首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Connective tissue is required for maintaining the integrity of tissues. Integrins are the cell surface receptors responsible for cell attachment to extracellular matrix; however, their tissue-specific role in this process is poorly understood. Here, we test whether integrin β1 is required for blood vessel maintenance and integrity in adult mice. We show that adult mice containing a fibroblast/smooth muscle cell-specific deletion of integrin β1 exhibit impaired bleeding time and maintenance of vessel architecture, including progressively reduced levels of extracellular matrix (ECM). Vessels also possessed diminished levels of α-smooth muscle actin (α-SMA), and cells derived from vessels showed reduced production of mRNAs encoding ECM and α-SMA as well as reduced α-SMA protein and stress fibers and ECM contraction. Integrin β1 in adult fibroblasts/smooth muscle cells/pericytes is required for vasoconstriction and vascular maintenance.  相似文献   

2.
Menopause, the age-related loss of ovarian hormone production, promotes increased adiposity and associated metabolic pathology, but molecular mechanisms remain unclear. We previously reported that estrogen increases skeletal muscle PPARδ expression in vivo, and transgenic mice overexpressing muscle-specific PPARδ are reportedly protected from diet-induced obesity. We thus hypothesized that obesity observed in ovariectomized mice, a model of menopause, may result in part from abrogated expression of muscle PPARδ and/or downstream mediators such as FoxO1. To test this hypothesis, we ovariectomized (OVX) or sham-ovariectomized (SHM) 10-week old female C57Bl/6J mice, and subsequently harvested quadriceps muscles 12 weeks later for gene expression studies. Compared to SHM, muscle from OVX mice displayed significantly decreased expression of PPARδ (3.4-fold), FoxO1 (4.5-fold), PDK-4 (2.3-fold), and UCP-2 (1.8-fold). Consistent with studies indicating PPARδ and FoxO1 regulate muscle fiber type, we observed dramatic OVX-specific decreases in slow isoforms of the contractile proteins myosin light chain (11.1-fold) and troponin C (11.8-fold). In addition, muscles from OVX mice expressed 57% less myogenin (drives type I fiber formation), 2-fold more MyoD (drives type II fiber formation), and 1.6-fold less musclin (produced exclusively by type II fibers) than SHM, collectively suggesting a shift towards less type I oxidative fibers. Finally, and consistent with changes in PPARδ and FoxO1 activity, we observed decreased expression of atrogin-1 (2.3-fold) and MuRF-1 (1.9-fold) in OVX mice. In conclusion, muscles from ovariectomized mice display decreased PPARδ and FoxO1 expression, abrogated expression of downstream targets involved in lipid and protein metabolism, and gene expression profiles indicating less type I oxidative fibers.  相似文献   

3.
4.
Cronobacter sakazakii (C. sakazakii) is an opportunistic pathogen that causes sepsis and meningitis in neonate. The molecular mechanism involved in the pathogenesis of C. sakazakii meningitis remains unclear. In this study, we found that C. sakazakii invasion was significantly decreased in human brain microvascular endothelial cells (HBMEC) treated with cytosolic phospholipases A(2)α (cPLA(2)α) inhibitor. Increased phosphorylation of cPLA(2)α was observed in HBMEC infected with C. sakazakii, which was prevented by treatment with cPLA(2)α inhibitor. cPLA(2)α knockdown in HBMEC significantly attenuated C. sakazakii invasion into HBMEC. Immunofluorescence demonstrated that the rearrangements of actin filaments in HBMEC induced by C. sakazakii were effectively blocked by either treatment with cPLA(2)α inhibitor or transfection with cPLA(2)α siRNA. Interestingly, we found that C. sakazakii infection promoted the aggregation of phosphorylated cPLA(2)α, which was associated with depolymerized actin filaments in HBMEC. Furthermore, our data revealed that cPLA(2)α acts downstream of Akt signaling pathway in HBMEC stimulated with C. sakazakii. Taken together, our results illustrated that cPLA(2)α-mediated actin filament rearrangements downstream of Akt activation is required for C. sakazakii invasion into brain endothelial cells.  相似文献   

