首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the United States, insecticide is used extensively in the production of sweet corn due to consumer demand for zero damage to ears and to a sweet corn genetic base with little or no resistance to ear-feeding insects. Growers in the southern United States depend on scheduled pesticide applications to control ear-feeding insects. In a study of quantitative genetic control over silk maysin, AM-maysin (apimaysin and methoxymaysin), and chlorogenic acid contents in an F2 population derived from GE37 (dent corn, P1A1) and 565 (sh2 sweet corn, p1a1), we demonstrate that the P1 allele from field corn, which was selected against in the development of sweet corn, has a strong epistatic interaction with the a1 allele in sh2 sweet corn. We detected that the p1 gene has significant effects (P < 0.0001) not only on silk maysin concentrations but also on AM-maysin, and chlorogenic acid concentrations. The a1 gene also has significant (P < 0.0005) effects on these silk antibiotic chemicals. Successful selection from the fourth and fifth selfed backcrosses for high-maysin individuals of sweet corn homozygous for the recessive a1 allele (tightly linked to sh2) and the dominant P1 allele has been demonstrated. These selected lines have much higher (2 to 3 times) concentrations of silk maysin and other chemicals (AM-maysin and chlorogenic acid) than the donor parent GE37 and could enhance sweet corn resistance to corn earworm and reduce the number of applications of insecticide required to produce sweet corn.  相似文献   

2.
Two maize (Zea mays L.) breeding populations with very high concentrations of maysin, a silk-expressed flavone glycoside, were tested for their ability to resist ear damage by the corn earworm, Helicoverpa zea Boddie, under field conditions. Tests were conducted in 2000 and 2001 at multiple locations in Georgia. The high maysin populations, EPM6 and SIM6, as well as resistant and susceptible checks, were scored for silk-maysin content, H. zea damage, and husk characters. In 2000, there was a negative correlation between husk tightness and earworm damage at three of five locations, while there was no significant correlation between damage and maysin content at any location. In 2001, EPM6 and SIM6 had approximately ten times the maysin content of the low-maysin control genotypes; nevertheless, earworm damage to EPM6 and SIM6 was either greater than or not significantly different from the low-maysin genotypes at all locations. The resistant control genotype, Zapalote Chico, had significantly less earworm damage than EPM6 and SIM6 for both years at all locations. The results of this study highlight the importance of identifying and quantifying husk and ear traits that are essential to H. zea resistance in maize.  相似文献   

3.
Maysin, a C-glycosylflavone in maize silk, has insecticidal activity against corn earworm, Helicoverpa zea (Boddie), larvae. Sweet corn, Zea mays L., is a vulnerable crop to ear-feeding insects and requires pesticide protection from ear damage. This study was conducted to identify maize chromosome regions associated with silk maysin concentration and eventually to transfer and develop high silk maysin sweet corn lines with marker-assisted selection (MAS). Using an F2 population derived from SC102 (high maysin dent corn) and B31857 (low maysin sh2 sweet corn), we detected two major quantitative trait loci (QTL). It was estimated that 25.6% of the silk maysin variance was associated with segregation in the genomic region of npi286 (flanking to p1) on chromosome 1S. We also demonstrated that a1 on chromosome 3L had major contribution to silk maysin (accounted for 15.7% of the variance). Locus a1 has a recessive gene action for high maysin with the presence of functional p1 allele. Markers umc66a (near c2) and umc105a on chromosome 9S also were detected in this analysis with minor contribution. A multiple-locus model, which included npi286, a1, csu3 (Bin 1.05), umc245 (Bin 7.05), agrr21 (Bin 8.09), umc105a, and the epistatic interactions npi286 x a1, a1 x agrr21, csu3 x umc245, and umc105a x umc245, accounted for 76.3% of the total silk maysin variance. Tester crosses showed that at the a1 locus, SC102 has functional A1 alleles and B31857 has homozygous recessive a1 alleles. Individuals of (SC102 x B31857) x B31857 were examined with MAS and plants with p1 allele from SC102 and homozygous a1 alleles from B31857 had consistent high silk maysin. Marker-assisted selection seems to be a suitable method to transfer silk maysin to sweet corn lines to reduce pesticide application.  相似文献   

