首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Glass slides painted with the hydrophobic long-chained polycation N,N-dodecyl,methyl-polyethylenimine (N,N-dodecyl,methyl-PEI) are highly lethal to waterborne influenza A viruses, including not only wild-type human and avian strains but also their neuraminidase mutants resistant to currently used anti-influenza drugs.  相似文献   

2.
为了确定陕西关中小麦-玉米轮作区兼顾作物产量和环境效应的农田适宜氮肥用量,通过玉米-小麦-玉米连续3季田间试验研究了作物产量、氮肥利用效率、氮肥表观损失和土壤氮素平衡等对施氮量的响应。结果表明,随着氮肥用量的增加,不同年份作物产量和3季作物累计产量均表现为先增加后降低的趋势,而累计氮肥农学效率、氮肥表观利用率、氮肥吸收效率和氮肥偏生产力均表现为显著的降低趋势。土壤氮素平衡结果表明,随着施氮量的增加,低量施氮时(小麦施N150 kg/hm2,玉米施N180 kg/hm2),氮肥残留显著增加,表观损失和损失率变化不明显,而高量施氮时(小麦施N150 kg/hm2,玉米施N180 kg/hm2),氮肥残留变化不明显,表观损失和损失率却显著增加。回归和相关分析显示,矿质氮在土壤较深层次(100—200cm土层)大量累积是氮肥表观损失的重要途径之一。小麦施N 150 kg/hm2、玉米施N 180 kg/hm2时,作物即可获得相对较高的产量和氮肥利用率,且能保持作物收获前后土壤无机氮库的基本稳定,同时也可将氮肥表观损失降至较低水平。  相似文献   

3.
4.
玉米幼苗地上部/根间氮的循环及其基因型差异   总被引:8,自引:0,他引:8  
以两个玉米(ZeamaysL.)自交系原引1号(YY1)和综31(Z31)为研究材料,采用盆栽土培的培养方法,在正常供氮(HN,0.15gN/kg干土)和低氮量供应(LN,0.038gN/kg干土)培养条件下对玉米幼苗植株体内氮的循环量及其在地上部/根间的分配量进行了定量地测定、计算。结果表明,在玉米幼苗地上部/根间氮的循环量很高。低氮量供应使玉米幼苗植株吸氮量下降,根中氮的分配比例增加,同时地上部/根间氮的循环量也随之减少。与氮低效自交系Z31相比,氮高效自交系YY1幼苗中地上部/根间的氮循环量大、氮向根的分配量高,因而有利于其根系的生长,表现为根/地上部之比和总根长较高。这可能有利于其中后期对氮素的高效吸收与利用。  相似文献   

5.
The objective of this study was to investigate the relationship between nitrogen (N) partitioning and isotopic fractionation in lactating goats consuming diets with a constant high concentration of N and increasing levels of water soluble carbohydrate (WSC). Eight lactating goats were offered four different ratios of WSC : N in the diet. A two-period incomplete cross-over design was used, with two goats assigned to each treatment in each period. N balance measurements were conducted, with measurement of feed N intake and total output of N in milk, faeces and urine. Treatment, period and infusion effects were tested using general ANOVA; the relationships between variables were analysed by linear regression. Dietary treatment and period had significant effects on dry matter (DM) intake (g/day). DM digestibility (g/kg DM) and N digestibility (g/kg N) increased as the ratio of WSC : N increased in the diet. No treatment effect was observed on milk urea N concentration (g/l) or urinary excretion of purine derivatives (mM/day). Although dietary treatment and period had significant effects on N intake, the change of N intake was small; no effect was observed for N partitioning among faeces, milk and urine. Milk, plasma and faeces were enriched in 15N compared with feed, whilst urine was depleted in 15N relative to feed. No significant relationship was established between N partitioning and isotopic fractionation. This study failed to confirm the potential to use N isotopic fractionation as an indicator of N partitioning in dairy goats when diets provided N in excess to requirements, most likely because the range of milk N output/N intake and urinary N output/N intake were narrow.  相似文献   

