首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serine substitutions for the five conserved cysteins (residues 38, 85, 97, 132, and 184) have been made in the Azotobacter vinelandii nitrogenase Fe-protein by site-specific mutagenesis. At least moderate levels of enzyme activity (greater than 10% of wild type enzyme) were found for enzymes with serine substitutions at residues 38, 85, and 184; whereas, no activity was detected for enzymes with serines at residues 97 and 132. This is consistent with cysteines 97 and 132 being the four ligands to the Fe:S cluster (two ligands from each of the two identical subunits). Although previous chemical modification studies had implicated these residues as ligands, the earlier results did not portend the new finding that of all the conserved cysteines only these 2 residues are required for a second function of the Fe-protein. Namely, if either cysteine 97 or 132 is replaced, it appears that a functional Fe:S cluster cannot be incorporated into the apo-Fe-protein. The consequence is that these altered Fe-proteins cannot participate either in substrate reduction or in the biosynthesis of FeMo-cofactor, a metallocofactor of the MoFe-protein. These results implicate the Fe:S center of Fe-protein in the biosynthesis mechanism as either a redox partner or Fe:S donor. Additional results suggest that the posttranslational modification of Fe-protein by nifM product is not the insertion of the Fe:S center.  相似文献   

2.
Cross-linking site in Azotobacter vinelandii complex   总被引:4,自引:0,他引:4  
The Fe-protein and the MoFe-protein of the Azotobacter vinelandii nitrogenase complex can be chemically cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (Willing, A., Georgiadis, M.M., Rees, D. C., and Howard, J. B. (1989) J. Biol. Chem. 264, 8499-8503). In this reaction, one of the identical subunits of the Fe-protein dimer is linked by an isopeptide bond to each beta-subunit of the MoFe-protein tetramer. The reaction has been found to be highly specific with greater than 85% of amino acid residues Glu-112 (Fe-protein) and Lys-399 (MoFe-protein) cross-linked to each other. Although Glu-112 is located in a highly conserved amino acid sequence, it is found in only half of the known Fe-protein sequences. Likewise, Lys-399 is not a conserved residue in the MoFe-protein. Glu-112 appears to be part of an anionic cluster of nine carboxylic acids which is located between the proposed thiol ligands for the Fe:S center. In contrast, the basic residue cluster which includes Lys-399 has been found in only in the Azotobacter MoFe-protein. Thus, this crosslinking reaction either is unique to Azotobacter nitrogenase or must involve other residues in the MoFe-protein of other species. Because Lys-399 and Glu-112 form a specific cross-link, it is probable that they are part of the interaction site leading to productive complex formation. This information should be useful for the model building of the complex from the crystallographic structures of the individual components.  相似文献   

3.
Cyanothece sp. ATCC 51142 is a unicellular, diazotrophic cyanobacterium that demonstrates diurnal rhythms for photosynthesis and N(2) fixation, with peaks of O(2) evolution and nitrogenase activity approximately 12 h out of phase. We cloned and sequenced the nifHDK operon, and determined that the amino acid sequences of all three proteins were highly conserved relative to those of other cyanobacteria and bacteria. However, the Fe-protein, encoded by the nifH gene, demonstrated two differences from the related protein in Azotobacter vinelandii, for which a 3-D structure has been determined. First, the Cyanothece Fe-protein contained a 37 amino acid extension at the N-terminus. This approximately 4 kDa addition to the protein appeared to fold as a separate domain, but remained a part of the active protein, as was verified by migration on acrylamide gels. In addition, the Cyanothece Fe-protein had amino acid differences at positions involved in formation of the Fe-protein dimer-dimer contacts in A. vinelandii nitrogenase. There were also changes in residues involved with interaction between the Fe-protein and the MoFe-protein when compared with A. vinelandii. Since the Cyanothece Fe-protein is quickly degraded after activity, it is suggested that the extension and the amino acid alterations were somehow involved in this degradative process.  相似文献   

4.
纯化的柱孢鱼腥藻铁蛋白能够与棕色固氮菌的钼铁蛋白有效地交叉反应,展现较高的活性。此异源交叉反应的乙炔还原比活及放氢比活,分别是蓝藻同源互补比活的83.8及66.7%。比较藻铁蛋白与菌钼铁蛋白异源交叉反应及藻固氮酶组分之间的同源反应的动力学特点时发现,铁蛋白对钼铁蛋白的最佳克分子比数前者(异源交叉反应)较后者(藻同源反应)为高,前者为5,后者为1;但反应的时间进程两者差别不大。  相似文献   

