首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GM1 gangliosidosis is a glycosphingolipid (GSL) lysosomal storage disease caused by a genetic deficiency of acid beta-galactosidase (beta-gal), the enzyme that catabolyzes GM1 within lysosomes. Accumulation of GM1 and its asialo form (GA1) occurs primarily in the brain, leading to progressive neurodegeneration and brain dysfunction. Substrate reduction therapy aims to decrease the rate of GSL biosynthesis to counterbalance the impaired rate of catabolism. The imino sugar N-butyldeoxygalactonojirimycin (NB-DGJ) is a competitive inhibitor of the ceramide-specific glucosyltransferase that catalyzes the first step in GSL biosynthesis. Neonatal C57BL/6J (B6) and beta-gal knockout (-/-) mice were injected daily from post-natal day 2 (p-2) to p-5 with either vehicle or NB-DGJ at 600 mg or 1200 mg/kg body weight. These drug concentrations significantly reduced total brain ganglioside and GM1 content in the B6 and the beta-gal (-/-) mice. Drug treatment had no significant effect on viability, body weight, brain weight, or brain water content in the B6 and beta-gal (-/-) mice. Significant elevations in neutral lipids (GA1, ceramide, and sphingomyelin) were observed in the NB-DGJ-treated beta-gal (-/-) mice, but were not associated with adverse effects. Also, NB-DGJ treatment of B6 and beta-gal (-/-) mice from p-2 to p-5 had no subsequent effect on brain ganglioside content at p-21. Our results show that NB-DGJ is effective in reducing total brain ganglioside and GM1 content at early neonatal ages. These findings suggest that substrate reduction therapy using NB-DGJ may be an effective early intervention for GM1 gangliosidosis and possibly other GSL lysosomal storage diseases.  相似文献   

2.
GM2 ganglioside in the brain increased during ethanol-induced acute apoptotic neurodegeneration in 7-day-old mice. A small but a significant increase observed 2 h after ethanol exposure was followed by a marked increase around 24 h. Subcellular fractionation of the brain 24 h after ethanol treatment indicated that GM2 increased in synaptic and non-synaptic mitochondrial fractions as well as in a lysosome-enriched fraction characteristic to the ethanol-exposed brain. Immunohistochemical staining of GM2 in the ethanol-treated brain showed strong punctate staining mainly in activated microglia, in which it partially overlapped with staining for LAMP1, a late endosomal/lysosomal marker. Also, there was weaker neuronal staining, which partially co-localized with complex IV, a mitochondrial marker, and was augmented in cleaved caspase 3-positive neurons. In contrast, the control brain showed only faint and diffuse GM2 staining in neurons. Incubation of isolated brain mitochondria with GM2 in vitro induced cytochrome c release in a manner similar to that of GD3 ganglioside. Because ethanol is known to trigger mitochondria-mediated apoptosis with cytochrome c release and caspase 3 activation in the 7-day-old mouse brain, the GM2 elevation in mitochondria may be relevant to neuroapoptosis. Subsequently, activated microglia accumulated GM2, indicating a close relationship between GM2 and ethanol-induced neurodegeneration.  相似文献   

3.
Glycosphingolipid Glycosyltransferases in Human Fetal Brain   总被引:2,自引:1,他引:1  
The developmental pattern of gangliosides in human fetal brain should reflect the activities of the respective glycosyltransferases. LA2-synthase activity, along with that of GM3-, GD3-, GM2-, and GM1-synthases, was determined in human fetal brain at 10-22 weeks of gestation. LA2-synthase is the pivotal enzyme in lacto series ganglioside formation. LA2-synthase activity decreased during the study period, mirroring a similar temporal decline in levels of the lacto series gangliosides, particularly 3'-isoLM1. The developmental profiles of the ganglio series glycosyltransferase activities demonstrate distinct changes that correspond to the ganglioside pattern between fetal weeks 10 and 22. In particular, the marked increase in GM2-synthase activity at 20 and 22 weeks of gestation and the decline in GD3-synthase activity after 15 weeks could explain the prominent expression of the a series gangliosides in this period of rapid neuronal outgrowth. However, a similar decline (two- to 2.5-fold) in GM3-synthase activity suggests a more likely conclusion, namely, that the two sialyltransferase activities are derived mainly from astroglial cells, which show a marked proliferation during the 10-15th fetal weeks. The data do not negate the hypothesis that GM3- and GD3-synthase are the critical enzymes in the regulation of ganglioside biosynthesis but do indicate a need to reevaluate the significance of GM2-synthase in expression of the a series gangliosides.  相似文献   