6.
黑河下游湿地土壤有机氮组分剖面的分布特征   总被引:1,自引:0,他引:1  
结合野外调查,用Bremner法研究了黑河下游湿地不同土壤类型的有机氮组分,结果表明:在0—50 cm土层,5种土壤有机氮均以酸解性氮为主,占全氮的71.04%—81.79%。泥炭土、沼泽土、草甸土、亚高山草甸土所含的酸解氮、非酸解氮和酸解氮组分氨态氮、氨基酸态氮、氨基糖态氮含量的剖面分布总体上均随土层深度的增加而呈降低趋势,而风沙土却相反,上述有机氮组分呈升高趋势。5种土壤酸解氮及其组分氨态氮、氨基酸态氮、氨基糖态氮占全氮比例的剖面分布总体上均随土层深度的增加而呈降低趋势,而非酸解氮却呈升高趋势。5种土壤酸解未知态氮含量及占全氮比例均在剖面分布上无明显特征。在0—30 cm各相同土层内,5种土壤酸解氮各组分含量及占全氮比例的大小顺序均为氨基酸态氮氨态氮未知态氮氨基糖态氮;而在30—50 cm土层,5种土壤酸解氮各组分含量及占全氮比例的大小顺序均无明显特征。此外,黑河下游湿地土壤干化、沙化过程中,表层0—10 cm土壤有机氮组分含量变化明显,其中土壤氨态氮对生态环境变化最为敏感。  相似文献   

7.
Deoxyribonuclease I (DNase I) is known to be a glycoprotein, and two potential N-linked glycosylation sites (N18 and N106) are known for mammalian enzymes. In the present study, N18 and N106 were mutated in order to investigate the biological role of N-linked glycosylation in three mammalian (human, bovine, and equine) DNases I. The enzyme activities of N18Q and N106Q were lower than that of the wild type, and that of the double mutant (N18Q/N106Q) was lower than those of the single mutants, in accord with the sugar moiety contents in the three mammals. In addition, all mutant enzymes were unstable to heat, suggesting that both sites are required for heat stability. Moreover, in human and equine enzymes, the N18Q and N106Q mutant enzymes were less resistant to trypsin, while N18Q/N106Q was the most sensitive to trypsin. As for bovine DNase I, the trypsin resistance of N18Q and N106Q was similar to that of the wild type, but that of N18Q/N106Q decreased in a time-dependent manner. On the other hand, N-linked glycosylation was not related to pH sensitivity. The results of the present study suggest that N18 and N106 are both necessary for (i) full enzymatic activity, (ii) heat-stability, and (iii) trypsin resistance.  相似文献   