5.
A mutant form of the nitrogenase iron protein with a deletion of residue Leu 127, located in the switch II region of the nucleotide binding site, forms a tight, inactive complex with the nitrogenase molybdenum iron (MoFe) protein in the absence of nucleotide. The structure of this complex generated with proteins from Azotobacter vinelandii (designated the L127Delta-Av2-Av1 complex) has been crystallographically determined in the absence of nucleotide at 2.2 A resolution and with bound MgATP (introduced by soaking) at 3.0 A resolution. As observed in the structure of the complex between the wild-type A. vinelandii nitrogenase proteins stabilized with ADP.AlF(4-), the most significant conformational changes in the L127Delta complex occur in the Fe-protein component. While the interactions at the interface between the MoFe-protein and Fe-proteins are conserved in the two complexes, significant differences are evident at the subunit-subunit interface of the dimeric Fe-proteins, with the L127Delta-Av2 structure having a more open conformation than the wild-type Av2 in the complex stabilized by ADP.AlF(4-). Addition of MgATP to the L127Delta-Av2-Av1 complex results in a further increase in the separation between Fe-protein subunits so that the structure more closely resembles that of the wild-type, nucleotide-free, uncomplexed Fe-protein, rather than the Fe-protein conformation in the ADP.AlF(4-) complex. The L127Delta mutation precludes key interactions between the Fe-protein and nucleotide, especially, but not exclusively, in the region corresponding to the switch II region of G-proteins, where the deletion constrains Gly 128 and Asp 129 from forming hydrogen bonds to the gamma-phosphate and activating water for attack on this group, respectively. These alterations account for the inability of this mutant to support mechanistically productive ATP hydrolysis. The ability of the L127Delta-Av2-Av1 complex to bind MgATP demonstrates that dissociation of the nitrogenase complex is not required for nucleotide binding.  相似文献   

6.
A series of Azotobacter vinelandii strains have been constructed in which the nitrogenase Fe-protein (Av2) was altered by substitutions for Arg-100. This invariant residue is a likely partner in a salt bridge with the MoFe-protein and, in some species, is the site of reversible regulation by ADP-ribosylation (Pope, M. R., Murrell, S. A., and Ludden, P. W. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3173-3177). Although we find that arginine is the optimum amino acid, other residues in this position could support diazotrophic growth. These results were surprising because Klebsiella pneumoniae Fe-protein substituted by His-100 had been reported to be inactive (Lowery, R. G., Chang, C. L., Davis, L. C., McKenna, M.-C., Stevens, P. J., and Ludden, P. W. (1989) Biochemistry 28, 1206-1212). Two altered Fe-proteins (Av2-R100Y, the tyrosyl form, and Av2-R100H, the histidyl form) were isolated and, in contrast to this earlier report, we found that both had some activity in acetylene reduction. However, both altered proteins exhibited a decreased maximum velocity (35 and 3% of wild type, respectively) and were strongly inhibited by excess MoFe-protein. These adverse activity parameters were also manifest in the increased sensitivity of the altered proteins to inhibition by salts. Indeed, the salt sensitivity of Av2-R100H is so significant that its activity is masked in the normal assay and is easily missed. In addition, for Av2-R100H, substrate reduction is substantially uncoupled from MgATP hydrolysis. These results suggest that substitutions for Arg-100 may decrease the affinity of the Fe-protein for the MoFe-protein prior to electron transfer but increase affinity after electron transfer. Hence, the role of Arg-100 may be to provide the optimum balance in stabilities of these two complexes for maximum efficiency in substrate reduction.  相似文献   