4.
GM1 ganglioside, after intravenous injection into rats, is absorbed and taken up by various organs and tissues, including brain. The capacity of brain to take up gangliosides, referred to weight unit, is comparable to that of kidney and muscle. After injection of [Gal-3H]GM1 a relevant portion of brain associated radioactivity resided in the soluble fraction and was of a volatile nature. After brain subcellular fractionation, the lysosomal, plasma membrane and Golgi apparatus fractions carried the highest specific radioactivity. In addition, an enriched fraction of brain capillaries was highly labelled, suggesting that GM1 ganglioside is also tightly bound to the vessel walls.

The metabolic events encountered in brain by exogenous gangliosides were investigated, in detail, after intracisternal injection of [Sph-3H]GM1. The results obtained demonstrate that GM1 is extensively metabolized in brain. Besides the degradation products (GM2, GM3, lactosylceramide, glucosylceramide, ceramide), compounds of a biosynthetic origin were also found to be formed: these include GD1a, GD1b and sphingomyelin.

All the above results could indicate that gangliosides, after intravenous administration to rats, are taken up by brain, bind to the capillary network, penetrate into neural cells, associate to both plasma membranes and intracellular structures and undergo metabolic processing with formation of a number of products of both catabolic and biosynthetic origin.  相似文献   


5.
Complete obstruction of the maternal blood flow to fetal rats at 20 days of gestation for a period of 10 min causes a significant shift of approximately 22% in protein kinase C (PKC) activity from a cytosolic to a membrane-bound form in the fetal brain. This translocation can be entirely reversed without losses in activity by a single intraperitoneal injection into the gravid rat of either a mixture of disialo- and trisialoganglioside [polysialoganglioside (PSG)] or by GM1 (50 mg/kg of body weight) given 3 h before onset of the ischemic episode. Cessation of blood flow for 15 min followed by a reperfusion period of 24 h results in a 47% loss in total PKC activity. This down-regulation can be almost entirely prevented upon intraperitoneal administration of GM1 3 h before, but also during and even 90 min after the onset of ischemia. The PSG mixture is also effective, particularly when given 3 h before the insult. Down-regulation of PKC is accompanied by an increase in a Ca2(+)-phosphatidylserine-independent kinase [protein kinase M (PKM)] activity, which rises from 30 pmol/min/mg of protein in control animals to a maximal value of 83.1 pmol/min/mg of protein after 15 min of ischemia and 6 h of reperfusion. By 24 h, PKM activity is 46.8 pmol/min/mg of protein. Administration of GM1 blocks completely the appearance of PKM, a result suggesting that PKC down-regulation and PKM activity elevation are intimately associated events and that both are regulated by GM1 ganglioside.  相似文献   

6.
Mucopolysaccharidosis I (MPS I) is a congenital disorder caused by the deficiency of α-l-iduronidase (IDUA), with the accumulation of glycosaminoglycans (GAGs) in the CNS. Although GAG toxicity is not fully understood, previous works suggest a GAG-induced alteration in neuronal membrane composition. This study is aimed to evaluate the levels and distribution of gangliosides and cholesterol in different brain regions (cortex, cerebellum, hippocampus and hypothalamus) in a model using IDUA knockout (KO) mice (C57BL/6). Lipids were extracted with chloroform–methanol and then total gangliosides and cholesterol were determined, followed by ganglioside profile analyses. While no changes in cholesterol content were observed, the results showed a tissue dependent ganglioside alteration in KO mice: a total ganglioside increase in cortex and cerebellum, and a selective presence of GM3, GM2 and GD3 gangliosides in the hippocampus and hypothalamus. To elucidate this, we evaluated gene expression of ganglioside synthesis (GM3, GD3 and GM2/GD2 synthases) and degradation of (Neuraminidase1) enzymes in the cerebellum and hippocampus by RT-sq-PCR. The results obtained with KO mice showed a reduced expression of GD3 and GM2/GD2 synthases and Neuraminidase1 in cerebellum; and a decrease in GM2/GD2 synthase and Neuraminidase1 in the hippocampus. These data suggest that the observed ganglioside changes result from a combined effect of GAGs on ganglioside biosynthesis and degradation.  相似文献   