5.
6.
7.
8.
We tested the hypothesis that high fat (HF) feeding results in endothelial dysfunction in resistance arteries of epididymal white adipose tissue (eWAT) and is mediated by adipose tissue inflammation. When compared with normal chow (NC)-fed mice (n = 17), HF-fed male B6D2F1 mice were glucose intolerant and insulin resistant as assessed by glucose tolerance test (area under the curve; HF, 18,174 ± 1,889 vs. NC, 15,814 ± 666 mg·dl(-1)·min(-1); P < 0.05) and the homeostatic model assessment (HF, 64.1 ± 4.3 vs. NC, 85.7 ± 6.4; P = 0.05). HF diet-induced metabolic dysfunction was concomitant with a proinflammatory eWAT phenotype characterized by greater macrophage infiltration (HF, 3.9 ± 0.8 vs. NC, 0.8 ± 0.4%; P = 0.01) and TNF-α (HF, 22.6 ± 4.3 vs. NC, 11.4 ± 2.5 pg/dl; P < 0.05) and was associated with resistance artery dysfunction, evidenced by impaired endothelium-dependent dilation (EDD) (maximal dilation; HF, 49.2 ± 10.7 vs. NC, 92.4 ± 1.4%; P < 0.01). Inhibition of nitric oxide (NO) synthase by N(ω)-nitro-l-arginine methyl ester (l-NAME) reduced dilation in NC (28.9 ± 6.3%; P < 0.01)- and tended to reduce dilation in HF (29.8 ± 9.9%; P = 0.07)-fed mice, eliminating the differences in eWAT artery EDD between NC- and HF-fed mice, indicative of reduced NO bioavailability in eWAT resistance arteries after HF feeding. In vitro treatment of excised eWAT arteries with recombinant TNF-α (rTNF) impaired EDD (P < 0.01) in NC (59.7 ± 10.9%)- but not HF (59.0 ± 9.3%)-fed mice. l-NAME reduced EDD in rTNF-treated arteries from both NC (21.9 ± 6.4%)- and HF (29.1 ± 9.2%)-fed mice (both P < 0.01). In vitro treatment of arteries with a neutralizing antibody against TNF-α (abTNF) improved EDD in HF (88.2 ± 4.6%; P = 0.05)-fed mice but was without effect on maximal dilation in NC (89.0 ± 5.1%)-fed mice. l-NAME reduced EDD in abTNF-treated arteries from both NC (25.4 ± 7.5%)- and HF (27.1 ± 16.8%)-fed mice (both P < 0.01). These results demonstrate that inflammation in the visceral adipose tissue resulting from diet-induced obesity impairs endothelial function and NO bioavailability in the associated resistance arteries. This dysfunction may have important implications for adipose tissue blood flow and appropriate tissue function.  相似文献   

9.
The liver X receptor (LXR) signaling pathway is an important modulator of atherosclerosis, but the relative importance of the two LXRs in atheroprotection is incompletely understood. We show here that LXRα, the dominant LXR isotype expressed in liver, plays a particularly important role in whole-body sterol homeostasis. In the context of the ApoE(-/-) background, deletion of LXRα, but not LXRβ, led to prominent increases in atherosclerosis and peripheral cholesterol accumulation. However, combined loss of LXRα and LXRβ on the ApoE(-/-) background led to an even more severe cholesterol accumulation phenotype compared to LXRα(-/-)ApoE(-/-) mice, indicating that LXRβ does contribute to reverse cholesterol transport (RCT) but that this contribution is quantitatively less important than that of LXRα. Unexpectedly, macrophages did not appear to underlie the differential phenotype of LXRα(-/-)ApoE(-/-) and LXRβ(-/-)ApoE(-/-) mice, as in vitro assays revealed no difference in the efficiency of cholesterol efflux from isolated macrophages. By contrast, in vivo assays of RCT using exogenously labeled macrophages revealed a marked defect in fecal sterol efflux in LXRα(-/-)ApoE(-/-) mice. Mechanistically, this defect was linked to a specific requirement for LXRα(-/-) in the expression of hepatic LXR target genes involved in sterol transport and metabolism. These studies reveal a previously unrecognized requirement for hepatic LXRα for optimal reverse cholesterol transport in mice.  相似文献   