8.
Schmidt S  Stewart GR 《Oecologia》2003,134(4):569-577
A large number of herbaceous and woody plants from tropical woodland, savanna, and monsoon forest were analysed to determine the impact of environmental factors (nutrient and water availability, fire) and biological factors (microbial associations, systematics) on plant delta(15)N values. Foliar delta(15)N values of herbaceous and woody species were not related to growth form or phenology, but a strong relationship existed between mycorrhizal status and plant delta(15)N. In woodland and savanna, woody species with ectomycorrhizal (ECM) associations and putative N(2)-fixing species with ECM/arbuscular (AM) associations had lowest foliar delta(15)N values (1.0-0.6 per thousand ), AM species had mostly intermediate delta(15)N values (average +0.6 per thousand ), while non-mycorrhizal Proteaceae had highest delta(15)N values (+2.9 to +4.1 per thousand ). Similar differences in foliar delta(15)N were observed between AM (average 0.1 and 0.2 per thousand ) and non-mycorrhizal (average +0.8 and +0.3 per thousand ) herbaceous species in woodland and savanna. Leguminous savanna species had significantly higher leaf N contents (1.8-2.5% N) than non-fixing species (0.9-1.2% N) indicating substantial N acquisition via N(2) fixation. Monsoon forest species had similar leaf N contents (average 2.4% N) and positive delta(15)N values (+0.9 to +2.4 per thousand ). Soil nitrification and plant NO(3)(-) use was substantially higher in monsoon forest than in woodland or savanna. In the studied communities, higher soil N content and nitrification rates were associated with more positive soil delta(15)N and plant delta(15)N. In support of this notion, Ficus, a high NO(3)(-) using taxa associated with NO(3)(-) rich sites in the savanna, had the highest delta(15)N values of all AM species in the savanna. delta(15)N of xylem sap was examined as a tool for studying plant delta(15)N relations. delta(15)N of xylem sap varied seasonally and between differently aged Acacia and other savanna species. Plants from annually burnt savanna had significantly higher delta(15)N values compared to plants from less frequently burnt savanna, suggesting that foliar (15)N natural abundance could be used as marker for assessing historic fire regimes. Australian woodland and savanna species had low leaf delta(15)N and N content compared to species from equivalent African communities indicating that Australian biota are the more N depauperate. The largest differences in leaf delta(15)N occurred between the dominant ECM Australian and African savanna (miombo) species, which were depleted and enriched in (15)N, respectively. While the depleted delta(15)N of Australian ECM species are similar to those of previous reports on ECM species in natural plant communities, the (15)N-enriched delta(15)N of African ECM species represent an anomaly.  相似文献   

9.
Peng RH  Fang CM  Li B  Chen JK 《Oecologia》2011,165(3):797-807
Invasive alien plants increase both plant N and soil inorganic N pools in many terrestrial ecosystems. This is believed to be the result of altered plant-soil-microbe feedbacks that accelerate N cycling. However, it may also be due to the greater ability of invasive species to uptake lateral N subsidies that can modify ecosystem N dynamics. We conducted manipulative field experiments to determine the impact of smooth cordgrass (Spartina alterniflora) invasion on the N cycling of salt marsh ecosystems in the Yangtze Estuary, China. The results showed that the aboveground plant N and soil inorganic N pools in S. alterniflora marshes, 14.39 and 3.16 g N m(-2), were significantly higher than those in native common reed (Phragmites australis) marshes, 11.61 and 2.29 g N m(-2). These increases after invasion were explained by a significantly higher uptake of dissolved inorganic N (DIN) from tidal subsidies in S. alterniflora marshes (6.59 g N m(-2)) than from those in P. australis marshes (1.61 g N m(-2)), and not by soil organic N mineralization, which was not significantly different between S. alterniflora (6.45 g N m(-2)) and P. australis marshes (6.84 g N m(-2)) during the growing season. Our study indicated that the ecosystem engineering effects of S. alterniflora, which increases the interception of external N input, can be an alternative mechanism that increases plant N and soil inorganic N pools--especially in ecosystems with ample anthropogenic N subsidies, such as the coastal wetlands of China.  相似文献   

10.
Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis   总被引:6,自引:0,他引:6  
Lu M  Yang Y  Luo Y  Fang C  Zhou X  Chen J  Yang X  Li B 《The New phytologist》2011,189(4):1040-1050
? Anthropogenic nitrogen (N) addition may substantially alter the terrestrial N cycle. However, a comprehensive understanding of how the ecosystem N cycle responds to external N input remains elusive. ? Here, we evaluated the central tendencies of the responses of 15 variables associated with the ecosystem N cycle to N addition, using data extracted from 206 peer-reviewed papers. ? Our results showed that the largest changes in the ecosystem N cycle caused by N addition were increases in soil inorganic N leaching (461%), soil NO?? concentration (429%), nitrification (154%), nitrous oxide emission (134%), and denitrification (84%). N addition also substantially increased soil NH?+ concentration (47%), and the N content in belowground (53%) and aboveground (44%) plant pools, leaves (24%), litter (24%) and dissolved organic N (21%). Total N content in the organic horizon (6.1%) and mineral soil (6.2%) slightly increased in response to N addition. However, N addition induced a decrease in microbial biomass N by 5.8%. ? The increases in N effluxes caused by N addition were much greater than those in plant and soil pools except soil NO??, suggesting a leaky terrestrial N system.  相似文献   

