共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of range of concentrations of potassium nitrate(Cm)in the medium surrounding the roots of decapitated Ricinuscommunis plants on: (a) the potassium concentration of the exudate(Cs), (b)the rate of exudation (fH2O), and (c) the flux of potassiuminto the exudate (fk) was investigated. A change in Cm couldinfluence exudation by altering the osmotic potential of themedium as will as by a change in potassium concentration, andthese two effect were separated in the following way. the effectof varying the potassium concentration was investigated usingmedia made isotonic with mannitol, whilst the osmotic effectwas investigated using mannitol solutions of various concentrationsbut of equal potassium concentration. An analysis of the resultsrevealed the existence of two salt-transfer processes, one independentof the water flux but dependent on the concentration of potassiumin the medium, the other linearly related to the flux of waterthrough the root system. The implications of these findingsin relation to the intact transpiring plant are discussed. 相似文献
2.
Alan Finkelstein 《Biophysical journal》1964,4(6):421-440
The central purpose of this paper is to elucidate in a well defined system the meaning of certain phenomena and concepts associated with the active transport of ions. To this end a specific model for a carrier system which actively transports a single ionic species is analyzed and discussed in detail. It is assumed in this model that the carrier-mediated ionic transport occurs in regions of the membrane physically separate from those regions in which free ionic movement takes place,—coupling between the active and passive regions of the membrane occurring through local current flows. The model is seen to display the following characteristics: (a) Starting from identical solutions on the two sides of the membrane, there is produced a redistribution of ions; (b) with identical solutions on the two sides of the membrane there exists a potential difference across the membrane, i.e., the “pump” is electrogenic; (c) the “short circuit” current for symmetrical solutions is equal to the flux of the neutral ion carrier complex; (d) the rate of active transport (and hence of metabolism) is dependent on the ionic concentrations in the surrounding solutions. Throughout the paper comparison is made between features of the model and properties displayed by biological active transport systems, but there is no claim of an identity between the two. 相似文献
3.
Summary A mathematical analysis of the relationship between the flux of water, fH2O, and the flux of potassium fK, to the xylem of exuding root systems of Ricinus communis, is presented. Previous analyses (Baker and Weatherley, 1969; Minchin and Baker, 1969) have indicated the presence of a water dependent and a water independent fK both of which vary with the external concentration of potassium, Cm, supplied as potassium nitrate.The present analysis reveals that whereas at Cm values<1 mM both components of fK contribute ions to the osmotically active solutions within the osmotic barrier, at Cm values>1 mM only the water dependent fK is responsible for the osmotic work. This suggests that the ions are released within different regions of the stele. It is proposed that at cm values<1 mM both components are released from the inner stelar tissues whilst at higher Cm values the water dependent fK is released from the outer stelar tissues. This requires that the solute permeability of the plasmalemma of the outer stelar tissues increases markedly at or about Cm values of 1 mM.It is postulated that the required separation of the two fK components within the stelar symplasm at Cm values>1 mM is due to the water independent fK being in a bound state, possibly being transported along a chain of binding sites whilst the water dependent fK is in a free state within the aqueous phase of the cytoplasm. 相似文献
4.
