首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is growing evidence that blood vessels generate TXA2 in addition to PGI2. We examined effluents from continously perfused human umbilical vein and supernatants from umbilical vein rings for TXB2 and 6-keto-PGF measurements (stable metabolites of TXA2 and PGI2, respectively). TXB2 and 6-keto-PGF were identified in all samples. 6-keto-PGF to TXB2 ratio was higher in intact vein effluents than in the venous ring supernatants (112:1 and 28:1, respectively, P<0.01). Arachidonate stimulation increased 6-keto-PGF and TXB2 levels similarly in the intact vein effluent. In contrast, stimulation of the venous rings resulted in a relatively larger increase in TXB2 than in 6-keto-PGF. This caused 6-keto-PGF to TXB2 ratio to decline (p<0.01). The identity of TXB2 was confirmed in several different ways. These data suggest that 1) human umbilical veins produce TXA2 in addition to PGI2, 2) TXA2 release is more by venous rings than by the intact vein probably reflecting contribution from non-endothelial layers, and 3) arachidonate stimulation causes relatively greater release of TXA2 than of PGI2 from the venous rings, whereas release of PGI2 and TXA2 is similar from the intact vein.  相似文献   

2.
The role of prostacyclin (PGI2) on amphibian adrenal steroidogenesis was studied in perifused interrenal fragments from adult male frogs. Exogenous PGI2 (3×10−8 M to 3×10−5 M) and, in a lesser extent, 6-keto-PGF increased both corticosterone and aldosterone production in a dose-related manner. Short pulses (20 min) of 0.88 μM PGI2 administered at 90 min intervals within the same experiment did not induce any desensitization phenomenon. A prolonged administration (6 h) of PGI2 gave rise to an important increase in steroid production followed by a decline of corticosteroidogenesis. Indomethacin (IDM, 5 μM) induced a marked reduction of the spontaneous secretion of corticosteroid which confirmed the involvement of endogenous PGs in the process of corticosteroid biosynthesis. The IDM-induced blockade of corticosterone and aldosterone secretion was totally reversed by administration of exogenous PGI2 in our model. Angiotensin II (AII) induced a massive release of 6-keto-PGF, the stable metabolite of PGI2. The increase of 6-keto-PGF preceded the stimulation of corticosterone and aldosterone secretions. In contrast, the administration of ACTH did not modify the release of 6-keto-PGF. These results indicate that PGI2 might be an important mediator of adrenal steroidogenesis in frog. They confirm that the corticosteroidogenic actions of ACTH and AII are mediated by different mechanisms.  相似文献   

3.
Dose-response curves for several prostaglandins (PGI2; PGD2; PGF2 and PGE2); BaCl2 or prostaglandin metabolites (15-keto-PGF; 13, 14-diOH-15-keto-PGF; 6-keto-PGF and 6-keto-PGE1 in quiescent (indomethacin-treated) uterine strips from ovariectomized rats, were constructed. All PGs tested as well as BaCl2, triggered at different concentrations, evident phasic contractions. Within the range of concentrations tested the portion of the curves for the metabolites of PGF was shifted to the right of that for PGF itself; the curve for 6-keto-PGF was displaced to the right of the curve for PGI2 and that for 6-keto-PGE1 to the left.It was also demonstrated that the uterine motility elicited by 10−5 M PGF and its metabolites was long lasting (more than 3 hours) and so it was the activity evoked by PGI2; 6-keto-PGF and BaCl2, but not the contractions following 6-keto-PGE1, which disappeared much earlier. The contractile tension after PGF; 15-keto-PGF; 13, 14-diOH-15-keto-PGF and PGI2, increased as time progressed whilst that evoked by 6-keto-PGF or BaCl2 fluctuated during the same period around more constant levels.The surprising sustained and gradually increasing contractile activity after a single dose of an unstable prostaglandin such as PGI2, on the isolated rat uterus rendered quiescent by indomethacin, is discussed in terms of an effect associated to its transformation into more stable metabolites (6-keto-PGF, or another not tested) or as a consequence of a factor which might protects prostacyclin from inactivation.  相似文献   

