalene mineralization relative to the rate in unamended soil. The concentration of 2-OHB ( 100 g/g) added to soil correlated with the population density of naphthalene degraders (r=0.961). Addition of up to 200 g 2-OHB g–1 correlated with the abundance of DNA sequences homologous to known naphthalene dioxygenase genes (nahAB) (r=0.958). However, mineralization of [14C]naphthalene was stimulated significantly only by the addition of 50 g 2-OHB g–1 soil. Results of the mineralization experiments were supported by the detection of nahAB mRNA extracted directly from soil. The specificity of the effect of 2-OHB on naphthalene biodegradation was confirmed in a control experiment using equivalent concentrations of 4-OHB which repressed naphthalene mineralization by about 50%. Addition of ammonium nitrate to the soil also increased the rate of naphthalene mineralization. Ammonium nitrate added together with 2-OHB reduced the mineralization enhancement effect of either compound alone. The study confirmed that specific induction of biodegradative genes can enhance chemical pollutant removal in situ.
Correspondence to: O. A. Ogunseitan 相似文献
3.
The intrinsic time scales for nonnative aggregate nucleation (tau0(n)) and chain growth (tau0(g)) were determined for alpha-chymotrypsinogen A as a function of temperature under acidic conditions where the resulting aggregates do not appreciably condense. Previous results (Andrews and Roberts (2007) Biochemistry 46, 7558) indicated that the product tau0(n)tau0(g) increases with increasing temperature but could not distinguish tau0(n) and tau0(g). Separate experimental values of tau0(n) and tau0(g) are reported here from two approaches based on either (i) combining unseeded monomer loss kinetics with static light scattering of the resulting aggregates or (ii) seeded monomer loss kinetics as a function of number concentration of seed. Values of tau0(n) and tau0(g) from (i) and (ii) agree quantitatively, and indicate that nucleation has a large, negative effective activation energy (ca. -76 kcal/mol) while growth has at most a weak dependence on temperature. The results are consistent with a model in which nucleation requires significant conformational changes within a nonnative oligomer, beyond those for monomer unfolding. The results more generally illustrate the potential utility of approaches (i) and (ii) for quantitatively determining in vitro tau0(n) and tau0(g) values, as well as how the effects of seeding can be predicted purely from unseeded kinetics and static light scattering measurements prior to significant aggregate condensation. 相似文献
4.
Effect of soil type and plant species on the fluorescent pseudomonads nitrate dissimilating community 总被引:2,自引:0,他引:2
Clays-Josserand A. Ghiglione J.F. Philippot L. Lemanceau P. Lensi R. 《Plant and Soil》1999,209(2):275-282
The distribution of nitrogen dissimilative abilities among 618 isolates of fluorescent pseudomonads was studied. These strains
were isolated from two uncultivated soils (C and D; collected at Chateaurenard and Dijon, France, respectively) and from rhizosphere,
rhizoplane and root tissue of two plant species (flax and tomato) cultivated on these two soils. According to their ability
to dissimilate nitrogen, the isolates have been distributed into three metabolic types: non-dissimilators, NO2
- accumulators and denitrifiers. While the three metabolic types were recovered in all the compartments of soil D experiments,
only two (non-dissimilators and denitrifiers) were recovered in all the compartments of soil C experiments. Even under the
contrasting conditions of the two soil types, both plants were able to select the nitrate dissimilating community among the
total community of fluorescent Pseudomonas, but the mode of this selection seems to be dependent on both plant and soil type.
The soil type appears to be unable to significantly modulate the strong selective effect of tomato. Indeed, similar dissimilator
to non-dissimilator ratios were found in the root tissue of this plant species cultivated in both soils. In contrast, the
different dissimilator to non-dissimilator ratios observed in flax roots between soils C and D suggest that the selective
effect of flax was modulated by the soil type. Taxonomic identifications showed that the 618 isolates were distributed among
three species (P. chlororaphis, P. fluorescens, P. putida) plus an intermediate type between P. fluorescens and P. putida.
However, no clear relationship between the distribution of the metabolic types (functional diversity) and the distribution
of bacterial species has been found.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
5.