During growth of Ricinus communis seedlings, magnesium ions are mobilized in the endosperm, taken up by and accumulated to very high levels (150 μmol·g FW?1) in the cotyledons, and translocated to hypocotyl and roots. The magnesium gain from days 6 to 7 in the cotyledons and the seedling axis necessitates a total up-take rate of 600 nmol·h?1-seedling?1 and the phloem translocation rate must amount to 200 nmol·h?1. seedling?1. The phloem loading of magnesium and the regulatory properties of this process were investigated, making specific use of the ability to collect pure phloem sap from the cut hypocotyl of 6-d-old Ricinus seedlings. The concentration of magnesium in sieve-tube sap (5 mM) was fairly constant under many incubation conditions, e.g. incubation in magnesium-free buffer, incubation with different cations (K+, Na+, NH 4 + ) or anions (Cl?, NO 4 - , SO 4 2- ), or incubation with sucrose and amino acids. Even addition of magnesium chloride to the cotyledons did not enhance phloem loading of magnesium ions. Therefore the high magnesium content of the cotyledons was sufficient for continuous phloem loading of magnesium, irrespective of external ionic conditions. Also, the flow rate of sieve-tube sap did not influence the magnesium concentration in the sap. Only the incubation with sulfate and phosphate ions increased the magnesium-ion concentration in the phloem. Magnesium sulfate offered to the cotyledons caused a threefold increase of magnesium ions in the sieve-tube sap, which was inhibited by Na+, NH 4 + and Ca2+ in rising order, but not by K+. Incubation with phosphate for a prolonged period (8 h) led to an increased mobilization of intra-cotyle-donary magnesium and an enhanced phloem loading of mobilized magnesium. It is concluded that phosphate availability is a decisive factor for mobilization and translocation of magnesium ions within the plant. 相似文献
5.
Ion Transport in Suaeda maritima: Its Relation to Growth and Implications for the Pathway of Radial Transport of Ions across the Root 总被引:5,自引:0,他引:5
The ion relations of the halophytc Suaeda maritima are described.When plants grew in 340 mol m3 sodium chloride (176MPa) leaf solute potentials decreased, and were sustained around25 MPa Inorganic ion concentration (mostly of sodiumchloride) accounted for this. Comparable shoot ion concentrationsof potassium, nitrate and sulphate occurred when plants grewon different salinity types characterized by these ions. Netsodium transport and shoot sodium concentration increased dramaticallywith increases in external sodium chloride concentration upto 85 mol m3; thereafter, further increases in externalsodium chloride concentration had relatively little effect uponeither shoot sodium concentration or upon net transport of sodiumto the shoot. The net transport of sodium plus potassium onlydoubled when the external concentration of sodium plus potassiumincreased from 24 to 687 mol m3 Shoot ion concentrationswere remarkably constant with time, external concentration andsalinity type. The membrane flux rates and symplasmic ion concentrations neededto sustain the observed net transport of sodium (of some 10mmol g1 dry wt. of roots d1) are calculated fromanatomical and stereological data for the root system of thisspecies. The minimum net sodium chloride flux to load the symplasmwould be 260 nmol m2s1 if the whole cortical andepidermal plasmalemmal surface area were used uniformly, butthe flux rate required would be 3000 nmol m2s1if uptake took place only at the root surface. A flux rate ofat least 1000 nmol m2s1 is needed between symplasmand xylem. The symplasmic concentration of NaCl would be atleast 80 mol m3. It is argued (1), that both symplasmicand xylem loading are likely to be passive processes mediatedby ion channels rather than active carriers, (2), that net iontransport at 340 mol m3 sodium chloride is close to themaximum which is physiologically sustainable and (3), that growthof this halophyte is limited by NaCl supply from the root. Key words: Suaeda maritima, halophyte, salinity, roots, radial ion transport 相似文献
6.
