首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using highly purified bacteriophage lambda and E. coli replication proteins, we were able to reconstitute an in vitro system capable of replication ori lambda-containing plasmid DNA. The addition of a new E. coli factor, the grpE gene product, to this replication system reduced the level of dnaK protein required for efficient DNA synthesis by at least 10-fold, and also allowed the isolation of a stable DNA replication intermediate. Based on all available information, we propose a molecular mechanism for the action of the dnaK and grpE proteins during the prepriming reaction leading to lambda DNA synthesis.  相似文献   

2.
The saccharose density gradient (30--55%) centrifugation technique applied to E. coli membrane preparations was used to show that treatment of the bacteria with Ca2+ in the cold results in the redistribution of the absorbed phage DNA from the cell wall to the cytoplasmic membrane while freezing-thawing of the bacteria leads to equal distribution of the infectious DNA among all membrane fractions. Quantitative estimation of such a redistribution is reported.  相似文献   

3.
Crosses between a non-replicating linear bacteriophage lambda chromosome and a replicating plasmid bearing a short cloned segment of lambda DNA were monitored by extracting DNA from infected cells, and analysing it via restriction endonuclease digestion and Southern blots. Recombinant formation resulting from the action of the Red homologous recombination system, observed directly in this way, was found to be fast, efficient, independent of the bacterial recA function and highly dependent upon replication of the target plasmid. These features of the experimental system faithfully model Red-mediated recombination in a lytically infected cell in which phage DNA replication is occurring. Neither of the previously established mechanisms by which the Red system can operate – strand annealing or strand invasion – accounts well for these findings. A third mechanism, replisome invasion, involving replication directly in the recombination mechanism, is invoked as an alternative.  相似文献   

4.
5.
Interactions between geminivirus replication proteins.   总被引:5,自引:3,他引:5       下载免费PDF全文
Geminiviruses are small DNA viruses that replicate in the nuclei of infected plant cells. The closely related geminiviruses tomato golden mosaic virus and bean golden mosaic virus each encode a protein, AL1, that catalyzes the initiation of rolling-circle replication. Both viruses also specify a second replication protein, AL3, that greatly enhances the level of viral DNA accumulation. Using recombinant proteins produced in a baculovirus expression system, we showed that AL1 copurifies with a protein fusion of glutathione S-transferase (GST) and AL1, independent of the GST domain. Similarly, authentic AL3 cofractionates with a GST-AL3 fusion protein. These results demonstrated that both AL1 and AL3 form oligomers. Immunoprecipitation of protein extracts from insect cells expressing both AL1 and AL3 showed that the two proteins also complex with each other. None of the protein interactions displayed virus specificity; the tomato and bean golden mosaic virus proteins complexed with each other. The addition of heterologous replication proteins had no effect on the efficiency of geminivirus replication in transient-replication assays, suggesting that heteroprotein complexes might be functional. The significance of these protein interactions is discussed with respect to geminivirus replication in plant cells.  相似文献   

6.
Synthesis and decay of lambda DNA replication proteins in minicells   总被引:6,自引:0,他引:6  
The coliphage λ DNA replication proteins, the O- and P-gene products, have been identified by infection of nonpermissive Escherichia coli minicells with the appropriate λ amber mutants as proteins of a molecular weight of about 34000 and 23000, respectively. Proteins of exactly the same size were found in minicells harbouring the plasmid λdv. Both proteins seem to be synthesized at the same rate. In λ-infected minicells, as well as in lambda;dv-harbouring minicells the pulse-and-chase experiments have shown an exceptionally rapid decay of the O-protein.  相似文献   

7.
Bacteriophage lambda site-specific recombination comprises two overall reactions, integration into and excision from the host chromosome. Lambda integrase (Int) carries out both reactions. During excision, excisionase (Xis) helps Int to bind DNA and introduces a bend in the DNA that facilitates formation of the proper excisive nucleoprotein complex. The carboxyl-terminal alpha-helix of Xis is thought to interact with Int through direct protein-protein interactions. In this study, we used gel mobility shift assays to show that the amino-terminal domain of Int maintained cooperative interactions with Xis. This finding indicates that the amino-terminal arm-type DNA binding domain of Int interacts with Xis.  相似文献   

8.
Interactions between GPI-anchored proteins and membrane lipids   总被引:9,自引:0,他引:9  
Proteins anchored in membranes by glycosylphosphatidylinositol (GPI) are widely distributed, but the function of this unusual anchor is a puzzle. Recent evidence shows that these proteins can associate with membrane lipids in special ways. One function of GPI anchorage may be to allow proteins to interact with specialized membrane domains.  相似文献   