10.
11.
Tumor necrosis factor (TNF)-α is a potent proinflammatory cytokine involved in the pathogenesis of diabetic neuropathy. We inactivated TNF-α to determine if it is a valid therapeutic target for the treatment of diabetic neuropathy. We effected the inactivation in diabetic neuropathy using two approaches: by genetic inactivation of TNF-α (TNF-α(-/-) mice) or by neutralization of TNF-α protein using the monoclonal antibody infliximab. We induced diabetes using streptozotocin in wild-type and TNF-α(-/-) mice. We measured serum TNF-α concentration and the level of TNF-α mRNA in the dorsal root ganglion (DRG) and evaluated nerve function by a combination of motor (MNCV) and sensory (SNCV) nerve conduction velocities and tail flick test, as well as cytological analysis of intraepidermal nerve fiber density (IENFD) and immunostaining of DRG for NF-κB p65 serine-276 phosphorylated and cleaved caspase-3. Compared with nondiabetic mice, TNF-α(+/+) diabetic mice displayed significant impairments of MNCV, SNCV, tail flick test, and IENFD as well as increased expression of NF-κB p65 and cleaved caspase-3 in their DRG. In contrast, although nondiabetic TNF-α(-/-) mice showed mild abnormalities of IENFD under basal conditions, diabetic TNF-α(-/-) mice showed no evidence of abnormal nerve function tests compared with nondiabetic mice. A single injection of infliximab in diabetic TNF-α(+/+) mice led to suppression of the increased serum TNF-α and amelioration of the electrophysiological and biochemical deficits for at least 4 wk. Moreover, the increased TNF-α mRNA expression in diabetic DRG was also attenuated by infliximab, suggesting infliximab's effects may involve the local suppression of TNF-α. Infliximab, an agent currently in clinical use, is effective in targeting TNF-α action and expression and amelioration of diabetic neuropathy in mice.  相似文献   

12.
Histones of heterochromatin are deacetylated in yeast and methylated in more complex eukaryotes to regulate heterochromatin structure and gene silencing. Here, we report that histone H2A phosphorylated at serine 129 (γH2A) in Saccharomyces cerevisiae is a conceptually new type of heterochromatin modification that functions downstream of silent chromatin assembly. We show that γH2A is enriched throughout yeast telomeric and silent mating locus (HM) heterochromatin where γH2A results from the action of kinases Tel1 and Mec1. Interestingly, mutation of γH2A has no apparent effect on the binding of Sir (silent information regulator) complex or on gene silencing. In contrast, deletion of SIR3 abolishes the formation of γH2A at heterochromatin. To address the function of γH2A, we used a Δrif1 mutant strain in which telomeres are excessively elongated to show that γH2A is required for the optimal recruitment of Cdc13, a regulator of telomere elongation, and for telomere elongation itself. Thus, a histone modification that parallels Sir3 protein binding is shown here to be dispensable for the formation of a silent structure but is important for a crucial heterochromatin-specific downstream function in telomere homeostasis.  相似文献   