7.
We have characterized a Nif- mutant of Azotobacter vinelandii, designated UW91 (Shah, V. K., Davis, L. C., Gordon, J. K., Orme-Johnson, W. H., and Brill, W. J. (1973) Biochim. Biophys. Acta 292, 246-255). The specific Fe protein mutation giving rise to the Nif- phenotype was shown by DNA sequencing and site-directed mutagenesis to be the substitution of a conserved alanine at position 157 by a serine. The UW91 Fe protein was purified and shown to have a normal [4Fe-4S] cluster and normal MgATP binding activity. The substitution of alanine 157 by serine, however, prevents the MgATP-induced conformational change that occurs for the wild-type Fe protein, prevents MgATP hydrolysis, and prevents productive electron transfer to the MoFe protein. The UW91 Fe protein does bind to the MoFe protein to give a normal cross-linking pattern; however, it does not compete very successfully with wild-type Fe protein in an activity assay. The UW91 MoFe protein was also purified and characterized and shown to be indistinguishable from the wild-type protein. Thus, the substitution of Fe protein residue alanine 157 by serine does not change the Fe protein's ability to function in FeMo cofactor biosynthesis or insertion. This demonstrates that these events do not require the MgATP-induced conformational change, MgATP hydrolysis, or productive electron transfer to the MoFe protein.  相似文献   

8.
Steady-state chemostat cultures of Azotobacter vinelandii were established in a simple defined medium that had been chemically purified to minimize Mo and that contained no utilizable combined N source. Growth was dependent on N2 fixation, the limiting nutrient being the Mo contaminating the system. The Mo content of the organisms was at least 100-fold lower than that of Mo-sufficient cultures, and they lacked the characteristic g = 3.7 e.p.r. feature of the MoFe-protein of nitrogenase. A characteristic of nitrogenase activity in vivo in Mo-limited populations was a disproportionately low activity for acetylene reduction, which was 0.3 to 0.1 of that expected from the rate of N2 reduction. Acetylene was also a poor substrate in comparison with protons as a substrate for nitrogenase, and did not markedly inhibit H2 evolution, in contrast with Mo-sufficient populations. In batch cultures in similar medium or 'spent' chemostat medium inoculated with Mo-limited organisms, the addition of Mo elicited a biphasic increased growth response at concentrations as low as 2.5 nM, provided that sufficient Fe was supplied. In this system V did not substitute for Mo, and Mo-deficient cultures ceased growth at a 25-fold lower population density compared with cultures supplemented with Mo. Nitrogenase component proteins could not be unequivocally detected by visual inspection of fractionated crude extracts of Mo-limited organisms. 35SO42-pulse-labelling studies also showed that the rate of synthesis of the MoFe-protein component of nitrogenase was too low to be quantified. However, the Fe-protein of nitrogenase was apparently synthesized at high rates. The discussion includes an evaluation of the possibility that A. vinelandii possesses an Mo-independent N2-fixation system.  相似文献   

9.
Wild-type Azotobacter vinelandii strain UW was transformed with plasmid pDB12 to produce a species (LS10) unable to synthesize the structural proteins of component 1 and component 2 of native nitrogenase. A spontaneous mutant of this strain was isolated (LS15) which can grow by nitrogen fixation in the presence or absence of either Mo or W. It is proposed that LS15 fixes nitrogen solely by an alternative nitrogen-fixing system which previously has been hypothesized to exist in A. vinelandii. Under nitrogen-fixing conditions, LS15 synthesizes a protein similar to component 2 (Av2) of native nitrogenase in that it can complement native component 1 (Av1) for enzymatic activity. Isolation and characterization of this second component 2 shows it to be a 4Fe-4S protein of molecular mass about 62 kDa and is antigenically similar to Av2. This protein is also similar to Av2 in that in the reduced state it possesses a rhombic ESR spectrum in the g = 2 region, which changes to an axial spectrum upon addition of MgATP. It is suggested that this second Fe-protein is associated with the alternative nitrogen-fixing system in A. vinelandii.  相似文献   

10.
Ser10 and Lys13 found near the active site tyrosine of Escherichia coli DNA topoisomerase I are conserved among the type IA topoisomerases. Site-directed mutagenesis of these two residues to Ala reduced the relaxation and DNA cleavage activity, with a more severe effect from the Lys13 mutation. Changing Ser10 to Thr or Lys13 to Arg also resulted in loss of DNA cleavage and relaxation activity of the enzyme. In simulations of the open form of the topoisomerase–DNA complex, Lys13 interacts directly with Glu9 (proposed to be important in the catalytic mechanism). This interaction is removed in the K13A mutant, suggesting the importance of lysine as either a proton donor or a stabilizing cation during strand cleavage, while the Lys to Arg mutation significantly distorts catalytic residues. Ser10 forms a direct hydrogen bond with a phosphate group near the active site and is involved in direct binding of the DNA substrate; this interaction is disturbed in the S10A and S10T mutants. This combination of a lysine and a serine residue conserved in the active site of type IA topoisomerases may be required for correct positioning of the scissile phosphate and coordination of catalytic residues relative to each other so that DNA cleavage and subsequent strand passage can take place.  相似文献   