9.
Summary In this paper are studied in E. coli K12 the influence of the bacterial Rec and phage Red recombination systems on the rescue of the O + gene from the prophage by a superinfecting O - phage, UV irradiated or not. In the absence of UV irradiation the Red system produces more recombinants that does the Rec system, and its action requires DNA replication. The presence of UV lesions in the DNA facilitates the action of the Rec system, which is more efficient in this instance than the Red system and can act in the absence of DNA replication. In all cases, there is a cooperation between the two generalized recombination systems.  相似文献   

10.
Lambda dv plasmids having an amber mutation in an initiator gene, O or P, were constructed from mutant lambda phages by recombinant DNA techniques and several properties of such derivatives were investigated. These plasmids are perpetuated in suppressor-plus (amber-permissive) cells, but not in non-suppressor cells. The plasmid copy number in the suppressor-plus cells was low as compared to that of the plasmid without the amber mutation. In cells carrying a thermosensitive suppressor 2, raising the temperature is expected to block new production of amber proteins, but should not affect conservation of the protein made prior to heating. It was observed, however, that replication of the plasmids carrying an amber mutation in the O or P gene was abolished soon after raising the temperature, suggesting that neither of the initiator proteins can continue functioning unless replenished. Pulse-chase experiments demonstrated that O protein decays with a half-life of 8 min. Several lines of evidence suggest that this degradation occurs independently of the protein function. On the other hand, P protein was not degraded under the same experimental conditions. These observations are discussed in connection with functional instability of the initiator molecules. It appears that they do not work catalytically.  相似文献   

11.
A rapid and simple method is described for the isolation of DNA from phage lambda which requires neither special equipment nor expensive material such as cesium chloride for ultracentrifugation nor extractions with organic solvents or ethanol precipitation. Microgram quantities of lambda DNA are obtained in less than 2 h from 90-mm plate lysates or 5-ml liquid cultures. The method allows the simultaneous isolation of large numbers of probes, e.g., clones from phage libraries. Lambda phages are precipitated by polyethylene glycol/sodium chloride and recovered by low speed centrifugation onto glass fiber filters positioned in disposable syringes. The DNA of phages is released by a 50% formamide/4 M sodium perchlorate solution, washed in filter-bound form, eluted with a small volume of low-salt buffer or water, and finally recovered by centrifugation. Comparison of the DNA isolated by this method with that obtained by two conventional procedures reveals both a similar recovery and a similar suitability for restriction enzyme digestion and subcloning.  相似文献   

12.
A modified procedure in two versions (micro, for 10 ml of phage lysate, and macro, for 200-500 ml) is described for preparing lambda phage DNA. The main advantage of the modified method is that it gives a possibility to isolate high-quality DNA from lambda phage lysates in 2-3 hrs. Only standard solutions (TE, NaCl, SDS, MgCl2, EDTA, RNAse A) were used throughout the whole protocol. Incubation with DNAse I and proteinase K was omitted and in microvariant concentration of the phage by PEG 6000 was excluded. Digestion by RNAse A was performed in solution with EDTA and SDS and leads to RNA degradation. The yields of DNA (0.5-2 micrograms per ml of L-broth) are similar to those obtained by other methods. DNA quality is better than in the samples of DNA prepared by other express-methods and practically the same as after CsCl centrifugation. DNA can be used for splitting by restriction enzymes, cloning and gene library construction.  相似文献   

13.
14.
The cos-site of lambda phage from pHC79 cosmide is transferred to DNA from M13 mp18 phage. The recombinant DNA thus obtained (MC18) is efficiently packaged into lambda proteins in vitro. The BamHI-HindIII fragment of pGP588 (a pBR322 derivatives containing fragment of human DNA) is subcloned into MC18. Although this pGP588 fragment contains numerous Alu repeats, no essential rearrangements of the insert were revealed. The efficiency infection by recombinant DNA packaged with lambda proteins is about 1 X 10(5) pfu/microgram DNA, whereas in the similar conditions the efficiency of lambda EMBL3A was 1 X 10(6) pfu/microgram. It is assumed that the MC vectors might be suitable for cloning and sequencing large fragments either with cohesive or blunt ends. It opens also the way to construct genomic libraries in single-stranded phages.  相似文献   