13.
Histones of heterochromatin are deacetylated in yeast and methylated in more complex eukaryotes to regulate heterochromatin structure and gene silencing. Here, we report that histone H2A phosphorylated at serine 129 (γH2A) in Saccharomyces cerevisiae is a conceptually new type of heterochromatin modification that functions downstream of silent chromatin assembly. We show that γH2A is enriched throughout yeast telomeric and silent mating locus (HM) heterochromatin where γH2A results from the action of kinases Tel1 and Mec1. Interestingly, mutation of γH2A has no apparent effect on the binding of Sir (silent information regulator) complex or on gene silencing. In contrast, deletion of SIR3 abolishes the formation of γH2A at heterochromatin. To address the function of γH2A, we used a Δrif1 mutant strain in which telomeres are excessively elongated to show that γH2A is required for the optimal recruitment of Cdc13, a regulator of telomere elongation, and for telomere elongation itself. Thus, a histone modification that parallels Sir3 protein binding is shown here to be dispensable for the formation of a silent structure but is important for a crucial heterochromatin-specific downstream function in telomere homeostasis.Key words: γH2A, H2AS129 phosphorylation, heterochromatin, telomere, Sir complex, Tel1/Mec1, Rif1/2, Cdc13, yKu proteins  相似文献   

14.
15.
The phytohormone abscisic acid (ABA) has been shown to be effective in ameliorating chronic and acute inflammation. The objective of this study was to investigate whether ABA's anti-inflammatory efficacy in the gut is dependent on peroxisome proliferator-activated receptor γ (PPARγ) in T cells. PPARγ-expressing and T cell-specific PPARγ null mice were fed diets with or without ABA (100 mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate. The severity of clinical disease was assessed daily, and mice were euthanized on Day 7 of the dextran sodium sulfate challenge. Colonic inflammation was assessed through macroscopic and histopathological examination of inflammatory lesions and real-time quantitative RT-PCR-based quantification of inflammatory genes. Flow cytometry was used to phenotypically characterize leukocyte populations in the blood and mesenteric lymph nodes. Colonic sections were stained immunohistochemically to determine the effect of ABA on colonic regulatory T (Treg) cells. ABA's beneficial effects on disease activity were completely abrogated in T cell-specific PPARγ null mice. Additionally, ABA improved colon histopathology, reduced blood F4/80+CD11b+ monocytes, increased the percentage of CD4+ T cells expressing the inhibitory molecule cytotoxic T lymphocyte antigen 4 in blood and enhanced the number of Treg cells in the mesenteric lymph nodes and colons of PPARγ-expressing but not T cell-specific PPARγ null mice. We conclude that dietary ABA ameliorates experimental inflammatory bowel disease by enhancing Treg cell accumulation in the colonic lamina propria through a PPARγ-dependent mechanism.  相似文献   

16.
Thalidomide is known as an anti-angiogenic, anti-tumor, and anti-proliferative agent, widely used in the treatment of some immunological disorders and cancers. The effect of thalidomide on interferon (IFN)-γ induced nitric oxide (NO) production in mouse vascular endothelial cells was examined in order to elucidate the anti-angiogenic or anti-inflammatory action. Thalidomide inhibited IFN-γ-induced NO production in mouse END-D cells via reduced expression of an inducible type of NO synthase (iNOS) protein and mRNA. Since thalidomide did not alter the cell surface expression of IFN-γ receptor, the NO inhibition was suggested to be due to the impairment of IFN-γ-induced intracellular event by thalidomide. Thalidomide inhibited the phosphorylation of IRF1, which was required for the iNOS expression. Moreover, it inhibited the phosphorylation of STAT1, an upstream molecule of IRF1, in IFN-γ signaling. Thalidomide did not inhibit the JAK activation in response to IFN-γ. A phosphatase inhibitor, sodium orthovanadate, abolished the inhibitory action of thalidomide. Therefore, thalidomide was suggested to inhibit IFN-γ-induced NO production via impaired STAT1 phosphorylation.  相似文献   