11.
We investigated TYRP1 as a candidate locus for the recessive, sex-linked roux (br(r)) phenotype in Japanese quail. A screen of the entire coding sequence of TYRP1 in roux and wild-type quail revealed a non-synonymous T-to-C substitution in exon 3, leading to a Phe282Ser mutation. This was perfectly associated with plumage phenotype: all roux birds were homozygous for Ser282. Co-segregation of the Phe282Ser mutation with the roux phenotype was confirmed in three br(r)/BR+ x br(r)/- backcrosses. We found no significant difference in TYRP1 expression between roux and wild-type birds, suggesting that this association is not due to linkage disequilibrium with an unknown regulatory mutation. In addition, the Phe282 amino acid appears to be of functional significance, as it is highly conserved across the vertebrates. This is the first demonstration that TYRP1 has a role in pigmentation in birds.  相似文献   

12.
During protein biosynthesis, elongation factor Tu (EF-Tu) delivers aminoacyl-tRNA (aa-tRNA) to the A-site of ribosomes. This factor is highly conserved throughout evolution. However, several key residues differ between bacterial and mammalian mitochondrial EF-Tu (EF-Tu(mt)). One such residue is Ser221 (Escherichia coli numbering). This residue is conserved as a Ser or Thr in the bacterial factors but is present as Pro269 in EF-Tu(mt). Pro269 reorients the loop containing this residue and shifts the adjoining beta-strand in EF-Tu(mt) compared to that of E. coli EF-Tu potentially altering the binding pocket for the acceptor stem of the aa-tRNA. Pro269 was mutated to a serine residue (P269S) in EF-Tu(mt). For comparison, the complementary mutation was created at Ser221 in E. coli EF-Tu (S221P). The E. coli EF-Tu S221P variant is poorly expressed in E. coli and the majority of the molecules fail to fold into an active conformation. In contrast, EF-Tu(mt) P269S is expressed to a high level in E. coli. When corrected for the percentage of active molecules, both variants function as effectively as their respective wild-type factors in ternary complex formation using E. coli Phe-tRNA(Phe) and Cys-tRNA(Cys). They are also active in A-site binding and in vitro translation assays with E. coli Phe-tRNA(Phe). In addition, both variants are as active as their respective wild-type factors in ternary complex formation, A-site binding and in vitro translation assays using mitochondrial Phe-tRNA(Phe).  相似文献   

13.
W H Bingle 《Plasmid》1988,19(3):242-250
The non-nitrogen-fixing (Nif-) strain UW10 of Azotobacter vinelandii OP (UW) was naturally induced to competence and transformed with broad host range plasmid pKT210 containing the cloned wild-type nif-10 locus from A. vinelandii UW (Nif+); this marker was unable to complement the nif-10 mutation in trans, but could through recombination with the chromosome. The most frequent type of transformation event observed was recombination between the homologous regions of the plasmid and chromosome (producing Nif+ transformants) with loss of the plasmid vector. At a substantially lower frequency, transformants expressing the plasmid-encoded antibiotic resistance determinants were isolated which were phenotypically Nif-. Agarose gel electrophoresis showed that these transformants contained a plasmid migrating with the same mobility as the original donor plasmid. During culture these transformants acquired a Nif+ phenotype without the loss of the plasmid, as judged by the use of a hybridization probe specific for the cloned nif-DNA fragment. These data indicate that plasmids carrying sequences homologous to chromosomal sequences could be maintained in recombination-proficient A. vinelandii UW. The introduction of plasmids containing sequences homologous to chromosomal sequences was facilitated by prelinearization of the plasmid using a restriction endonuclease generating cohesive ends. Because the site of linearization could be chosen outside the region of shared homology, it was unlikely that the route of plasmid establishment occurred via a homology-facilitated transformation mechanism. The data also indicated that A. vinelandii UW could harbor broad host range cloning vectors based on plasmid RSF1010 without significant impairment of its nitrogen-fixation ability.  相似文献   