Transport of metal micronutrients in the phloem of castor bean (Ricinus communis) seedlings 总被引:3,自引:0,他引:3
The metal micronutrients (MN) copper, iron, manganese, and zinc are transported via the phloem in the course of remobilization and circulation. The extent of these processes and transport species are still largely unknown. The Ricinus seedling was used to study the transport of these metal micronutrients as well as their interactions with the plant-endogenous chelator nicotianamine (NA) by daily measurements of the concentrations in the seedling parts and in the sieve tube sap obtained from a cut at the hypocotyl hook. The concentrations of these micronutrients in the phloem exudate decreased slightly from day 4 to day 8 of seedling development. Maximum values at day 4 were 65 μM for Zn, 63 μM for Fe, 27 μM for Cu, and 12 μM for Mn. The phloem transport rates reached maxima of 0.12 nmol cm?2h?1 for Zn and Fe at days 6 and 7, corresponding to the maximum exudation rates. The magnitude of these transport rates were in agreement with the net translocation rates estimated by analyses of the concentrations in the individual seedling parts. The NA content of the seedlings increased from day 0 (seed before sowing) until day 8, from 16 nmol to 474 nmol, which corresponds to an average net synthesis rate of about 100 nmol day?1 between the days 4 and 8. The NA:MN ratio was constant at 0.5 in the seedlings within this period. The NA concentrations and the sum of the concentrations of all four micronutrients in the sieve tube sap showed a constant ratio of 1.25 over the entire experimental period. Thus, both complex partners were subject to a cotransport in the phloem. Removal of the supplying endosperm led to a decrease in MN and NA concentrations in the sieve tube sap to about 80% while an average excess of NA of 1.1 was maintained. Since the concentrations of other amino acids, also possible chelators of metal micronutrients, fall to about 10% after removal of the endosperm, their role seems to be negligible as vehicles of MN transport in the phloem. Thus it is suggested that the divalent micronutrients considered in this study are loaded and maybe transported as NA complexes. 相似文献
7.
Purification and characterization of Ricinus communis invertase 总被引:3,自引:0,他引:3
F E Prado M A Vattuone O L Fleischmacher A R Sampietro 《The Journal of biological chemistry》1985,260(8):4952-4957
An invertase from Ricinus communis leaves was purified 4,400-fold. The preparation was homogeneous by criteria of gel electrophoresis, gel permeation, adsorption, and ionic exchange chromatography. One optimum pH at 3.5 was observed with crude invertase; however, purified preparations showed two optima, at pH 3.5 and 5.5. Addition of bovine serum albumin restored one maximum at pH 3.5 and elicited a 30% activation of the invertase. The effect was caused by many other proteins and by heparin, dextran sulfate, and polyvinylpyrrolidone. Fructose, fructose 1,6-diphosphate, maleic, trans-aconitic, malic, and ascorbic acids were simple competitive inhibitors of the purified enzyme. Glucose was a noncompetitive inhibitor. The activation by proteins suppressed these inhibitory effects. The minimum concentration of activator necessary to reach the maximal activation or "point of optimal activation" was always reached at a concentration of 1 X 10(-6) M, independently of the nature of the activator, when 8.6 X 10(-12) mol of enzyme were used. Apparent molecular weight determinations of the enzyme in the presence and absence of activator and molecular weight determinations based on determinations of the point of optimal activation suggested that the purified enzyme is a heptamer (Mr of 77,900, Stokes radius 32 A, frictional ration f/fo 1.1, partial specific volume 0.749 ml/g) and that the activated form is a trimer consisting of two enzyme subunits and one activator molecule. The activation was lost by dilution of the trimer. The enzyme subunit, as isolated by gel filtration in the presence of sodium dodecyl sulfate (Mr 11,000) was inactive but quickly regained activity upon removal of sodium dodecyl sulfate. 相似文献
8.
Roots are recognised as the major sites of cytokinin synthesis and shoots receive a continuous supply of cytokinins from the roots. Although reports are available on the xylem mobility of putative free bases and their ribosides, relatively few studies on the phloem mobility of cytokinins have been reported. The origin of phloem-mobile cytokinins is uncertain but there is evidence which implicates a recirculation from the root source. This study is the first report in which zeatin and zeatin riboside from the root pressure exudate and phloem sap of Ricinus have been identified by full-scan GC-MS and quantified by GC-MS selective-ion-monitoring. In this study, the concentration of cytokinins in root pressure exudate was similar, but lower, and in the phloem sap higher than that reported previously. The concentration of cytokinins quantified in the phloem sap confirms their transport in the sieve tubes. The relatively high concentration of zeatin riboside detected in the root pressure exudate and of zeatin detected in the phloem sap indicate a possible vascular recirculation of these hormones. 相似文献
9.
