首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
沈俊涛  修志龙 《生物工程学报》2017,33(12):1901-1912
以细菌为基础的生物技术在蓬勃发展的同时也不断受到噬菌体感染的威胁,噬菌体感染已成为微生物发酵过程中的一个顽疾,其实质是噬菌体与细菌之间复杂的共进化关系。在漫长的进化过程中,噬菌体已经形成了多种针对细菌抗性系统的逃逸机制。合理的工厂设计、菌株的轮换策略和传统的基因工程方法能在一定程度上降低噬菌体感染的风险,但仍然无法避免。基于CRISPR-Cas系统的防治策略仅需噬菌体的序列信息就可以理性设计噬菌体抗性菌株,且可以通过叠加效应不断增强菌种抗性,从而避免噬菌体的逃逸;群体感应信号分子则可以从整体水平上调节细菌的噬菌体抗性。这些新发现为噬菌体感染问题的解决带了新的希望,而噬菌体基因组编辑技术和合成生物学的快速发展则将进一步加深人们对噬菌体感染防治领域的认识。  相似文献   

2.
Enteric hyperoxaluria (EH) is a metabolic disease caused by excessive absorption of dietary oxalate leading to the formation of chronic kidney stones and kidney failure. There are no approved pharmaceutical treatments for EH. SYNB8802 is an engineered bacterial therapeutic designed to consume oxalate in the gut and lower urinary oxalate as a potential treatment for EH. Oral administration of SYNB8802 leads to significantly decreased urinary oxalate excretion in healthy mice and non‐human primates, demonstrating the strain''s ability to consume oxalate in vivo. A mathematical modeling framework was constructed that combines in vitro and in vivo preclinical data to predict the effects of SYNB8802 administration on urinary oxalate excretion in humans. Simulations of SYNB8802 administration predict a clinically meaningful lowering of urinary oxalate excretion in healthy volunteers and EH patients. Together, these findings suggest that SYNB8802 is a promising treatment for EH.  相似文献   

3.
The generation of nitrogen fixing crops is considered a challenge that could lead to a new agricultural ‘green’ revolution. Here, we report the use of synthetic biology tools to achieve and optimize the production of active nitrogenase Fe protein (NifH) in the chloroplasts of tobacco plants. Azotobacter vinelandii nitrogen fixation genes, nifH, M, U and S, were re‐designed for protein accumulation in tobacco cells. Targeting to the chloroplast was optimized by screening and identifying minimal length transit peptides performing properly for each specific Nif protein. Putative peptidyl‐prolyl cis‐trans isomerase NifM proved necessary for NifH solubility in the stroma. Purified NifU, a protein involved in the biogenesis of NifH [4Fe‐4S] cluster, was found functional in NifH reconstitution assays. Importantly, NifH purified from tobacco chloroplasts was active in the reduction of acetylene to ethylene, with the requirement of nifU and nifS co‐expression. These results support the suitability of chloroplasts to host functional nitrogenase proteins, paving the way for future studies in the engineering of nitrogen fixation in higher plant plastids and describing an optimization pipeline that could also be used in other organisms and in the engineering of new metabolic pathways in plastids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号