14.
S J Neame  C M Isacke 《The EMBO journal》1992,11(13):4733-4738
CD44 has been implicated to play an important role in a diverse range of physiological processes, which involve cell-matrix recognition, cell-cell adhesion and cell motility. There is increasing evidence that the highly conserved intracellular domain of CD44 may be involved in influencing these activities. CD44 is phosphorylated in vivo on serine residue(s). In view of the importance that phosphorylation has been accorded in a multitude of cellular regulatory processes, we have investigated the role of phosphorylation in the control of CD44. In this report we identify the sites of human CD44 phosphorylation by mutating the three conserved cytoplasmic serine residues. We show that both Ser323 and Ser325, but not Ser316, are required for phosphorylation in vivo and demonstrate that this event is not stimulated by phorbol esters. Clonal MDCK cell lines expressing both the single and double CD44 phosphorylation mutants have been generated. These cell lines have been used to directly assess the role of phosphorylation on CD44 localization in polarized epithelial cells and its association with the cytoskeleton.  相似文献   

15.
Apolipoprotein H (apoH, protein; APOH, gene) binds to negatively charged phospholipids, which triggers the production of a subset of autoantibodies against phospholipid in patients with autoimmune diseases. We have demonstrated that two naturally occurring missense mutations in the fifth domain of apoH, Trp316Ser and Cys306Gly, disrupt the binding of native apoH to phosphatidylserine [Sanghera, D. K., Wagenknecht, D. R., McIntyre, J. A. & Kamboh, M. I. (1997) Hum. Mol. Genet. 6, 311-316]. To confirm whether these are functional mutations, we mutagenized APOH cDNAs and transiently expressed them in COS-1 cells. The cardiolipin ELISA of wild-type and mutant recombinant apoH confirmed that the Gly306 and Ser316 mutations are responsible for abolishing the binding of recombinant apoH to cardiolipin. These mutations, however, had no effect on the levels of expression or secretion of recombinant apoH in transfected COS-1 cells. While the Cys306Gly mutation disrupts a disulfide bond between Cys306 and Cys281, which appears to be critical for clustering positively charged amino acids, the Trp316Ser mutation affects the integrity of an evolutionarily conserved hydrophobic sequence at position 313-316 (Leu-Ala-Phe-Trp), which is hypothesized to interact with anionic phospholipid. To test this hypothesis, we exchanged the remaining three hydrophobic amino acids with neutral amino acids by site-directed mutagenesis (Leu313Gly, Ala314Ser and Phe315Ser). Binding of the Leu313Gly and Phe315Ser mutants to cardiolipin was significantly reduced to 25% and 13%, respectively, of that of the wild-type. On the other hand, the Ala314Ser mutation showed normal cardiolipin binding. Taken together with our previous findings, these results strongly suggest that the configuration of the fifth domain of apoH, as well as the integrity of the highly conserved hydrophobic amino acids at positions 313-316, is essential for the binding of apoH to anionic phospholipid.  相似文献   

16.
A mutant of papain, where an inter-domain hydrogen bond between the side chain hydroxyl group of a serine residue at position 176 and the side chain carbonyl oxygen of a glutamine residue at position 19 has been removed by site-directed mutagenesis, has been produced and characterized kinetically. The mutation of Ser176 to an alanine has only a small effect on the kinetic parameters, the kcat/Km for hydrolysis of CBZ-Phe-Arg-MCA by the Ser176Ala enzyme being of 8.1 x 10(4) /M/s compared with 1.2 x 10(5) /M/s for papain. Serine 176 is therefore not essential for the catalytic functioning of papain, even though this residue is conserved in all cysteine proteases sequenced. The pH-activity profiles were shown to be narrower in the mutant enzyme by up to 1 pH unit at high ionic strength. This result is interpreted to indicate that replacing Ser176 by an alanine destabilizes the thiolate-imidazolium form of the catalytic site Cys25-His159 residues of papain. Possible explanations for that effect are given and the role of a serine residue at position 176 in papain is discussed.  相似文献   

17.
Molecular cloning of nif DNA from Azotobacter vinelandii.   总被引:6,自引:5,他引:1  
Two clones which contained nif DNA were isolated from a clone bank of total EcoRI-digested Azotobacter vinelandii DNA. The clones carrying the recombinant plasmids were identified by use of the 32P-labeled 6.2-kilobase (kb) nif insert from pSA30 (which contains the Klebsiella pneumoniae nifK, nifD, and nifH genes) as a hybridization probe. Hybridization analysis with fragments derived from the nif insert of pSA30 showed that the 2.6-kb insert from one of the plasmids (pLB1) contains nifK whereas the 1.4-kb insert from the other plasmid (pLB3) contains nifD. Marker rescue tests using genetic transformation indicated that the 2.6-kb A. vinelandii nif fragment contains the wild-type alleles for the nif-6 and nif-38 mutations carried by Nif- strains UW6 and UW38. The 1.4-kb insert contains the wild-type allele for the nif-10 mutation carried by Nif- strain UW10.  相似文献   