4.
The pulmonary formation of prostacyclin (PGI2), as reflected by the difference in concentration of pulmonary and systematic arterial radioimmunoassayed 6-keto-PGF, was determined in six healthy waking subjects. The systematic arterial 6-keto-PGF levels were low (50 pg/ml), and no evidence of pulmonary formation and release of the compound was noted. In other experiments systemic arterial 6-keto-PGF levels were determined in patients prior to and during artificial ventilation, as well as during and after occlusion of the pulmonary circulation (extra-corporeal circulation, ECC). The arterial 6-keto-PGF concentration prior to artificial ventillation was 17±4 pg/ml, i.e. within the range observed in the healthy subjects. During artificial ventilation the arterial levels of 6-keto-PGF increased to 191±21 pg/ml, suggesting that pulmonary formation of PGI2 was stimulated. In the patients subjected to ECC with occluded pulmonary circulation the arterial content of 6-keto-PGF was stabilised at an elevated level (120−170 pg/ml). Following re-establishment of the pulmonary circulation the arterial concentrations of 6-keto-PGF increased markedly, to 284±50 pg/ml. It is suggested that the basal pulmonary formation of PGI2 in man is low or non-existent, and that enhanced formation of the compound in the lungs is a consequence of intervention with normal pulmonary ventilation or perfusion.  相似文献   

5.
The cross-reactivity of the PGI3 metabolite, Δ17-6-keto-PGF, with antibodies against 6-keto-PGF for radioimmunoassays (RIA) has been investigated. Δ17-6-keto-PGF was obtained either from commercial sources or after its purification from endothelial cells. In the latter case, primary cultured bovine aortic endothelial cells were incubated for 20 min at 37°C with 10 μM eicosapentaenoic acid (EPA) in the presence of 2 μM 13-hydroperoxy-octadecadienoic acid, an activator of the EPA cyclooxygenation, and the 6-keto-PGF and Δ17-6keto-PGF produced were separated by RP-HPLC. Then, cross-reactivities of the commercial and purified Δ17-6-keto-PGF with 6-keto-PGF antibodies were determined and found not to exceed 10%. In addition, the amounts of prostacyclin-related compounds detected by direct measurements in media of cells loaded with EPA were compared with those obtained after purification of 6-keto-PGF. In accordance with the cross-reactivity data, we found that RIA in media mainly measured 6-keto-PGF, the Δ17-6-keto-PGF formed being undetected at 90%. It is concluded that 6-keto-PGF antibodies generally used for RIA of 6-keto-PGF are highly specific since they can discriminate a metabolite bearing an additional double bond such as the PGI3 metabolite Δ17-6-keto-PGF.  相似文献   

6.
The metabolism of endogenous PGI2 (released by angiotensin II or bradykinin) and exogenous PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was studied in five different vascular beds of the anaesthetized cat. Plasma concentrations of 6-keto-PGF (the product of spontaneous hydrolysis of PGI2) and 6,15-diketo-13,14-dihydro-PGF (the metabolite formed from PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase) were determined in the efferent vessels of the respective vascular beds by specific radioimmunoassays.No major metabolism of PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was detected in the head and the hindlimbs of the cat. In the lung exogenous (circulating) PGI2 was not metabolized, whereas PGI2 synthetized in the lung itself was converted to 6,15-diketo-13,14-dihydor-PGF. No significant amounts of 6,15-diketo-13,14-dihydro-PGF-immunoreactivity were detected in hepatic venous blood after infusion of PGI2 into the portal vein. However as also no 6-keto-PGF was found, the liver seems to efficiently extract PGI2 from the circulation. The cat kidney had the highest capacity of all vascular beds investigated to release endogenous and exogenous PGI2 as 6-15-diketo-13,14-dihydro-PGF. In other organs (vascular beds) investigated PGI2 is either metabolized less efficiently by the 15-hydroxy-PG-dehydrogenase or further transformed to other metabolites.  相似文献   

7.
This study examines the hypothesis that PAF stimulates release of PGI2 from inflamed rabbit gallbladder explant cell cultures. New Zealand white rabbits underwent bile duct ligation for 72 h (72 h BDL), or sham operation, Sham and 72 h BDL gallbladder explants were placed in culture, and the cells grown to 75% confluence. The cells were exposed to increasing concentrations of PAF for 60 min. The media analyzed for eicosanoid release by EIA and the cells analyzed for cyclooxygenase and prostacyclin synthase content by immunoblot analysis. PAF increased release of 6-keto-PGF from the 72 h BDL gallbladder cell cultures in a dose-related manner which was inhibited by indomethacin preincubation by 90%. The increased 72 h BDL cell release of 6-keto-PGF was not associated with changes in the content of cyclooxygenase or prostacyclin synthase. PAF did not alter eicosanoid release from sham control cell cultures. These data suggest that PAF can only up-regulate endogenous 6-keto-PGF release from the 72 h BDL cells that had been previously stimulated by inflammation. PAF may thus contribute to gallbladder distention and injury by chronic stimulation of inflamed gallbladder PGI2 release.  相似文献   