4.
【目的】明确草地贪夜蛾Spodoptera frugiperda在浙江省鲜食玉米品种上的发生规律和防治方法。【方法】2019年在浙江东阳通过灯诱和性信息素诱捕方法研究草地贪夜蛾成虫消长规律;通过田间调查明确成虫产卵习性和幼虫对玉米植株的为害习性,以及幼虫对不同甜、糯玉米品种的为害差异;通过田间药效试验筛选高效防治药剂。【结果】灯诱和性信息素诱捕结果表明草地贪夜蛾在浙江东阳于6月中下旬和9月中旬出现2次明显成虫高峰,9月峰值显著高于6月;草地贪夜蛾成虫趋向于在较低叶龄玉米植株上产卵,80%的卵产于玉米叶片正面,幼虫取食具有显著的趋嫩习性,严重为害玉米心叶和果穗;不同玉米品种被害株率差异较大,甜玉米品种为害株率为0~28.41%,糯玉米品种为害株率为0~42.50%。2019年在浙江东阳进行的田间药剂试验筛选出了甲维盐、虱螨脲、乙基多杀菌素、甲氧虫酰肼、虫螨腈、丙溴磷、灭多威、茚虫威、苦皮藤素Celastrus angulatus和甘蓝夜蛾核型多角体病毒(Mamestra brassicae NPV, MbNPV)等高效防治药剂,药后3 d虫口减退率为87.61%~98.99%,田间持效期...  相似文献   

5.
Many of the lepidopterous insects which attack sweet corn, Zea mays L., are susceptible to insecticidal proteins produced by Bacillus thuringiensis ssp. kurstaki (Berliner) (Btk). Transgenic sweet corn expressing a synthetic cry gene for production of a Btk-insecticidal protein may provide a more environmentally acceptable means of sweet corn production. Eight transgenic sweet corn hybrids containing a synthetic gene for CryIA(b) protein production (BT11 event) were evaluated for resistance to the corn earworm, Helicoverpa zea (Boddie), and fall armyworm, Spodoptera frugiperda (J. E. Smith). Laboratory tests revealed that all Btk sweet corn hybrids were highly resistant to leaf and silk feeding by neonate 3 and 6 d old corn earworm larvae. Ear damage in the field to the Btk sweet corn hybrids caused by corn earworm was negligible. All Btk sweet corn hybrids, except Btk 95-0901, were moderately resistant to leaf and silk feeding by the fall armyworm. Survival and weight gain were reduced when neonates were fed excised whorl leaves of the Btk plants. Weight gain, but not survival, was reduced when 3- and 6-d-old fall armyworm larvae were fed excised whorl leaves of the Btk plants. Btk sweet corn hybrids appear to be ideal candidates for use in integrated pest management (IPM) programs for both the fresh and processing sweet corn markets, and their use should drastically reduce the quantity of insecticides currently used to control these pests in sweet corn. With appropriate cultural practices, it is highly unlikely that Btk sweet corn will contribute to the development of resistance to Btk proteins in these insects because of the high toxicity of the Cry proteins expressed in these sweet corn hybrids and the harvest of sweet corn ears from fields before larvae can complete development.  相似文献   

6.
Ninety four corn inbred lines selected from International Center for the Improvement of Maize and Wheat (CIMMYT) in Mexico were evaluated for levels of silk maysin in 2001 and 2002. Damage by major ear-feeding insects [i.e., corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae); maize weevil, Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae); brown stink bug, Euschistus servus (Say); southern green stink bugs, Nezara viridula (L.) (Heteroptera: Pentatomidae)], and common smut [Ustilago maydis DC (Corda)] infection on these inbred lines were evaluated in 2005 and 2006 under subtropical conditions at Tifton, GA. Ten inbred lines possessing good agronomic traits were also resistant to the corn earworm. The correlation between ear-feeding insect damage or smut infection and three phenotypic traits (silk maysin level, husk extension, and husk tightness of corn ears) was also examined. Corn earworm and stink bug damage was negatively correlated to husk extension, but not to either silk maysin levels or husk tightness. In combination with the best agronomic trait ratings that show the least corn earworm and stink bug damage, lowest smut infection rate, and good insect-resistant phenotypic traits (i.e., high maysin and good husk coverage and husk tightness), 10 best inbred lines (CML90, CML92, CML94, CML99, CML104, CML108, CML114, CML128, CML137, and CML373) were identified from the 94 lines examined. These selected inbred lines will be used for further examination of their resistance mechanisms and development of new corn germplasm that confers multiple ear-colonizing pest resistance.  相似文献   