17.
18.
Glucagon-like peptide-1 (GLP-1) has been proved to have effects of anti-hyperglycemia and β-cell preservation. However, it is still unclear whether there are differences between early and late GLP-1 intervention in type 2 diabetes mellitus (T2DM). We divided the mice into 5 groups: early treated group (n = 7, 8-week old, fasting glucose > 10 mmol/l), late treated group (n = 7, 10-week old, fasting glucose > 20 mmol/l), early control group (n = 7), late control group (n = 7) and wild type group (n = 7). Treated group was injected with liraglutide (a GLP-1 analog) 300 μg/kg bid for 4 weeks, while control group was given saline at the same time. The results showed that compared with control group, food intake and body weight gain were reduced in both early and late treated group (p < 0.05), and there was no significance between the two treated groups. Early liraglutide intervention showed better improvements in glucose control, acute insulin response to glucose (AIRg) and disposition index (before vs. after treatment, AIRg 1.01 ± 0.53 vs. 2.98 ± 0.63, disposition index 10.81 ± 0.89 vs. 27.4 ± 2.15) than late intervention (AIRg 0.99 ± 0.02 vs. 1.41 ± 0.32, disposition index 3.47 ± 0.38 vs. 6.43 ± 1.62, p = 0.001). The histopathology of the pancreas showed the estimated β-cell mass (BCM) was increased more in early treated group than that in late one (0.03 vs. 0.01 g). Expressions of the proliferation related genes PDX-1, MafA and GLP-1 receptor (GLP-1R) in early treated group were 1.81, 2.57 and 1.59 times as much as that in late treated group. In conclusion, early liraglutide intervention was better in glucose control, β-cell function improvement and β-cell mass preservation.  相似文献   

19.
Tumor progression involves the acquisition of invasiveness through a basement membrane. The c-jun proto-oncogene is overexpressed in human tumors and has been identified at the leading edge of human breast tumors. TGF-β plays a bifunctional role in tumorigenesis and cellular migration. Although c-Jun and the activator protein 1 (AP-1) complex have been implicated in human cancer, the molecular mechanisms governing cellular migration via c-Jun and the role of c-Jun in TGF-β signaling remains poorly understood. Here, we analyze TGF-β mediated cellular migration in mouse embryo fibroblasts using floxed c-jun transgenic mice. We compared the c-jun wild type with the c-jun knockout cells through the use of Cre recombinase. Herein, TGF-β stimulated cellular migration and intracellular calcium release requiring endogenous c-Jun. TGF-β mediated Ca(2+) release was independent of extracellular calcium and was suppressed by both U73122 and neomycin, pharmacological inhibitors of the breakdown of PIP(2) into IP(3). Unlike TGF-β-mediated Ca(2+) release, which was c-Jun dependent, ATP mediated Ca(2+) release was c-Jun independent. These studies identify a novel pathway by which TGF-β regulates cellular migration and Ca(2+) release via endogenous c-Jun.  相似文献   

20.
The long-chain acyl-CoA synthase1 (Acsl1) is a major enzyme that converts long-chain fatty acids to acyl-CoAs. The role of Acsl1 in energy metabolism has been elucidated in the adipose tissue, heart, and skeletal muscle. Here, we demonstrate that systemic deficiency of Acsl1 caused severe skin barrier defects, leading to embryonic lethality. Acsl1 mRNA and protein are expressed in the Acsl1+/+ epidermis, which are absent in Acsl1?/? mice. In Acsl1?/? mice, epidermal ceramide [EOS] (Cer[EOS]) containing ω-O-esterified linoleic acid, a lipid essential for the skin barrier, was significantly reduced. Conversely, ω-hydroxy ceramide (Cer[OS]), a precursor of Cer[EOS], was increased. Moreover, the levels of triglyceride (TG) species containing linoleic acids were lower in Acsl1?/? mice, whereas those not containing linoleic acid were comparable to Acsl1+/+ mice. As TG is considered to work as a reservoir of linoleic acid for the biosynthesis of Cer[EOS] from Cer[OS], our results suggest that Acsl1 plays an essential role in ω-O-acylceramide synthesis by providing linoleic acid for ω-O-esterification. Therefore, our findings identified a new biological role of Acsl1 as a regulator of the skin barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号