8.
Using PGH2 as substrate, we have previously demonstrated that human placenta synthetizes mainly PGE2, TxB2 and PGD2(1,2). Other reports have shown that placental tissue generates a substance which inhibits ADP-induced platelet aggregation and which was supposed to be PGI2 (3). The present study indicates that the stability of that substance is different from the stability of prostacyclin (released by umbilical artery pieces). By GC-MS and multiple ion-monitoring, we have shown the presence of 6 keto-PGF (the stable metabolite of PGI2) in the umbilical artery incubation medium, while no trace of 6-keto-PGF could be found in the placental medium. No conversion of AA to 6-keto-PGF by placental microsomes was observed, even in the presence of antioxidants. The placenta possesses, in addition to the known 15-OH-PGDH and Δ-13 reductase activities, a weak 9 OH pGDH which is specific for PGF (and not PGI2 nor 6-keto-PGF). GC-MS analysis is showed that the expected metabolites of PGI2 through those three enzymes were not found in the placental medium, indicating that neither PGI2 synthesis nor metabolism could be demonstrated in the placenta.  相似文献   

9.
Six patients with advanced arteriosclerosis obliterans in the lower extremities were subjected to an exercise test on a tread mill with and without dipyridamole treatment. Prostacyclin (PGI2) release was measured by the concentration of its stable metabolite, 6-keto prostaglandin F in plasma. All the patients suffered from ischemic pain during both tests, but no changes were seen in plasma 6-keto-PGF. Dipyridamole did not affect the physical performance. Our results suggest that atherosclerotic vessels do not increase PGI2 production in response to ischemia and that a single dose of dipyridamole does not change PGI2 production.  相似文献   

10.
The effects of oestradiol, oxytocin, progesterone and hydrocortisone on prostaglandin (PG) output from guinea-pig endomerium, removed on days 7 and 15 of the oestrous cycle and maintained in tissue culture for 3 days, have been investigated. Oetradiol (3.7 to 3700nM) and oxytocin ( 2 to 200pM) did not stimulate endometrial PGF output, thus not confirming the findings of a previous report (Leaver & Seawright, 1928), nor did they stimulate the outputs of PGE2 and 6-keto-PGF. In fact, oestradiol (3700nM) inhibited the outputs of PGF, PGE2 and, to a lesser extent, 6-keto-PGF. Progesterone (3.2 to 3200nM) inhibited the outputsof PGF and PGE2; hydrocortisone (2.8 to 2800nM) had no effect on endometrial PG output. These findings indicate that the inhibitory effect of progesterone on endometrial PG synthesis and release in the guinea-pig is not due to progesterone having a glucocorticoid-like action. Furthermore, progesterone had no effect on 6-keto-PGF output, suggesting that the mechanisms controlling endometrial PGI2 synthesis (as reflected by measuring 6-keto-PGF) are different from those controlling endometrial PGF and PGE2 synthesis.  相似文献   

11.
PGI2 and 6-keto-PGF were converted to 6-methoxime-PGF (6-MeON-PGF) by treatment with methoxyamine HCl in acetate buffer. The formed 6-MeON-PGF was measured by radioimmunoassay. Antisera were raised in rabbits after immunization against 6-MeON-PGF-BSA conjugate. Diluted 1:20.000 to bind 50% of the tracer (3H-6-MeON-PGF, 100 Ci/mmol), the antiserum cross reacted 0.8% with PGE2, 1% with PGF and less than 0.2% with PGD2, PGF, PGF and TXB2. The radioimmunoassay was used to estimate release of PGI2 and 6-keto-PGF from chopped rabbit renal medulla and cortex incubated in Krebs-Ringer bicarbonate buffer (37°C, 30 min). The 6-keto-PGf radioimmunoassay was validated in biological samples by mass fragmentography. The chopped medulla (n=5) released 38±9 ng/g/min and the cortex (n=5) 4.7±2.0 ng/g/min, while the release of immunoreactive PGE2 (iPGE2) and iPGF was 171±26 and 74±13 ng/g/min from the medulla and 4.3±1.3 and 2.7±0.3 ng/g/min from the cortex, respectively. The results confirm previous findings, which indicate that in the renal medulla prostaglandin endoperoxides are mainly transformed to prostaglandins, while in the cortex transformation to PGI2 seems to be of greater importance.  相似文献   