7.
We examined 17 pairs of near-isogenic hybrids of Bacillus thuringiensis (Bt) (176, Mon810, and Bt11) and non-Bt corn, Zea mays L., to examine the effects of Bt on larval densities of Helicoverpa zea (Boddie) and Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) during 2 yr. During ear formation, instar densities of H. zea and S. frugiperda were recorded for each hybrid. We found that H. zea first, second, and fifth instar densities were each affected by Mon810 and Bt11 Bt corn but not by 176 corn. Surprisingly, first and second instars were found in higher numbers on ears of Mon810 and Bt11 corn than on non-Bt corn. Densities of third and fourth instars were equal on Bt and non-Bt hybrids, whereas densities of fifth instars were lower on Bt plants. S. frugiperda larval densities were only affected during 1 yr when second, and fourth to sixth instars were lower on ears of Mon810 and Bt11 hybrids compared with their non-Bt counterparts. Two likely explanations for early instar H. zea densities being higher on Bt corn than non-Bt corn are that (1) Bt toxins delay development, creating a greater abundance of early instars that eventually die, and (2) reduced survival of H. zea to later instars on Bt corn decreased the normal asymmetric cannibalism or H. zea-S. frugiperda intraguild predation of late instars on early instars. Either explanation could explain why differences between Bt and non-Bt plants were greater for H. zea than S. frugiperda, because H. zea is more strongly affected by Bt toxins and more cannibalistic.  相似文献   

8.
Larvae of the Old World corn earworm, Helicoverpa armigera (Hübner), were fed diets containing lyophilized silks from maize genotypes expressing varying levels of maysin, a flavone glycoside known to be toxic to the New World corn earworm, Helicoverpa zea Boddie. Three different H. armigera colonies were tested: a wild-type colony (96-S), a colony selected for resistance to deltamethrin (Del-R), and a colony selected for resistance to the Cry1Ac protoxin of Bacillus thuringiensis (Bt-R). A colony of H. zea was also tested as a control. High-maysin silk diets significantly slowed the growth and arrested the development of larvae from all H. armigera colonies compared with low-maysin silk diets, maysin-lacking silk diets, and no-silk control diets. The effects on the H. armigera and H. zea colonies were similar across maysin levels, although H. zea is a larger insect than H. armigera and this overall size difference was observed. Among the H. armigera colonies, maysin effects were generally similar, although 7-d-old Del-R larvae were significantly smaller than 7-d-old Bt-R and 96-S larvae for one no-silk control and two maysin-containing silk treatments. The toxic effect of maysin on the Bt-R and Del-R colonies suggests that physiological mechanisms of H. armigera resistance to Cry1Ac and deltamethrin do not confer cross-resistance to maysin.  相似文献   

9.
广东省是草地贪夜蛾入侵我国的桥头堡和主要的北迁虫源地之一,明确该虫在广东省的冬季发生特征及越冬存活情况,对广东省乃至全国草地贪夜蛾的预测预报及源头治理意义重大。为准确掌握广东省草地贪夜蛾的周年繁殖区范围及冬季发生为害情况,2020年1-3月在粤东、粤西、粤北及珠三角地区,利用成虫性诱、挖土查蛹、幼虫密度及植株为害率普查等方法,分析广东省草地贪夜蛾冬前、冬后种群发生为害情况及冬季发生特征。调查结果表明:(1)广东省冬玉米种植区主要分布在湛江、茂名、阳江、惠州等地,冬玉米种植区均发现草地贪夜蛾幼虫为害,主要为害冬玉米,极少为害甘蔗;(2)不同地区冬种玉米上草地贪夜蛾的发生程度差异较大,湛江、茂名、阳江发生为害较为严重,平均为害率30%左右,而珠三角及粤东地区发生较轻,为害率低于10%;较冬前调查,冬后草地贪夜蛾发生量和为害程度出现不同程度的下降;(3)广东省大部分地区的冬种玉米田和空闲地均可持续诱捕到草地贪夜蛾成虫,而挖土调查发现草地贪夜蛾蛹密度较低。本调查明确了草地贪夜蛾在北回归线以南的冬玉米区可以周年繁殖,无明显的滞育越冬现象,粤西茂名、阳江以南至雷州半岛一带为典型冬种玉米区,草地贪夜蛾发生为害较为严重,珠三角及粤东大部分地区草地贪夜蛾种群数量相对较低,调查结果为广东省乃至全国草地贪夜蛾的早期预警和精准防控提供了重要参考。  相似文献   