7.
Liposome-associated ganglioside antigens (ganglioside GM1 or bovine brain gangliosides) were prepared to facilitate the potential protective efficacy for Trypanosoma brucei. Mice were immunized with liposome-associated ganglioside GM1 or bovine brain gangliosides intraperitoneally (i.p.). After immunization, significantly higher antigen-specific IgG and IgM antibodies were detected in sera than in the nonimmunized control group. When sera from immunized mice were analyzed for isotype distribution, antigen-specific IgG1, IgG2a, and IgG3 antibody responses were also noted. After immunization, mice were challenged i.p. with 1 x 10(2) cells of T. brucei. Sixty percentage of liposome-associated ganglioside GM1-immunized mice survived the infection, and all the mice immunized with bovine brain gangliosides-containing liposomes survived. However, all control mice died within 7 days after infection. These data demonstrate that liposomes containing ganglioside antigens have the potential usefulness for the induction of a protective immune response against T. brucei infection and suggest the possibility of developing vaccines that may ultimately be used for the prevention of trypanosomiasis.  相似文献   

8.
GM1-gangliosidosis is a progressive neurological disease in humans caused by deficiency of lysosomal acid β-galactosidase, which hydrolyses the terminal β-galactosidic residue from ganglioside GM1 and other glycoconjugates. In this study, we generated a mouse model for GM1-gangliosidosis by gene targeting in embryonic stem cells. The mouse homozygous for the disrupted β-galactosidase gene showed β-galactosidase deficiency, presented with progressive spastic diplegia, and died of emaciation at 7–10 months of age. Pathologically, PAS-positive intracytoplasmic storage was observed in neuronal cells of various areas in the brain. Biochemical analysis revealed a marked accumulation of ganglioside GM1 and asialo GM1 in brain tissue. This animal model will be useful for pathogenetic analysis and therapeutic trial of human GM1-gangliosidosis. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

9.
II3NeuAc-GgOse4Cer (GM1) gangliosidosis is an incurable lysosomal storage disease caused by a deficiency in acid beta-galactosidase (beta-gal), resulting in the accumulation of ganglioside GM1 and its asialo derivative GgOse4Cer (GA1) in the central nervous system, primarily in the brain. In this study, we investigated the effects of N-butyldeoxygalacto-nojirimycin (N B-DGJ), an imino sugar that inhibits ganglioside biosynthesis, in normal C57BL/6J mice and in beta-gal knockout (beta-gal-/-) mice from postnatal day 9 (p-9) to p-15. This is a period of active cerebellar development and central nervous system (CNS) myelinogenesis in the mouse and would be comparable to late-stage embryonic and early neonatal development in humans. N B-DGJ significantly reduced total ganglioside and GM1 content in cerebrum-brainstem (C-BS) and in cerebellum of normal and beta-gal-/- mice. N B-DGJ had no adverse effects on body weight or C-BS/cerebellar weight, water content, or thickness of the external cerebellar granule cell layer. Sphingomyelin was increased in C-BS and cerebellum, but no changes were found for cerebroside (a myelin-enriched glycosphingolipid), neutral phospholipids, or GA1 in the treated mice. Our findings indicate that the effects of N B-DGJ in the postnatal CNS are largely specific to gangliosides and suggest that N B-DGJ may be an effective early intervention therapy for GM1 gangliosidosis and other ganglioside storage disorders.  相似文献   