Cavalca L Colombo M Larcher S Gigliotti C Collina E Andreoni V 《Journal of applied microbiology》2002,92(6):1058-1065
AIMS: The survival and activity of Rhodococcus sp. strain 1BN, inoculated into naphthalene-contaminated sandy-loam soil microcosms, were studied using classical and molecular methods. METHODS AND RESULTS: The naphthalene-degrading activity of 1BN in microcosms was examined through viable counts, CO2 production and naphthalene consumption, while its survival after inoculation was monitored by detecting the contemporary presence of alkane and naphthalene degradative genes and by analysing the 16S rDNA specific restriction profile. The inoculation of 1BN did not significantly enhance naphthalene degradation in the naphthalene-contaminated native soil, where 1BN maintained its catabolic activity also when in the presence of indigenous microflora. Instead the rate of naphthalene degradation by the inoculated 1BN was greater in sterile naphthalene-contaminated soil. The level of 1BN was only slightly higher after inoculation regardless of whether indigenous naphthalene-degrading bacteria were present or not and 1BN remained viable even when the substrate was depleted. CONCLUSIONS: This study documents the colonization and growth of 1BN in a non-sterile, naphthalene-added, sandy-loam soil having an active indigenous naphthalene-degrading population. SIGNIFICANCE AND IMPACT OF THE STUDY: An active and well-established naphthalene-degrading bacterial population in the native soil did not hamper the survival of the introduced 1BN that, through its activity, enhanced the mineralization rate of naphthalene. 相似文献
6.
7.
8.
Filonov AE Akhmetov LI Puntus IF Esikova TZ Gafarov AB Izmalkova TIu Sokolov SL Kosheleva IA Boronin AM 《Mikrobiologiia》2005,74(4):526-532
A genetically marked, plasmid-containing, naphthalene-degrading strain, Pseudomonas putida KT2442(pNF142::TnMod-OTc), has been constructed. The presence of the gfp gene (which codes for green fluorescent protein) and the kanamycin and rifampicin resistance genes in the chromosome of this strain allows the strain's fate in model soil systems to be monitored, whereas a minitransposon, built in naphthalene biodegradation plasmid pNF142, contains the tetracycline resistance gene and makes it possible to follow the horizontal transfer of this plasmid between various bacteria. Plasmid pNF142::TnMod-OTc is stable in strain P. putida KT2442 under nonselective conditions. The maximal specific growth rate of this strain on naphthalene was found to be higher than that of the natural host of plasmid pNF142. When introduced into a model soil system, the genetically marked strain is stable and competitive for 40 days. The transfer of marked plasmid pNF142::TnMod-OTc to natural soil bacteria, predominantly fluorescent pseudomonads, has been detected. 相似文献
9.
Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. The ring-fission mechanism 总被引:29,自引:0,他引:29 下载免费PDF全文
1. Phenanthrene is oxidatively metabolized by soil pseudomonads through trans-3,4-dihydro-3,4-dihydroxyphenanthrene to 3,4-dihydroxyphenanthrene, which then undergoes cleavage. 2. Some properties of the ring-fission product, cis-4-(1-hydroxynaphth-2-yl)-2-oxobut-3-enoic acid, are described. The Fe2+-dependent oxygenase therefore disrupts the bond between C-4 and the angular C of the phenanthrene nucleus. 3. An enzyme of the aldolase type converts the fission product into 1-hydroxy-2-naphthaldehyde (2-formyl-1-hydroxynaphthalene). An NAD-specific dehydrogenase is also present in the cell-free extract, which oxidizes the aldehyde to 1-hydroxy-2-naphthoic acid. This is then oxidatively decarboxylated to 1,2-dihydroxynaphthalene, thus allowing continuation of metabolism via the naphthalene pathway. 4. Anthracene is similarly metabolized, through 1,2-dihydro-1,2-dihydroxyanthracene to 1,2-dihydroxyanthracene, in which ring-fission occurs to give cis-4-(2-hydroxynaphth-3-yl)-2-oxobut-3-enoic acid. The position of cleavage is again at the bond between the angular C and C-1 of the anthracene nucleus. 5. Enzymes that convert the fission product through 2-hydroxy-3-naphthaldehyde into 2-hydroxy-3-naphthoic acid were demonstrated. The further metabolism of this acid is discussed. 6. The Fe2+-dependent oxygenase responsible for cleavage of all the o-dihydroxyphenol derivatives appears to be catechol 2,3-oxygenase, and is a constitutive enzyme in the Pseudomonas strains used. 相似文献
10.
Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. 总被引:7,自引:7,他引:7 下载免费PDF全文
M Mazzola R J Cook L S Thomashow D M Weller L S Pierson rd 《Applied microbiology》1992,58(8):2616-2624
Phenazine antibiotics produced by Pseudomonas fluorescens 2-79 and Pseudomonas aureofaciens 30-84, previously shown to be the principal factors enabling these bacteria to suppress take-all of wheat caused by Gaeumannomyces graminis var. tritici, also contribute to the ecological competence of these strains in soil and in the rhizosphere of wheat. Strains 2-79 and 30-84, their Tn5 mutants defective in phenazine production (Phz-), or the mutant strains genetically restored for phenazine production (Phz+) were introduced into Thatuna silt loam (TSL) or TSL amended with G. graminis var. tritici. Soils were planted with three or five successive 20-day plant-harvest cycles of wheat. Population sizes of Phz- derivatives declined more rapidly than did population sizes of the corresponding parental or restored Phz+ strains. Antibiotic biosynthesis was particularly critical to survival of these strains during the fourth and fifth cycles of wheat in the presence of G. graminis var. tritici and during all five cycles of wheat in the absence of take-all. In pasteurized TSL, a Phz- derivative of strain 30-84 colonized the rhizosphere of wheat to the same extent that the parental strain did. The results indicate that production of phenazine antibiotics by strains 2-79 and 30-84 can contribute to the ecological competence of these strains and that the reduced survival of the Phz- strains is due to a diminished ability to compete with the resident microflora. 相似文献
11.
Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. 总被引:12,自引:0,他引:12
M Mazzola R J Cook L S Thomashow D M Weller L S Pierson 《Applied and environmental microbiology》1992,58(8):2616-2624
Phenazine antibiotics produced by Pseudomonas fluorescens 2-79 and Pseudomonas aureofaciens 30-84, previously shown to be the principal factors enabling these bacteria to suppress take-all of wheat caused by Gaeumannomyces graminis var. tritici, also contribute to the ecological competence of these strains in soil and in the rhizosphere of wheat. Strains 2-79 and 30-84, their Tn5 mutants defective in phenazine production (Phz-), or the mutant strains genetically restored for phenazine production (Phz+) were introduced into Thatuna silt loam (TSL) or TSL amended with G. graminis var. tritici. Soils were planted with three or five successive 20-day plant-harvest cycles of wheat. Population sizes of Phz- derivatives declined more rapidly than did population sizes of the corresponding parental or restored Phz+ strains. Antibiotic biosynthesis was particularly critical to survival of these strains during the fourth and fifth cycles of wheat in the presence of G. graminis var. tritici and during all five cycles of wheat in the absence of take-all. In pasteurized TSL, a Phz- derivative of strain 30-84 colonized the rhizosphere of wheat to the same extent that the parental strain did. The results indicate that production of phenazine antibiotics by strains 2-79 and 30-84 can contribute to the ecological competence of these strains and that the reduced survival of the Phz- strains is due to a diminished ability to compete with the resident microflora. 相似文献
12.
The diversity and antifungal activity of fluorescent pseudomonads isolated from rhizospheres of tea, gladiolus, carnation and black gram grown in acidic soils with similar texture and climatic conditions were studied. Biochemical characterisation including antibiotic resistance assay, RAPD and PCR-RFLP studies revealed a largely homogenous population. At soil pH (5.2), the isolates exhibited growth with varying levels of siderophore production, irrespective of crop rhizospheres. Two isolates with maximum chitinase production showed antagonism. The bacterial populations in general lacked the ability to produce deleterious traits such as cellulase, pectinase and hydrogen cyanide. However, increased pH levels beyond 5.2 caused reduction in metabolite production with reduced antifungal activity. The homogeneity of the bacterial population irrespective of crop rhizospheres together with decreased secondary metabolite production at higher pH levels reinstated the importance of soil over host plant in influencing rhizosphere populations. The studies also yielded acid tolerant chitinase producing antagonistic fluorescent pseudomonads. 相似文献
13.
Degradation of continuously added 3-chlorobenzoate (3-CB) was studied in samples of chernozem soil. Soil columns were inoculated
withPseudomonas putida growing on 3-CB and carrying the biodegradation plasmid and withPseudomonas aeruginosa incapable of growth on 3-CB and carrying the inserted biodegradation plasmid pBS 2 determining ortho-cleavage of the aromatic
ring. While the 3-CB degradation was observed in both inoculated variants, the native microflora of the soil under study was
incapable to degrade 3-CB. Among pseudomonads isolated from inoculated soil at different stages of cultivation and growth
on 3-CB, some had the taxonomic features ofP. putida as well as those differing in 1 –5 characteristics. The study of the activities of the enzymes cleaving the aromatic ring
revealed the presence of pyrocatechol 1,2-dioxygenase in the isolated strains only, as estimated by means of benzoate and
3-CB as substrates. 相似文献
14.