10.
We used a mathematical model with processes reflecting larval mortality resulting from feeding on cross-pollinated ears or Bt ears of corn to analyze the risk of evolution of Cry-toxin resistance in Ostrinia nubilalis (Hübner). In the simulations, evolution of resistance was delayed equally well by both seed mixtures and blocks with the same proportion of refuge. Our results showed that Bt-pollen drift has little impact on the evolution of Bt resistance in O. nubilalis. However, low-toxin expression in ears of transgenic corn can reduce the durability of transgenic corn expressing single toxin, whereas durability of pyramided corn hybrids is not significantly reduced. The toxin-survival rate of heterozygous larvae in Bt-corn ears expressing one or two proteins has more impact on evolution of Bt resistance in O. nubilalis than the parameters related to larval movement to Bt ears or the toxin-survival rate of the homozygous susceptible larvae in Bt ears. Bt resistance evolves slower when toxin mortality is distributed across the first two larval stadia than when only the first instars are susceptible to Bt toxins. We suggest that stakeholders examine toxin-survival rates for insect pests and take into account that instars may feed on different parts of Bt corn.  相似文献   

11.
Plant resistance is a useful component of integrated pest management for several insects that are economically damaging to maize, Zea mays L. In this study, 15 experimental lines of maize derived from a backcross breeding program were evaluated for resistance to corn earworm, Helicoverpa zea (Boddie); fall armyworm, Spodoptera frugiperda (J. E. Smith); southwestern corn borer, Diatraea grandiosella Dyar; and sugarcane borer, Diatraea saccharalis (F.). Experimental line 100-R-3 was resistant in the field to leaf feeding by fall armyworm and line 116-B-10 was resistant in the field to leaf feeding by fall armyworm and leaf and stalk feeding by southwestern corn borer. When corn earworm larvae were fed field harvested silks from experimental line 81-9-B in the laboratory, their pupal weights were significantly lower than the pupal weights of larvae that were fed silks from the resistant control, Zapalote Chico. Maysin levels lower than those commonly associated with corn earworm resistance were present in the resistant experimental line, 107-8-7, indicating a new basis confers resistance to corn earworm in this line. These resistant experimental lines will provide plant breeders with new sources of resistance to lepidopterous insects for the development of improved maize breeding populations.  相似文献   