11.
We examined whether neuromuscular reflexes were altered with anterior loads applied to the tibio-femoral joint. A ligament testing device was modified by attaching a reflex hammer to a steel mounted frame to illicit a patellar tendon tap, while anterior directed loads displaced the tibia on the femur. Five trials were acquired while anterior-directed loads (20, 50, 100 N; counterbalanced) were applied to the posterior tibia between 20 N pre (20 N(Pre)) and post (20 N(Post)) baseline conditions on two different days. Surface electromyography (sEMG) recorded mean quadriceps (Q) and hamstring (H) reflex time (R(Time)=ms) and reflex amplitude (R(Amp)=%MVIC). A load cell on the anterior tibia measured the timing (KE(Time)=ms) and amplitude (KE(Amp)=N) of the knee extension force, and was used to calculate electromechanical delay (EMD=ms) and peak knee extension moment (KE(Mom)=Nm/kg). Data from 19 recreationally active subjects revealed good to excellent response consistency between test days and between baseline conditions for R(Time), R(Amp), KE(Time) and KE(Amp). With anterior tibial loading, R(Time) was faster at 50 N vs. 20 N(Post), and R(Amp) was greater at 20 N(Pre) vs. 20 N(Post) (Q and H) and at 50 N vs. 100 N (Q only). KE(Mom) was greater at 20 N(Pre) and 50 N vs. 20 N(Post), and EMD was shorter at 50 N vs. 20 N, 20 N(Pre) and 20 N(Post). These results suggest that knee extensor reflex responses are enhanced with low (50 N) but not moderate (100 N) anterior loading of the knee.  相似文献   

12.
对于养分贫瘠的盐渍化草地生态系统, 大气氮沉降如何影响土壤氮循环过程是一个目前尚未解决的问题。该研究在位于华北地区山西省右玉县境内的盐渍化草地建立了一个模拟氮沉降的试验平台, 设置8个氮添加水平, 分别为0、1、2、4、8、16、24、32 g·m-2·a-1 (N0、N1、N2、N4、N8、N16、N24、N32), 生长季5-9月, 每月月初以喷施的方式等量添加NH4NO3。从2017年5月到2019年10月, 运用顶盖PVC管法每月一次进行净氮矿化速率的测定同时计算了净氮矿化速率对不同水平氮添加的敏感性。主要结果表明: (1)高水平氮添加(N16、N24、N32)显著增加土壤无机氮库; (2)该盐渍化草地土壤氮矿化以硝化作用为主, 经过3年氮添加以后, 高氮添加(N24、N32)显著促进了土壤净硝化速率, 并且不同氮添加水平在不同的月份和年份中表现出差异性响应; (3)不同氮添加水平对土壤净氮矿化敏感性的影响在不同降水年份差异显著, 短期低水平氮添加提高了土壤净氮矿化的敏感性, 而高水平氮添加降低土壤净氮矿化敏感性; (4)盐渍化草地土壤净氮矿化速率与土壤温度和水分呈正相关关系, 与土壤pH呈负相关关系。因此, 在当前氮沉降增加的背景下, 北方盐渍化草地土壤氮矿化速率对低氮添加的敏感性较高, 结合氮沉降的特点, 未来模型预测应该同时考虑氮沉降对盐渍化草地的可能影响。  相似文献   

13.
冬玉米对氮肥的吸收利用和需求   总被引:2,自引:0,他引:2  
在不同施氮量下 ,研究了冬玉米对氮肥的吸收利用 ,结果表明 :(1 )冬玉米地上各部分中氮的累积随着用氮量的增加而增加 ,花丝期前的吸收量均多于后期 ,但高氮区的前期吸氮比大于低氮区 ;(2 )营养体氮的转移率随施氮量的增加而降低 ,但绝对量依然是高氮处理大于低氮处理 ,其中雄穗的转移率最高 ,叶的转移量最大 ;(3 )氮肥利用率随施氮量的增加而提高 ,但氮的生产力下降。根据试验结果 ,在肥力好的土地上种植冬玉米以 1 80~ 2 70 kg N/hm2比较适宜  相似文献   