Hang-Yeon Weon Robert S. Dungan Soon-Wo Kwon Jong-Shik Kim 《Annals of microbiology》2007,57(3):299-306
The purpose of this research was to determine the diversity and distribution of fluorescent pseudomonads in an unflooded rice paddy soil. A region of the 16S ribosomal RNA gene from isolates was amplified using PCR and subsequently analysed by sequence analysis for bacterial identification and phylogenetic classification. A total of 117 fluorescent pseudomonads, representing between 10 and 21 species, were isolated from two sampling sites within the same paddy (designated as soils C and S). The isolates were found to be ≥96% homologous with known sequences, and were most closely related to the followingPseudomonas species:P. antarctica, P. costantini, P. extremorientalis, P. frederiksbergensis, P. kilonensis, P. koreensis, P. lini, P. mandelii, P. poae, P. rhodesiae, andP. veronii. Of these matches, the bulk of the isolates (49%) were affiliated withP. mandelii. In soils C and S, phylogenetic analysis revealed that 35 and 82 isolates co-clustered with 39 and 59% of 66 fluorescent pseudomonad type strains, respectively. 相似文献
15.
16.
The aromatic hydrocarbon naphthalene, which occurs in coal and oil, can be degraded by aerobic or anaerobic microorganisms. A wide-spread electron acceptor for the latter is sulfate. Evidence for in situ naphthalene degradation stems in particular from the detection of 2-naphthoate and [5,6,7,8]-tetrahydro-2-naphthoate in oil field samples. Because such intermediates are usually not detected in laboratory cultures with high sulfate concentrations, one may suppose that conditions in reservoirs, such as sulfate limitation, trigger metabolite release. Indeed, if naphthalene-grown cells of marine sulfate-reducing Deltaproteobacteria (strains NaphS2, NaphS3 and NaphS6) were transferred to sulfate-free medium, they released 2-naphthoate and [5,6,7,8]-tetrahydro-2-naphthoate while still consuming naphthalene. With 2-naphthoate as initial substrate, cells produced [5,6,7,8]-tetrahydro-2-naphthoate and the hydrocarbon, naphthalene, indicating reversibility of the initial naphthalene-metabolizing reaction. The reactions in the absence of sulfate were not coupled to observable growth. Excretion of naphthalene-derived metabolites was also achieved in sulfate-rich medium upon addition of the protonophore carbonyl cyanide4-(trifluoromethoxy)phenylhydrazone or the ATPase inhibitor N,N′-dicyclohexylcarbodiimide. In conclusion, obstruction of electron flow and energy gain by sulfate limitation offers an explanation for the occurrence of naphthalene-derived metabolites in oil reservoirs, and provides a simple experimental tool for gaining insights into the anaerobic naphthalene oxidation pathway from an energetic perspective. 相似文献
17.
The induction of the enzymes of naphthalene metabolism in pseudomonads by salicylate and 2-aminobenzoate. 总被引:24,自引:0,他引:24
E A Barnsley 《Journal of general microbiology》1975,88(1):193-196
18.
Alginate is produced as an exopolysaccharide by many fluorescent pseudomonads. However, pseudomonads often have a nonmucoid phenotype in standard laboratory media. Growth in the presence of 0.3M sodium chloride or 3–5% ethanol reportedly can lead to the generation of mucoid variants of nonmucoid strains ofPseudomonas aeruginosa. We wished to determine whether alginate production by other fluorescent pseudomonads is affected by sodium chloride and ethanol. Eight alginate-producing strains of saprophytic and phytopathogenic pseudomonads were grown as broth cultures containing 0–0.7M sodium chloride or 0–5% ethanol for 24–30 h at 28° or 35°C. Culture supernatant fluids were subjected to ethanol precipitation, and the amount of alginate present was estimated by measuring the uronic acid content. The presence of sodium chloride and ethanol caused significant stimulation of alginate production by all strains tested exceptP. viridiflava ATCC 13223 andP. fluorescens W4F1080. The optimal concentration of sodium chloride ranged from 0.2 to 0.5M; that for ethanol ranged from 1 to 3%. Moreover, inclusion of the nonmetabolizable, nonionic solute sorbitol showed a similar stimulation of alginate production. The stimulation of alginate production by high medium osmolarity and dehydration appears to be a trait shared by fluorescent pseudomonads.Reference to brand or firm name does not constitute endorsement by the U.S. Department of Agriculture overothers of a similar nature not mentioned. 相似文献
19.
Bacterial community shifts in a soil microcosm spiked with 3-chlorobenzoate or 2,5-dichlorobenzoate were monitored. The V6-V8 variable regions of soil bacterial 16S rRNA and rDNA were amplified and separated by temperature gradient gel electrophoresis (TGGE) profiling. Culturing in the presence of 2.5 mM chlorinated benzoates suppressed 10 to 100 fold the total aerobic bacterial community but had no effect on the diversity within the group of fluorescent pseudomonads. In contrast, the uncultured bacterial community showed a decrease in the number of bands in the TGGE profiles of the chlorobenzoate-spiked treatments. Accordingly, the Shannon's diversity and equitability indices of these treatments reflected a decreasing trend in time. The approach allowed a direct assessment of community shifts upon contamination of soil. 相似文献
20.