12.
Field studies were done in 1995-1996 to assess the efficacy of three sweet corn hybrids that express the Bacillus thuringiensis (Bt) toxin, CrylAb, against two lepidopteran pests, Ostrinia nubilalis (Hubner) and Helicoverpa zea (Boddie). The Bt hybrids tested were developed by Novartis Seeds, using the event BT-11, which expresses Bt toxin in green tissue as well as reproductive tissues including the tassel, silk, and kernel. Bt hybrids were compared with a standard non-Bt control or the non-Bt isoline for each hybrid; none of the hybrids were treated with insecticides during the study. Hybrid efficacy was based on larval control of each pest, as well as plant or ear damage associated with each pest. In both years, control of O. nubilalis larvae in primary ears of all Bt hybrids was 99-100% compared with the appropriate non-Bt check. Plant damage was also significantly reduced in all Bt hybrids. In 1996, control of H. zea in Bt hybrids ranged from 85 to 88% when compared with the appropriate non-Bt control. In 1996, a University of Minnesota experimental non-Bt hybrid (MN2 x MN3) performed as well as the Bt hybrids for control of O. nubilalis. Also, in 1996, two additional University of Minnesota experimental non-Bt hybrids (A684su X MN94 and MN2 X MN3) performed as well as Bt hybrids for percent marketable ears (ears with no damage or larvae). In addition, compared with the non-Bt hybrids, percent marketable ears were significantly higher for all Bt hybrids and in most cases ranged from 98 to 100%. By comparison, percent marketable ears for the non-Bt hybrids averaged 45.5 and 37.4% in 1995 and 1996, respectively. Results from the 2-yr study strongly suggest that Bt sweet corn hybrids will provide high levels of larval control for growers in both fresh and processing markets. Specifically, Bt sweet corn hybrids, in the absence of conventional insecticide use, provided excellent control of O. nubilalis, and very good control of H. zea. However, depending on location of specific production regions, and the associated insect pests of sweet corn in each area, some insecticide applications may still be necessary.  相似文献   

13.
【目的】评估草地贪夜蛾Spodoptera frugiperda转移至小麦上为害和暴发的风险。【方法】采用室内饲养观察与调查统计的方法,测定和比较了23℃下草地贪夜蛾在玉米和小麦上的取食和生长发育特性及种群生命表参数。【结果】草地贪夜蛾在小麦上可以完成世代,其3龄后幼虫取食小麦的取食量及体重指标显著地高于同处理后时间在玉米上取食的;而食物利用效率、幼虫存活率、幼虫发育历期、卵孵化率均显著低于取食玉米的。取食玉米和取食小麦的草地贪夜蛾的平均蛹重、产卵前期、单雌产卵量等指标间无显著差异。另外,生命表参数比较结果表明,取食玉米和取食小麦的草地贪夜蛾的平均世代周期(T)、内禀增长率(rm)和周限增长率(λ)间均无显著差异,取食玉米的草地贪夜蛾的净增殖率(R0)为303.55±2.04,显著高于取食小麦的。【结论】草地贪夜蛾取食小麦时,生长发育速度快,能够完成世代生活史,但其食物利用效率、种群繁殖能力等却均低于取食玉米时,说明草地贪夜蛾更适宜在玉米上取食为害,存在转移至小麦为害的风险,但考虑到虫源、自然温度等条件,草地贪夜蛾在小麦上暴发的风险较小。本研...  相似文献   

14.
Two corn borer species are the principal maize insect pests in Europe, the European corn borer, Ostrinia nubilalis (Hübner), and the pink stem borer, Sesamia nonagrioides (Lefebvre). Hence, it would be advisable to evaluate the European maize germplasm for corn borer resistance to generate European varieties resistant to corn borer attack. The creation of the European Union Maize Landrace Core Collection (EUMLCC) allowed the screening of most of the variability for European corn borer resistance present among European maize local populations from France, Germany, Greece, Italy, Portugal, and Spain, testing a representative sample. The objective of this study was the evaluation of stem and ear resistance of the EUMLCC to European corn borer and pink stem borer attack. Trials were made at two Spanish locations that represent two very different maize-growing areas. Populations that performed relatively well under corn borer infestation for stem and ear damage were 'PRT0010008' and'GRC0010085', among very early landraces; 'PRT00100120' and 'PRT00100186', among early landraces; 'GRC0010174', among midseason landraces; and 'ESP0070441', among late landraces. Either the selection that could have happen under high insect pressure or the singular origin of determined maize populations would be possible explanations for the higher corn borer resistance of some landraces. Landraces 'PRT0010008', 'FRA0410090', 'PRT00100186', and 'ESP0090214' would be selected to constitute a composite population resistant to corn borers and adapted to short season, whereas populations 'ESP0090033', 'PRT00100530', 'GRC0010174', and 'ITA0370005' would be used to make a resistant composite adapted to longer season.  相似文献   