12.
The mechanism by which extracellular alkalosis inhibits hypoxic pulmonary vasoconstriction is unknown. We investigated whether the inhibition was due to intrapulmonary production of a vasodilator prostaglandin such as prostacyclin (PGI2). Hypoxic vasoconstriction in isolated salt-solution-perfused rat lungs was blunted by both hypocapnic and NaHCO3_induced alkalosis (perfusate pH increased from 7.3 to 7.7). The NaHCO3-induced alkalosis was accompanied by a significant increase in the perfusate level of 6-keto-prostaglandin F (6-keto-PGF), an hydrolysis product of PGI1. Meclofenamate, an inhibitor of cyclooxygenase, counteracted both the blunting of hypoxic vasoconstriction and the increased level of 6-keto-PGF. In intact anesthetized dogs, hypocapnic alkalosis (blood pH increased from 7.4 to 7.5) blunted hypoxic pulmonary vasoconstriction before but not after administration of meclofenamate. In separate cultures of bovine pulmonary artery endothelial and smooth muscle cells stimulated by bradykinin, the incubation medium levels of 6-keto-PGF were increased by both hypocapnia and NaHCO3-induced alkalosis (medium pH increased from 7.4 to 7.7). These results suggest that inhibition of hypoxic pulmonary vasoconstriction by alkalosis is mediated at least partly by PGI2.  相似文献   

13.
The production of vasodilatory, antiaggregatory prostacyclin (PGI2) and vasoconstrictory, proaggregatory thromboxane A2 (TxA2) by the placenta was studied in the cases of hypertensive pregnancy complications by superfusing pieces from maternal and fetal sides of placentae of 9 pre-eclamptic, 6 hypertensive and 11 healthy women and measuring the release of 6-keto-prostaglandin F (6-keto-PGF) and thromboxane B2 (TxB2), the breakdown products of PGI2 and TxA2 respectively, from the superfusate. Both sides of the placentae from the controls produced 6-keto-PGF (maternal side 0.5±0.1 ng/g/min dry weight of tissue, mean±SEM; fetal side 0.7±0.2 ng/g/min) and TxB2 (maternal side 2.5±0.4 ng/g/min; fetal side 2.7±0.5 ng/g/min with no correlation between the two. The 6-keto-PGF production was normal in hypertensive complications whereas the TxB2 production was increased on the fetal side of the placentae obtained from the pre-eclamptic (3.7±0.3 ng/g/min: p<0.05) and hypertensive women (4.1±0.4 ng/g/min; p<0.025). This may explain the occurrence of microthrombi and infarctions in placentae of hypertensive women.  相似文献   

14.
Physiologic concentrations of insulin completely inhibited the norepinephrine-induced increment in the production of 6-keto-prostaglandin (PG) F, the stable derivative of prostacyclin (PGI2), by isolated rat adipocytes. The inhibition of PGI2 production by insulin in isolated rat adipocytes supports the view that the elevated plasma level of 6-keto-PGF in rats with non-ketotic diabetes mellitus and diabetic ketoacidosis is derived at least in part from production of PGI2 by the adipocyte cell mass.  相似文献   

15.
Prostaglandin E2 (PGE2) has previously been shown to inhibit sympathetic neurotransmission in different organs and species. Based on this inhibitory effect and on its reversal by cyclo-oxygenase inhibitors, PGE2 has been claimed to be a physiological modulator of in vivo release of norepinephrine (NE) from sympathetic nerves. It is now recognized that prostacyclin (PGI2) is the main cyclo-oxygenase product in the heart. We therefore addressed the question whether PGI2, within the same preparation, is formed in increased amounts during sympathetic nerve stimulation and has neuromodulatory activity.The effluent from isolated rabbit hearts subjected to sympathetic nerve stimulation or to infusion of NE or adenosine (ADO) was collected, and its content of PGE2 and 6-keto-PGF (dehydration product of PGI2) was analyzed using gas chromatography/mass spectrometry, operated in the negative ion/chemical ionization mode. Other hearts were infused with PGI2 and nerve stimulation induced outflow of endogenous NE into the effluent was analyzed using HPLC with electrochemical detection. Nerve stimulation at 5 or 10 Hz (before but not after adrenergic receptor blockade), as well as infusion of NE (10−6–10−5M) or ADO (10−4M) increased the cardiac outflow of 6-keto-PGF1α. Basal and nerve stimulation induced efflux of 6-keto-PGF1α was approximately 5 times higher than the corresponding efflux of PGE2. PGI2 dose-dependently inhibited the outflow of NE from sympathetically stimulated hearts, the inhibition at 10−6M being approximately 40%.On the basis of these observations we propose that PGI2 is a more likely candidate than PGE2 as a potential modulator of neurotransmission in cardiac tissue in vivo.  相似文献   