Single cell sap sampling and analysis were used to measure the longitudinal and radial distribution of sucrose, glucose and fructose in the apical cell division zone and in the basal, elongated zone of the Ricinus hypocotyl. Sucrose and hexose increased in concentration from the apex to the base of the seedling axis. In the cell division zone low hexose and sucrose concentrations prevailed in cortex and pith, with a slightly higher hexose concentration in pith cells. The sucrose concentrations in sieve tubes and in phloem were much higher than in the cortex and pith cells. In the basal zone of the hypocotyl high levels of sucrose in phloem, cortex and pith were found, therefore radial, diffusional sucrose flow away from the phloem was considered unlikely. It is proposed that radial flow of growth-water to the hypocotyl periphery together with the down-regulation of a sucrose transporter at the phloem leads to a preferential sucrose flow to the expanding cortex. The pith cells, which do not experience flow of growth-water, are probably insufficiently supplied with sucrose from the phloem resulting eventually in cell death as the plant grows. Shortage of sucrose supply, experimentally achieved by removal of the endosperm, led to sucrose hydrolysis in the pith. The sucrose levels in the other tissues decreased less. It appears that the hydrolysis to hexose was initiated to maintain the osmotic value in the pith cell sap. It is speculated that high hexose levels in the cells are indicative of insufficient sucrose supply via the phloem and that the pith cells are confronted with that situation during early seedling development. 相似文献
10.
A mathematical model of the active transport of main ions in cells of archaebacteria has been constructed. A set of equations
has been developed and solved for ion fluxes through the bacterium membrane. The model is based on the principle “one ion—one
transport system.” Considering experimental data, the major transport mechanism was determined for each ion and the balance
equation was written on the basis of this mechanism in the stationary state. This allowed calculating values of the membrane
potential and intracellular concentrations of the ions independently. The calculated values of the intracellular concentrations
and resting potential are in qualitative agreement with the corresponding experimental values for cells of extremely halophilic
archaea. 相似文献
11.
RICHARD POIRÉ HEIKE SCHNEIDER MICHAEL R. THORPE ARND J. KUHN ULRICH SCHURR ACHIM WALTER 《Plant, cell & environment》2010,33(3):408-417
In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root‐zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant – especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root‐zone temperature and its heterogeneity inside pots. 相似文献
12.
Subunits of toxin and agglutinin of Ricinus communis 总被引:1,自引:0,他引:1
13.
The molecular properties of the haemagglutinin of Ricinus communis (RCA I or RCA 120) were evaluated by analytical ultracentrifugation, light-scattering, c.d. and fluorescence. The native molecule had a fairly expanded structure (f/f0 = 1.43) and dissociated into two subunits of equal size in 6 M-guanidinium chloride. This native structure was stable in alkali (up to pH 11) and resistant to thermal denaturation at neutrality. A pH-triggered change in the haemagglutinin conformation was observed and characterized by analytical ultracentrifugation, c.d. and fluorescence between pH 7 and 4.5, the range in which its affinity for galactosides decreased [Yamasaki, Absar & Funatsu (1985) Biochim, Biophys. Acta 828, 155-161]. These results are discussed in relation to those reported in the literature for other lectins and more especially ricin, for which a pH-dependent conformation transition has been observed in the same range of low pH. 相似文献
14.