10.
Short-term and long-term (greater than 7 months) cultured astrocytes from 14-day-old rat brain were analyzed for ganglioside content. Analysis of the extracted gangliosides by HPTLC revealed that ganglioside GM1 was absent in 35 days and 235 days cultured astrocytes, and that the predominant ganglioside was GM3, showing a double band in both cases. A small amount of the disialogangliosides (GD3, GD1a) was also detected. More than 70% of radioactivities into ganglioside fractions by cultured astrocytes, in the presence of N-[3H]-acetylmannosamine, appeared in ganglioside GM3. The upper band component of GM3 increased 60% in long-term astrocyte cultures compared to 35-day-old cultures. Also, an increased GD3 content in long-term astrocyte cultures was detected. These results suggest that the increase of GD3 and upper band GM3 in long-term cultured astrocytes might be related to the appearance of small processes showing strong reactivity against GFAP and vimentin during astrocyte-subculture.  相似文献   

11.
Nuclear gangliosides were characterized using two distinct fractions of large (N1) and small (N2) nuclear populations from rat brain. The ganglioside concentration of N1 nuclei from adult rat brain was 0.92 microg sialic acid/mg protein, which was about 3.8 times higher than that of N2 nuclei. N1 and N2 nuclear gangliosides showed similar compositional profiles; they contained major gangliosides of GM1, GD1a, GD1b, and GT1b, with GM3 in lesser amounts. c-Series gangliosides such as GT3, GQ1c, and GP1c were also detected in both nuclear preparations. Nuclear localization of gangliosides was confirmed by immunofluorescence with anti-GM1 antibody, cholera toxin B subunit, and c-series ganglioside-specific monoclonal antibody A2B5. Developmental changes of nuclear gangliosides were examined using rats of different ages ranging from embryonic day 14 (E14) to postnatal 7 weeks. The concentration of N1 nuclear gangliosides changed only slightly during development and did not correlate with that of whole-brain gangliosides. The developmental pattern of ganglioside composition of N1 nuclei was also distinguished from that of microsomal membranes; the ganglioside changes in N1 nuclei included reduced expression of di- and polysialogangliosides at E16 and higher proportions of GM3 at early and late stages of the period. These findings suggest that gangliosides in nuclear membranes are developmentally regulated in a distinct manner in brain cells.  相似文献   

12.
Gangliosides in rat kidney were analyzed for their composition, regional distribution, and developmental changes. Renal tissue from 7-week-old rats showed a GM3-dominant pattern with GD3 and several minor ganglioside components including GM4, GM2, GD1a, and an unknown ganglioside (ganglioside X). The tissue also contained c-series gangliosides that included GT3 as the main component with GT2 in a lesser amount. Ganglioside analysis of cortical and medullary regions of renal tissue suggested the restricted localization of some gangliosides. While GM4 and GD3 were enriched in the cortical region, GM2 was distributed mainly in the medullary area. Renal gangliosides showed unique developmental profiles during a period from Embryonic Day 20 (E20) to 7 weeks postnatal. The content of renal gangliosides increased from E20, reached the highest around Postnatal Day 1, and thereafter, decreased rapidly to the adult level. The ratio of N-glycolylneuraminic acid to total sialic acids in gangliosides tended to change in inverse proportion to the amount of total sialic acids. The composition of major gangliosides in renal tissues shifted from GD3-dominant to GM3-dominant patterns with advancing ages. While GM1 was expressed only at early stages of the development, GM4, GM2, and ganglioside X appeared after Postnatal Day 3. The expression of c-series gangliosides was less affected through the period examined. These results suggest that gangliosides may be implicated with development and function of rat kidney.  相似文献   

13.
The ganglioside composition of the brain from an individual with classical Tay-Sachs disease and from an individual with Sandhoff disease was examined using our new quantitative methods for ganglioside content determination and compared with that of age-matched control brains. The concentration of GM2 was found to be 12.2 and 13.0 mumol/g of fresh tissue in Tay-Sachs disease and in Sandhoff disease cerebral gray matter, respectively. GM2 was 86 and 87% respectively, of total gangliosides. The concentration of GM1 and, in particular, GM3 ganglioside was also found to be increased, whereas the concentration of the major di- and trisialogangliosides (GD1a, GD1b, and GT1b) had diminished markedly. There was no significant increase in level of any other ganglioside than lyso-GM2. Its concentration was 12 and 16 nmol/g in cerebral gray matter of two Tay-Sachs disease brains and 43 nmol/g in Sandhoff disease brain. The Sandhoff disease brain also differed from the classical Tay-Sachs disease brain by having a much higher concentration of gangliotriaosylceramide and globotetraosylceramide. The structures of relevant gangliosides and neutral glycolipids were established by fast atom bombardment-mass spectrometry and permethylation studies.  相似文献   