14.
Improving nitrogen efficiency: lessons from Malawi and Michigan   总被引:1,自引:0,他引:1  
Two case studies are presented here of nitrogen (N) dynamics in potato/maize systems. Contrasting systems were investigated from (1) the highland tropics of Dedza, Malawi in southern Africa and (2) the northern temperate Great Lakes region of Michigan. Formal surveys were conducted to document grower perceptions and N management strategies. Survey data were linked with N budgets conducted by reviewing on-farm data from representative farms in the targeted agroecosystems and simulation modeling to estimate N losses. Potential N-loss junctures were identified. Interventions that farmers might accept are discussed. The Malawi system uses targeted application of very small amounts of fertilizer (average 18 kg N ha(-1)) to growing plants. This low rate is on the steep part of plant response to N curve and should serve to enhance efficiency; plant growth, however, is generally stunted in Malawi due to degraded soils and weed competition. Very limited crop yields reduce N efficiency from a simulated 60 kg grain per kg N to an actual of approximately 20 kg grain per kg N (at 40 kg N ha(-1) applied). Legume-intensified systems could improve growth potential and restore N use efficiency through amelioration of soil quality and transfer functions and from biological fixation N inputs. In the Michigan system, N efficiency is enhanced currently through multiple, split applications of N fertilizer tailored to plant growth rate and demand. Fertilizer N rates used by growers, however, averaged 32% higher than recommended rates and 40% higher than N removed in crop product. Application of 50 kg N ha(-1) to cover crops in the fall may contribute to the apparent high potential for N leaching losses. Careful consideration of N credits from legumes and residual soil N would improve N efficiency. Overall, N budgets indicated 0 to 20 kg N ha(-1) loss potential from the Malawi systems and tenfold higher loss potential from current practice in Michigan maize/potato rotations. Best management practices, with or without integration of legumes, could potentially reduce N losses in Michigan to a more acceptable level of about 40 kg N ha(-1).  相似文献   

15.
为探讨亚热带森林对氮沉降增加的响应,项目在杉木人工林中开展了野外模拟N沉降试验,分N0(对照)、N1、N2、N3等4种处理,N沉降量分别为0、60、120、240(kgNhm-2a-1)。通过3a的研究发现,中高氮处理(N2、N3)明显促进了杉木胸径的生长,而低氮处理(N1)则没有产生明显影响。氮沉降对树高生长也有明显的促进作用,但随着氮沉降水平的增加其影响有减弱趋势。通过各水平N处理后,杉木年平均蓄积增长量分别为28.82、28.96、32.63m3hm-2和33.68m3hm-2,表明N沉降在一定程度上增加了林分蓄积量的积累,但处理之间的差异没有达到统计上的显著性水平。随着氮沉降水平的增加,NH4 -N和NO3--N含量明显上升,而土壤pH值、有机质、速效P、速效K和交换性Ca、Mg含量则呈下降趋势。杉木针叶养分状况对氮沉降的响应也比较敏感,N1、N2、N3处理使针叶平均N含量分别增加18.25%、11.68%和13.14%,但对P、K、Ca、Mg含量表现出一定的抑制作用。  相似文献   