15.
Differences in larval survival and development of bollworm, Helicoverpa zea (Boddie), and fall armyworm, Spodoptera frugiperda (J. E. Smith), respectively, were found to exist among commercially available Cry1A(c) transgenic Bacillus thuringiensis Berliner (Bt) varieties. Using a quantification assay (ELISA) to measure the levels of delta-endotoxin in two of these varieties ('DP 451B/RR' and 'NuCOTN 33B'), differences in the amount of delta-endotoxin present in various plant parts was correlated with larval survival of bollworms and larval development of fall armyworms throughout the growing season. Larvae that were fed on DP 451B/RR completed development faster and exhibited better survivorship than those larvae fed NuCOTN 33B, whereas lower levels of delta-endotoxin were generally detected in plant parts from DP 451B/RR compared with NuCOTN 33B. These differences may impact population dynamics of these pests which may be a critical factor in managing resistance to Bt. Furthermore, the utility of using this system for providing information to the grower concerning varietal choices may be more common in the future.  相似文献   

16.
Performance of experimental Bacillus thuringiensis (Bt) MON events alone and pyramided with MON810 were evaluated over 3 yr in Georgia and Alabama. Ability of events to prevent whorl defoliation by the fall armyworm, Spodoptera frugiperda (J. E. Smith), and natural ear feeding damage by the corn earworm, Helicoverpa zea (Boddie) was assessed. In each year, near-isogenic hybrids with novel single transformation events and crosses pyramided with the MON810 event were compared with the standard single MON810 event and nontransformed susceptible control. Events were tested for resistance to whorl damage by manual infestations of fall armyworm and ear damage by natural infestations of corn earworm. All Bt events tested reduced fall armyworm whorl damage ratings per plant compared with the susceptible hybrid. All Bt treatments also had considerably less ear infestation and damage by corn earworm compared with the nontransgenic isoline. The MON841, MION849, and MON851 events reduced ear damage by H. zea but were not as effective as other novel events and were not advanced for further testing after the 1999 season. Pyramiding events compared with single events did not improve control of fall armyworm whorl damage, but they generally did prevent more ear damage by corn earworm. The MON84006 event singly and pyramided with MON810 had superior control of whorl-stage damage by S. frugiperda and ear damage by H. zea compared with MON810. Deployment of new events and genes could provide additional tools for managing the potential for insect resistance to Bt toxins. Furthermore, improved control of whorl and ear infestations by H. zea and S. frugiperda would increase the flexibility of planting corn, Zea mays L., and permit double cropping of corn in areas where these pests perennially reach damaging levels.  相似文献   

17.
草地贪夜蛾Spodoptera frugiperda近期在中国为害猖獗,由于繁殖速度快,迁飞能力强,在本土呈现爆发趋势,严重为害了我国农作物。与本地近缘物种斜纹夜蛾Spodoptera litura相比,草地贪夜蛾更偏好玉米、水稻、小麦等禾本科农作物,且对多种化学杀虫剂及转基因Bt玉米产生抗性。寄主适应性以及杀虫剂抗性与解毒代谢相关蛋白密切相关。因此,本研究对这两种夜蛾科害虫的解毒代谢相关蛋白——细胞色素P450、谷胱甘肽转移酶(GST)及ABC转运蛋白进行了全基因组水平系统的搜集和数目比较,构建系统发育树并对P450和GST部分基因扩张分支进行氨基酸差异位点分析。结果显示,在草地贪夜蛾中共鉴定出213个P450基因、58个GST基因、102个ABC基因,其中P450基因与GST基因数目远远多于斜纹夜蛾(116,37),而ABC基因数目与斜纹夜蛾(99)接近。系统发育树分析表明,草地贪夜蛾P450在CYP6、CYP9以及CYP4功能簇,GST在部分进化分支上都发生了显著基因扩张,发生显著扩张的基因中有数个氨基酸突变,其中一些突变被预测可能影响蛋白质功能。但出乎意料的是,ABC亚家族B和E在斜纹夜蛾聚集成簇并发生了显著的基因扩张现象。以上结果暗示入侵种草地贪夜蛾和本地近缘物种斜纹夜蛾在抗性方面可能发展出各自独特的应对机制。本研究为解析草地贪夜蛾解毒抗性特征机制提供基因数据,为草地贪夜蛾的生物防治及抗性研究提供参考依据。  相似文献   