14.
The ganglioside patterns in the liver of different inbred and hybrid strains of mice were investigated. The inbred strains were Balb/cAnNCr1BR, C57BL/6NCr1BR, DBA/2NCr1BR. C3H/HeNCr1BR; the hybrid strain was the Swiss albino. The following major gangliosides were found to be present in mouse liver: GM3-NeuAc; GM3-NeuGl, GM2 [a mixture of one species carrying N-acetylneuraminic acid (NeuAc) and one carrying N-glycollylneuraminic acid (NeuGl)], GM1 and GD1a-(NeuAc,NeuGl). The qualitative and quantitative patterns of liver gangliosides were markedly different in the various inbred strains of mice; in Balb/cAnNCr1BR strain, ganglioside GM2 was preponderant (99.2% of total ganglioside content); in C57BL/6NCr1BR, the major ganglioside was GM2 (90.4%), followed by GM3-NeuAc (5.6%) and GM3-NeuGl (4.0%); in DBA/2NCr1BR, GM2 accounted for 77.1%, GD1a-(NeuAc,NeuGl) 18.9% and GM1 3.1% of gangliosides; in C3H/HeNCr1BR, GM2 constituted 50.6%, GM1 22.8% and GD1a-(NeuAc,NeuGl) 22.1%. In the hybrid Swiss albino mice, liver ganglioside composition markedly varied from one animal to another, GM3-NeuGl, GM2 and GD1a-(NeuAc,NeuGl) being the predominant gangliosides in the various cases.  相似文献   

15.
According to our hypothesis (Fürst, W., and Sandhoff, K. (1992) Biochim. Biophys. Acta 1126, 1-16) glycosphingolipids of the plasma membrane are digested after endocytosis as components of intraendosomal and intralysosomal vesicles and membrane structures. The lysosomal degradation of glycosphingolipids with short oligosaccharide chains by acid exohydrolases requires small, non-enzymatic cofactors, called sphingolipid activator proteins (SAPs). A total of five activator proteins have been identified as follows: namely the saposins SAP-A, -B, -C, and -D, which are derived from the single chain SAP-precursor protein (prosaposin), and the GM2 activator protein. A deficiency of prosaposin results in the storage of ceramide and sphingolipids with short oligosaccharide head groups. The loss of the GM2 activator protein blocks the degradation of the ganglioside GM2. The enzymatic hydrolysis of the ganglioside GM1 is catalyzed by beta-galactosidase, a water-soluble acid exohydrolase. The lack of ganglioside GM1 accumulation in patients suffering from either prosaposin or GM2 activator protein deficiency has led to the hypothesis that SAPs are not needed for the hydrolysis of the ganglioside GM1 in vivo. In this study we demonstrate that an activator protein is required for the enzymatic degradation of membrane-bound ganglioside GM1 and that both SAP-B and the GM2 activator protein significantly enhance the degradation of the ganglioside GM1 by acid beta-galactosidase in a liposomal, detergent-free assay system. These findings offer a possible explanation for the observation that no storage of the ganglioside GM1 has been observed in patients with either isolated prosaposin or isolated GM2 activator deficiency. We also demonstrate that anionic phospholipids such as bis(monoacylglycero)phosphate and phosphatidylinositol, which specifically occur in inner membranes of endosomes and in lysosomes, are essential for the activator-stimulated hydrolysis of the ganglioside GM1. Assays utilizing surface plasmon resonance spectroscopy showed that bis(monoacylglycero)phosphate increases the binding of both beta-galactosidase and activator proteins to substrate-carrying membranes.  相似文献   