18.
Lei S  Pulakat L  Gavini N 《FEBS letters》2000,482(1-2):149-153
Azotobacter vinelandii carries three different and genetically distinct nitrogenase systems on its chromosome. Expression of all three nitrogenases is repressed by high concentrations of fixed nitrogen. Expression of individual nitrogenase systems is under the control of specific metal availability. We have isolated a novel type of A. vinelandii DJ54 revertant, designated A. vinelandii BG54, which carries a defined deletion in the nifH gene and is capable of diazotrophic growth in the presence of molybdenum. Inactivation of nifDK has no effect on growth of this mutant strain in nitrogen-free medium suggesting that products of the nif system are not involved in supporting diazotrophic growth of A. vinelandii BG54. Similar to the wild type, A. vinelandii BG54 is also sensitive to 1 mM tungsten. Tn5-B21 mutagenesis to inactivate the genes specific to individual systems revealed that the structural genes for vnf nitrogenase are required for diazotrophic growth of A. vinelandii BG54. Analysis of promoter activity of different nif systems revealed that the vnf promoter is activated in A. vinelandii BG54 in the presence of molybdenum. Based on these data we conclude that A. vinelandii BG54 strain utilizes vnf nitrogenase proteins to support its diazotrophic growth.  相似文献   

19.
A putative catalytic triad consisting of tyrosine, serine, and lysine residues was identified in the ketoreductase (KR) domains of modular polyketide synthases (PKSs) based on homology modeling to the short chain dehydrogenase/reductase (SDR) superfamily of enzymes. This was tested by constructing point mutations for each of these three amino acid residues in the KR domain of module 6 of the 6-deoxyerythronolide B synthase (DEBS) and determining the effect on ketoreduction. Experiments conducted in vitro with the truncated DEBS Module 6+TE (M6+TE) enzyme purified from Escherichia coli indicated that any of three mutations, Tyr --> Phe, Ser --> Ala, and Lys --> Glu, abolish KR activity in formation of the triketide lactone product from a diketide substrate. The same mutations were also introduced in module 6 of the full DEBS gene set and expressed in Streptomyces lividans for in vivo analysis. In this case, the Tyr --> Phe mutation appeared to completely eliminate KR6 activity, leading to the 3-keto derivative of 6-deoxyerythronolide B, whereas the other two mutations, Ser --> Ala and Lys --> Glu, result in a mixture of both reduced and unreduced compounds at the C-3 position. The results support a model analogous to SDRs in which the conserved tyrosine serves as a proton donating catalytic residue. In contrast to deletion of the entire KR6 domain of DEBS, which causes a loss in substrate specificity of the adjacent acyltransferase (AT) domain in module 6, these mutations do not affect the AT6 specificity and offer a potentially superior approach to KR inactivation for engineered biosynthesis of novel polyketides. The homology modeling studies also led to identification of amino acid residues predictive of the stereochemical nature of KR domains. Finally, a method is described for the rapid purification of engineered PKS modules that consists of a biotin recognition sequence C-terminal to the thioesterase domain and adsorption of the biotinylated module from crude extracts to immobilized streptavidin. Immobilized M6+TE obtained by this method was over 95% pure and as catalytically effective as M6+TE in solution.  相似文献   

20.
The components of the nitrogenase complex, MoFe-protein and FeMo-cofactor, possessing no ATPase or nitrogen-fixing activity, maintain the 18O-exchange at the level of 1 atom of 18O per molecule of Pi, which is inhibited by ATP. The Fe-protein complex does not catalyze the 18O-exchange. The nitrogenase components do not hydrolyze the substrates for phosphatase (p-nitrophenylphosphate, beta-glycerophosphate, glucose 1-phosphate and ribose 5-phosphate). The artificial albumin-containing MoFe- and Fe-proteins and the carboxyl group-containing proteins (albumin, hemoglobin, lysozyme) as well as sodium molibdate do not catalyze the 18O-exchange. It is assumed that the site of the ATPase center which is subjected to phosphorylation, is located on the MoFe-protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号