15.
Isolation and structure of phage lambda head-mutant DNA   总被引:11,自引:0,他引:11  
High molecular weight DNA accumulates in bacteria in which λ is multiplying but cannot complete the formation of new phage particles due to a defect in head assembly. Accumulated λ DNA has been isolated from induced mitomycin C-treated lysogens by means of a shift in buoyant density labels from heavy to light and fractionation by density-gradient sedimentation for completely light DNA. Head formation was blocked in these lysogens by amber mutations in genes D or E, which specify the two major head proteins. The purified DNA is at least 80% λ by DNA-DNA hybridization and some preparations are close to 100% λ by this test.  相似文献   

16.
Conjugation enables horizontal transmission of DNA among bacteria, thereby facilitating the rapid spread of genes such as those conferring resistance to antibiotics. Cell-cell contact is required for conjugative DNA transfer but does not ensure its success. The presence of certain plasmids in potential recipient cells inhibits redundant transfer of these plasmids from competent donors despite contact between donor and recipient cells. Here, we used two closely related integrating conjugative elements (ICEs), SXT and R391, to identify genes that inhibit redundant conjugative transfer. Cells containing SXT exclude transfer of a second copy of SXT but not R391 and vice versa. The specific exclusion of SXT and R391 is dependent upon variants of TraG and Eex, ICE-encoded inner membrane proteins in donor and recipient cells, respectively. We identified short sequences within each variant that determine the exquisite specificity of self-recognition; these data suggest that direct interactions between TraG and Eex mediate exclusion.  相似文献   

17.
Summary The purified bacteriophage replication proteins O and P sediment separately in metrizamide gradients of low ionic strength as dimers. Together they interact with each other forming an oligomer, composed of two molecules of O and one molecule of P. The O-P oligomer is active in the in vitro replication of ori-containing DNA.Equilibrium sedimentation in preformed metrizamide density gradients under conditions that separate DNA-protein complexes from free proteins was employed in order to study possible interactions among the replication proteins and ori DNA. It was found that the P protein binds specifically to ori-containing plasmid DNA only in the presence of O protein. About 100 molecules of O and 10 molecules of P form a complex with the ori DNA. The DNA-O-P complex was shown to be active in an in vitro replication system.Since the physical interactions between ori and O and between P and the Escherichia coli dnaB replication protein are well documented, the evidence for a O-P interaction presented in this paper provides the missing link in the molecular mechanism that enables to direct the host replication machinery to the replication of its own DNA.  相似文献   

18.
19.
The outer membrane is the first line of contact between Gram-negative bacteria and their external environment. Embedded in the outer membrane are integral outer membrane proteins (OMPs) that perform a diverse range of tasks. OMPs are synthesized in the cytoplasm and are translocated across the inner membrane and probably diffuse through the periplasm before they are inserted into the outer membrane in a folded and biologically active form. Passage through the periplasm presents a number of challenges, due to the hydrophobic nature of the OMPs and the choice of membranes into which they can insert. Recently, a number of periplasmic proteins and one OMP have been shown to play a role in OMP biogenesis. In this review, we describe what is known about these folding factors and how they function in a biological context. In particular, we focus on how they interact with the OMPs at the molecular level and present a comprehensive overview of data relating to a possible effect on OMP folding yield and kinetics. Furthermore, we discuss the role of lipo-chaperones, i.e. lipopolysaccharide and phospholipids, in OMP folding. Important advances have clearly been made in the field, but much work remains to be done, particularly in terms of describing the biophysical basis for the chaperone-OMP interactions which so intricately regulate OMP biogenesis.  相似文献   

20.
Summary A restriction fragment of DNA carrying the P gene was cloned in the high copy number plasmid RSF2124. Cells harbouring this new plasmid RSF2124/E complement Pam80 phage. A lac promoter-operator region (lacP), produced by EcoRI digestion of plasmid pKB252, was inserted into RSF2124/glE such that induction of the lac promoter by IPTG or lactose leads to increased production of the P gene product. A high amount of P protein in E. coli cells results in a slow inhibition of bacterial DNA synthesis, suggesting that the initiation reaction is blocked by P protein. Synthesis of DNA proceeds normally under these conditions.Nonsuppressing groPA15 mutant bacteria which are unable to support the replication of wild-type (wt), acquire the ability to replicate Pam80 phage but not wt when they are transformed with a plasmid carrying the P gene. When harbouring a plasmid containing the mutant Pamber 80 gene, groPA15 mutants are able to support the replication of wt phage when infected at a high multiplicity. Pam80 phage does not multiply in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号