16.
Soil nitrogen mineralization potential (N min) has to be spatially quantified to enable farmers to vary N fertilizer rates, optimize crop yields, and minimize N transfer from soils to the environment. The study objectives were to assess the spatial variability in soil N min potential based on clay and organic matter (OM) contents and the impact of grouping soils using these criteria on corn grain (Zea mays L.) yield, N uptake response curves to N fertilizer, and soil residual N. Four indicators were used: OM content and three equations involving OM and clay content. The study was conducted on a 15-ha field near Montreal, Quebec, Canada. In the spring 2000, soil samples (n = 150) were collected on a 30- x 30-m grid and six rates of N fertilizer (0 to 250 kg N ha(-1)) were applied. Kriged maps of particle size showed areas of clay, clay loam, and fine sandy loam soils. The N min indicators were spatially structured but soil nitrate (NO3-) was not. The N fertilizer rate to reach maximum grain yield (N max), as estimated by a quadratic model, varied among textural classes and Nmin indicators, and ranged from 159 to 250 kg N ha(-1). The proportion of variability (R2) and the standard error of the estimate (SE) varied among textural groups and N min indicators. The R2 ranged from 0.53 to 0.91 and the SE from 0.13 to 1.62. Corn grain N uptake was significantly affected by N fertilizer and the pattern of response differed with soil texture. For the 50 kg N ha(-1) rate, the apparent N min potential (ANM) was significantly larger in the clay loam (122 kg ha(-1)) than in the fine sandy loam (80 kg ha(-1)) or clay (64 kg ha(-1)) soils. The fall soil residual N was not affected by N fertlizer inputs. Textural classes can be used to predict N max. The N min indicators may also assist the variable rate N fertilizer inputs for corn production.  相似文献   

17.
供氮水平对菠菜营养品质和体内抗氧化酶活性的影响   总被引:9,自引:1,他引:8  
通过水培实验,研究了供氮水平对菠菜营养品质和抗氧化酶活性的影响.结果表明,供氮水平由4mmol·L-1增加到8mmol·L-1,菠菜产量显著增加,叶片中的维生素C(Vc)含量随着供氮浓度由4mmol·L-1提高到8mmol·L-1,再提高供氮水平,Vc含量则明显下降.叶片硝酸盐含量随着氮浓度的提高而增加.供氮浓度从4mmol·L-1增加到8mmol·L-1,叶片可溶态草酸含量略有下降,再提高供氮水平则明显上升,而草酸总量随供氮水平提高,先显著升高然后略有降低.SOD和POD酶的活性随供氮水平由4mmol·L-1提高到8mmol·L-1而增加,再提高供氮水平,酶活性显著下降;CAT活性随供氮水平的增加而降低,叶片MDA含量先降低后显著升高,而游离脯氨酸含量随氮水平的升高而增加.可见供氮水平为8mmol·L-1时,菠菜叶片具有较高的生物量、Vc含量和抗氧化酶活性,较低的硝酸盐和草酸含量以及较低的MDA和游离脯氨酸含量,表明供氮浓度8mmol·L-1有利于提高菠菜的产量、营养品质和抗逆能力,是菠菜生长较适宜的供氮水平.  相似文献   

18.
Improvements in seed yield during domestication and breeding are frequently achieved moving plants from the conservative syndrome of the plant economic spectrum towards the more acquisitive side, changing how plants acquire, allocate, use and store C and nutrients in relation to their wild relatives. The aims were to evaluate if domestication changed the N allocation, the internal plant N recycling (N resorption efficiency and proficiency, and N storage) and N-use-efficiency, in the perennial new crop Silphium integrifolium. We compared in a field experiment repeated in two locations (Kansas and Patagonia), a Wild (W) and two improved accessions, with high- (HYI) and low-seed yield improved (LYI) accessions. HYI accessions produced more than twice the biomass and acquired twofold more N than LYI and Wild accessions. Changes in proportional N allocation were similar in both improved accessions (HYI and LYI) and locations: higher allocation to leaves and lower to the crown at pre-anthesis (growth-storage trade-off) and higher allocation to seeds and lower to the crown at maturity (reproduction-storage trade-off). HYI and LYI allocated 50% more N to seeds in average, reducing a 31% the N allocated to the crown in relation to the Wild. Nitrogen use efficiency (NUE) and mean residence time (MRT) of N were reduced in both improved accessions. In HYI, the lower MRT was related to the lower storage of N in the crown and N removal through seed production, and in LYI was the result of the N lost through leaf senescence. HYI produced litter with lower N concentration (more proficient) that the wild accession. These could decrease the net N mineralization rate and soil N availability at long term. HYI plants should require higher external N inputs to the soil to sustain their N uptake requirements. LYI and Wild accessions, had lower resorption efficiency, but N recycled was allocated to the crown for future remobilization and uses (better internal cycling). The leaf litter type of these accessions with higher N content should sustain faster N-cycles rates and N release to the soil. If the focus is on the ecosystem services, HYI accessions could help achieve a reduction in nitrate leaching by maximizing N uptake, N resorption and N removal through seed (i.e. nitrate catch crop), and also produce crop residues that slow down biogeochemical cycling and soil nutrient retention.  相似文献   