Salicylic Acid Transport in Ricinus communis Involves a pH-Dependent Carrier System in Addition to Diffusion 总被引:1,自引:0,他引:1
下载免费PDF全文

Franoise Rocher Jean-Franois Chollet Sandrine Legros Cyril Jousse Rmi Lemoine Mireille Faucher Daniel R. Bush Jean-Louis Bonnemain 《Plant physiology》2009,150(4):2081-2091
Despite its important functions in plant physiology and defense, the membrane transport mechanism of salicylic acid (SA) is poorly documented due to the general assumption that SA is taken up by plant cells via the ion trap mechanism. Using Ricinus communis seedlings and modeling tools (ACD LogD and Vega ZZ softwares), we show that phloem accumulation of SA and hydroxylated analogs is completely uncorrelated with the physicochemical parameters suitable for diffusion (number of hydrogen bond donors, polar surface area, and, especially, LogD values at apoplastic pHs and Δ LogD between apoplast and phloem sap pH values). These and other data (such as accumulation in phloem sap of the poorly permeant dissociated form of monohalogen derivatives from apoplast and inhibition of SA transport by the thiol reagent p-chloromercuribenzenesulfonic acid [pCMBS]) lead to the following conclusions. As in intestinal cells, SA transport in Ricinus involves a pH-dependent carrier system sensitive to pCMBS; this carrier can translocate monohalogen analogs in the anionic form; the efficiency of phloem transport of hydroxylated benzoic acid derivatives is tightly dependent on the position of the hydroxyl group on the aromatic ring (SA corresponds to the optimal position) but moderately affected by halogen addition in position 5, which is known to increase plant defense. Furthermore, combining time-course experiments and pCMBS used as a tool, we give information about the localization of the SA carrier. SA uptake by epidermal cells (i.e. the step preceding the symplastic transport to veins) insensitive to pCMBS occurs via the ion-trap mechanism, whereas apoplastic vein loading involves a carrier-mediated mechanism (which is targeted by pCMBS) in addition to diffusion. 相似文献
15.
16.
A model of the active transport of ions in the Cascinodiscus wailesii diatom cell is constructed taking into account the transport of H+, Na+, K+, Ca+2, NO3-\mathrm{NO}_{3}^{-}, Cl−, and NH4+\mathrm{NH}_{4}^{+} ions. This model allows calculating intracellular concentrations of basic ions and the biomembrane resting potential. A hierarchical
algorithm “one ion—one transport system” is used in the model. The dependence of the resting potential on the extracellular
concentration of potassium is plotted in terms of the model. The calculated values are in good agreement with the corresponding
experimental data. 相似文献
17.
Association of lipase activity with the spherosomes of Ricinus communis 总被引:16,自引:0,他引:16
18.
Summary Exudate from the phloem of Ricinus communis L. was negatively stained, examined in the electron microscope, and the filamentous components compared with those in fixed, sectioned material. In the exudate, two main fibrillar components were observed. One component has a diameter of 20±0.35 (standard error) nm, the other of 14.1±0.34 nm. This second compoent has projections along its length measuring 5 by 14 nm and spaced at intervals of 6.5–10 nm. Fibrils have been found possessing characteristics of both fibril types, suggesting some structural relationship between the two, possibly an interconvertibility. Several other types of fibrils occurred less frequently in the exudate. The exudate also contains torus-shaped structures measuring 13.5–15 nm in diameter. Sections of mature sieve elements of Ricinus and Acer rubrum L. contain fibrils structurally similar to the 14-nm fibrils from the exudate of Ricinus. Ricinus exudate was also fixed and pelleted in the ultracentrifuge. Thin sections of the pellet afforded cross-sectional views of the 20-nm fibrils, and showed that these fibrils apparently have a solid core. Possible models for the structure of the 20-nm filaments are described. 相似文献
19.
Primary roots of Ricinus communis having large caps and columellatissues are more graviresponsive than primary roots with smallcaps and columella tissues. The increased graviresponsivenessof roots with larger caps correlates positively with their columellatissues having larger length: width ratios than less graviresponsiveroots having smaller caps. Roots with wider tips typically aremore graviresponsive and have more extensive columellas thanroots with thinner tips. However, the size of the columellatissue correlates positively with graviresponsiveness, irrespectiveof the width of the root tip. These results indicate that differingdimensions of the columella tissue may be the basis for thediffering graviresponses of primary roots of R. communis. Root gravitropism, columella, root cap, primary root, Ricinus communis, castor bean 相似文献
20.