18.
The host selection for oviposition by Spodoptera frugiperda (J.E. Smith) among corn, millet, cotton and soybean, and its relationship with the biological characteristics were investigated. Free and non-choice tests for oviposition using plots containing five plants each, from each host in plastic greenhouse, resulted in similar oviposition preference among the host plants. In addition, selected biological characteristics of S. frugiperda were determined in the laboratory with larvae feeding on host leaves, and the combination of leaf and cotton boll. Neonate larvae exhibited low success of colonization on cotton boll compared to the leaves of all other hosts. Spodoptera frugiperda fed only on cotton bolls exhibited longer larval and pupal development, and longer adult life span; however with similar egg production. Larvae fed cotton leaves during six days and then transferred to cotton bolls, however, exhibited development and reproduction similar to those reared on corn or only on cotton leaves. Therefore, the variations on immature stages of S. frugiperda were not related with host selection for oviposition which was similar among the studied hosts. Based on our data, the millet as a winter, rotational, and cover crop is a potential host for S. frugiperda, while leaves and cotton bolls were diets of intermediate suitability as compared to corn and soybean leaves.  相似文献   

19.
Grass selections including 10 zoysiagrasses, 18 paspalums, 34 Bermuda grasses, tall fescue, creeping red fescue, and perennial ryegrasses with and without endophyte were evaluated for potential resistance to fall armyworm, Spodoptera frugiperda (J. E. Smith), larvae. Laboratory evaluations assessed the degree of antibiosis among >70 grass lines to first-instar fall armvworms. When all parameters measured were considered, the trend in resistance to fall armyworm among endophyte-infected (E+) and endophyte-free (E-) cool season grasses from greatest to least was: 'Dawson' E+ > APR 1234 > 'Dawson' E- > 'Rosalin' E+ > Lp 5425, 'Rosalin' E-, ATF 480 > 'Tulsa' or: E+ slender creeping red fescue > E+ turf- type perennial ryegrass > E- slender creeping red fescue > E+ forage-type perennial ryegrass > E- forage-type perennial ryegrasses, and E+ tall fescue > E- turf-type tall fescue. Among warm season grasses larval weight gain was reduced on all zoysiagrasses. Larval weight gain also was lower on the Bermuda grasses 'Tifsport', 'Tifgreen', 97-4, 97-14, 97-22, 97-28, 97-39, 97-40,97-54, 98-15, 98-30, and 98-45 than when larvae were fed 'Tulsa' tall fescue or the diet control. Only APR1234 and 'Dawson' creeping red fescue reduced larval survival to the same extent that was observed for zoysiagrasses. Survival on Bermuda grasses was least on 97-8. Seashore paspalums were only rarely less susceptible to fall armyworm than tall fescue, although pupal weights were consistently lower on 'Temple 1' and 'Sea Isle 1' paspalums than that on 'Tulsa' tall fescue. Genetic resistance to key grass pests can reduce insecticide use and simplify management of these cultivars.  相似文献   

20.
Large-scale cultivation of plants used as biofuels is likely to alter the ecological interactions of current agricultural crops and their insect pests in a myriad of ways. Recent evidence suggests many contemporary maize pests will be able to use potential biofuel crops such as switchgrass, Panicum virgatum L., and miscanthus as hosts. To determine how suitable these biofuels are to the maize, Zea mays L., pest and generalist graminivore, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), we examined host plant preference and larval performance on foliage grown for commercial biofuel production. Larvae fed leaf tissue from both field- and greenhouse-grown switchgrass and miscanthus were monitored for survival, development, and food use relative to field-grown maize. Survivorship on biofuel crops was high on greenhouse-grown leaf tissue but severely reduced for field-grown switchgrass, and no larvae survived on field-grown miscanthus. Larvae fed field-grown tissue had larger head capsules yet achieved lower pupal weights because the increased toughness of the leaf tissue prevented the assimilation of nitrogen. Given that larvae overwhelmingly preferred maize to other biofuel crop species and that survival and performance were dramatically reduced on biofuel crop species, it is likely that biofuel crops, as grown for field cultivation, will suffer reduced damage from maize pests such as S. frugiperda because of reduced suitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号