19.
Liao Y C  Fan H B  Li Y Y  Liu W F  Yuan Y H 《农业工程》2010,30(3):150-154
To study the impact of nitrogen deposition on 1-year-old Chinese fir (Cunninghamia lanceolata) seedlings in pots, the dissolved NH4NO3 was sprayed on the seedlings every 3 days for 1 year. The simulated elevated N depositions were equivalent to N0(0), N1(6 gN/(m2 a)), N2(12 gN/(m2 a)), N3(24 gN/(m2 a)) and N4(48 gN/(m2 a)). The results indicated that medium N treatments (N2, N3) enhanced growth significantly. The height, stem base diameter and per-seedling biomass of Chinese fir seedlings increased with N loads and decreased in the high N treatments. Compared to N0, the height and per-seedling biomass were highest in N2 treatment and increased by 10.77% and 12.35%, respectively. The stem base diameter was highest in N3 treatment and increased by 8.81% compared to N0. The net photosynthetic rate (Pn) in treatments N1, N2, N3, N4 increased by 1.20%, 9.28%, 24.23% and 4.30%, and the highest photosynthetic rate by 67.09%, 125.32%, 148.10% and 51.90%, respectively. The N1–N3 treatments, especially N2, stimulated light compensation point (LCP) of the seedlings significantly, but N4 exhibited inhibitive effect. Compared with LCP, light saturation point (LSP) showed weaker response to N loads, positive to N2, but negative to all other N treatments. Low-to-medium N treatments (N1, N2) enhanced Chl (a + b) by 2.19% and 37.15%, while medium-to-high N treatments (N3, N4) reduced Chl (a + b) by 7.95% and 15.56%, respectively. Water use efficiency (WUE) and stomatal conductance (C) decreased slightly with N loads.  相似文献   

20.
Analysis of sterols of Saccharomyces cerevisiae mutants N3, N15, N26, and N3H, defective in sterol biosynthesis, was performed. Strains N3, N15, and N26 were isolated from their mother strain, M10, by screening with nystatin (Nagai et al. (1980) Mie Med. J. 30, 215-224), and strain N3H was isolated from N3 as a doubly-mutated strain. The main sterols of N3, N15, N26, and N3H were ergosta-7,22-dienol, ergost-8-enol, cholesta-5,7,24-trienol, and ergosta-7,22,24(28)-trienol, respectively. The former three strains were characterized as defective in delta 5-desaturation, delta 8--delta 7 isomerization, and C-24 transmethylation. Strain N3H was found to be defective in delta 5-desaturation as well as in delta 24(28)-reduction. However, the defect of N26 and N3H was suggested to be leaky, since small amounts of ergosterol and ergosta-7,22-dienol were found in these mutants, respectively. In N15, an accumulation (2% in total sterols) of the compound likely to be hydroxylated sterol was found. By aerobic adaptation of these strains, the accumulation of these strains, the accumulations of ergosta-7,22-dienol (22 mg/g dry cells), ergosta-7,22,24(28)-trienol (24 mg), ergosta-8,24(28)-dienol (18 mg), and cholesta-8,24-dienol (22 mg) reached a maximum in N3, N3H, N15, and N26 after 20, 20, 30, and 30 h, respectively. These strains appear to be useful for making 14C-labeled and non-labeled preparations of the above sterols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号