16.
Intravenous injection of 600 μg PGE2 or PGI2 significantly increased serum LH and prolactin levels in estradiol treated ovariectomized rats. There was no effect on serum FSH concentration. PGE2 and PGI2 stimulated LH release in a non-dose dependent manner, while prolactin levels were positively correlated with the dose administered following PGI2 treatment. 6-keto-PGF at a comparable dose had no effect on pituitary hormone levels. Subcutaneous administration of 1 mg/kg or 60 mg/kg PGI2 for seven days significantly depressed serum LH level both in male and female rats. These doses had no effect on serum FSH or prolactin levels.  相似文献   

17.
Homogenates of eleven different blood vessels from normal Sprague-Dawley rats varied in their ability to produce PGI2 (i.e., 6-keto-PGF) from [1−14C]PGH2. The most notable difference was seen between arteries and veins. Arterial tissues produced more 6-keto-PGF from exogenous PGH2 than veins at all enzyme (i.e., protein) concentrations tested. Similar results were obtained utilizing different homogenization techniques or arterial and venous rings, indicating this difference was real and not due to homogenization artifacts. In addition, the thoracic segment of the inferior vena cava was more active in converting added [1−14C]PGH2 to 6-keto-PGF than the abdominal segment of added inferior vena cava suggestive of a possible segmental distribution of the enzyme activity in blood vessels. These results may be interpreted as indicating that PGI2 may have a vasomotor function for blood vessels in addition to its proposed antithrombotic role.  相似文献   

18.
These experiments were conducted to determine the effects of dipyridemole on human platelet aggregation, platelet thromboxane A2 (TXA2) and human vessel wall prostacyclin (PGI2) generation. Dipyridamole in varying concentrations (5 to 50 μg/ml) had no direct effect on ADP-induced platelet aggregation in vitro, but it potentiated PGI2-induced platelet aggregation inhibition at these concentrations. Dipyridamole also inhibited arachidonic acid-induced platelet TXA2 generation at these concentrations. In continuously perfused umbilical vein segments, dipyridamole treatment resulted in stimulation of PGI2 release determined by bioassay and by measurement of its stable metabolite 6-keto-PGF. Minimum concentration of dipyridamole causing PGI2 release was 50 μg/ml. These in vitro studies suggest that anti-thrombotic effects of dipyridamole in man are mediated mainly by potentiation of PGI2 activity and to some extent by TXA2 suppression. Stimulation of PGI2 release by human vessels may not be seen in usual therapeutic concentrations.  相似文献   

19.
Prostaglandin synthesis by fetal rat bones was examined by thin-layer chromatography of culture media after preincubation with labeled arachidonic acid. Cultures in rabbit complement (non-heat inactivated serum) were compared with cultures in heat-inactivated serum or cultures treated with indomethacin. The major complement-dependent products were PGE2, PGF and 6-keto-PGF, the metabolite of prostacyclin (PGI2). Since PGI2 had not been previously identified in bone its ability to stimulate bone resorption was tested. Repeated addition of PGI2 stimulated release of previously incorporated 45Ca from fetal rat long bones in both short-term and long-term cultures at concentrations of 10−5 to 10−9M. Because of the short half life of PGI2 in solution at neutral pH, we tested a sulfur analog, thiaprostacyclin (S-PGI2) which was found to be a stimulator of bone resorption at concentrations of 10−5 to 10−6M. These studies suggest that endogenous PGI2 production may play a role in bone metabolism. Since vessels produce PGI2 it is possible that PGI2 release may be responsible for the frequent association between vascular invasion and resorption of bone or calcified cartilage in physiologic remodeling and pathologic osteolysis.  相似文献   

20.
Western diets are enriched in omega-6 vs. omega-3 fatty acids, and a shift in this balance toward omega-3 fatty acids may have health benefits. There is limited information about the catabolism of 3-series prostaglandins (PG) formed from eicosapentaenoic acid (EPA), a fish oil omega-3 fatty acid that becomes elevated in tissues following fish oil consumption. Quantification of appropriate urinary 3-series PG metabolites could be used for noninvasive measurement of omega-3 fatty acid tone. Here we describe the preparation of tritium- and deuterium-labeled 6-keto-PGF and their use in identifying urinary metabolites in mice using LC-MS/MS. The major 6-keto-PGF urinary metabolites included dinor-6-keto-PGF (∼10%) and dinor-13,14-dihydro-6,15-diketo-PGF (∼10%). These metabolites can arise only from the enzymatic conversion of EPA to the 3-series PGH endoperoxide by cyclooxygenases, then PGI3 by prostacyclin synthase and, finally, nonenzymatic hydrolysis to 6-keto-PGF. The 6-keto-PGF derivatives are not formed by free radical mechanisms that generate isoprostanes, and thus, these metabolites provide an unbiased marker for utilization of EPA by cyclooxygenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号