16.
Brain tumor growth and progression is dependent upon vascularity, and is associated with altered ganglioside composition and distribution. In this study, we examined the influence of gangliosides on growth and vascularity in a malignant mouse astrocytoma, CT-2A. Ganglioside distribution was altered in CT-2A tumor cells using an antisense construct to beta-1,4-N-acetylgalactosaminyltransferase (GalNAc-T), a key enzyme that uses the simple ganglioside GM3 as a substrate for the synthesis of the more complex gangliosides, GM2, GM1 and GD1a. GalNAc-T gene expression was significantly lower in CT-2A cells stably transfected with the antisense GalNAc-T plasmid, pcDNA3.1/TNG (CT-2A/TNG) than in either non-transfected CT-2A or mock-transfected (CT-2A/V) control tumor cells. GM3 was elevated from 16% to 58% of the total ganglioside distribution, whereas GM1 and GD1a were reduced from 17% and 49% to 10% and 17%, respectively, in CT-2A/TNG tumor cells. Growth, vascularity (blood vessel density and Matrigel assay) and vascular endothelial growth factor (VEGF) expression was significantly less in CT-2A/TNG tumors than in control CT-2A brain tumors. In addition, the expression of VEGF, hypoxia-inducible factor 1alpha (HIF-1alpha) and neuropilin-1 (NP-1) was significantly lower in CT-2A/TNG tumor cells than in control CT-2A tumor cells. These data suggest that gene-linked changes in ganglioside composition influence the growth and angiogenic properties of the CT-2A astrocytoma.  相似文献   

17.
Rat stomach gangliosides were purified and their distribution in the different tissue compartments was established. Three major monosialogangliosides were found: GM3, GM1, and a ganglioheptaosylceramide carrying a blood group B determinant. This latter structure was characterized by exoglycosidase degradation, immunostaining with a monoclonal anti-blood group B antibody on thin layer chromatogram, permethylation analysis, electron-impact mass spectrometry of the permethylated-reduced and trimethylsilylated molecule, and 1H NMR spectroscopy of the native ganglioside. It was found to be (Formula: see text) i.e. a GM1 structure substituted with the blood group B determinant and was called B-GM1. A similar structure has been previously identified in precancerous rat liver and chemically induced rat hepatoma (Holmes, E. H., and Hakomori, S. (1982) J. Biol. Chem. 257, 7698-7703). Fucosyl-GM1 was also detected as a minor ganglioside in rat gastric mucosa. The ganglioside profile was modified during the postnatal development. The contribution of GM3 and GD3, which accounted for 95% of the ganglioside sialic acid at birth, decreased during the first 3 weeks of life. GM1, fucosyl-GM1, and B-GM1 were not detected at birth. The concentration of the fucogangliosides increased during the 2nd and 3rd weeks after birth, was stable during the 4th week and then decreased, whereas that of GM1 increased steadily between 6 days and 2 months of age. B-GM1, which has been defined as a tumor-associated ganglioside in the rat liver, was found to be a developmentally regulated antigen of the normal rat stomach.  相似文献   

18.
Abstract: A previous study has demonstrated an unusual gangliosidosis in emu that is characterized by the accumulation of gangliosides in the brain tissues with GM3 and GM1 predominating. To provide insight into this unique disorder of emu gangliosidosis, the current study focused on analysis of neutral glycosphingolipids and gangliosides from brain and liver tissues of affected birds and healthy controls. We found not only that the total lipid-bound sialic acid content was increased three- and fourfold in the affected brain and liver, respectively, but also that the ganglioside pattern was rather complex as compared with the control. The absolute ganglioside sialic acid content was significantly increased in the diseased tissues, with the highest elevation levels of GM3 (14-fold) and GM1 (ninefold) in the affected brain. Relative increases in content of these monosialogangliosides were also significant. GM2 was only detected in the affected brain, but not in normal controls. The neutral glycosphingolipid fraction showed accumulation of many oligosylceramides, with six- and 5.5-fold increases in lactosylceramide levels for brain and liver, respectively. The level of myelin-associated galactosylceramide (GalCer) in the brain was decreased to only 41% of that in the healthy control, whereas no difference was found in liver tissues from both groups. Besides GalCer, the brain content of sulfatide (cerebroside-sulfate esters), another myelin-associated glycolipid, decreased to only 16% of the control. The loss of myelin-associated GalCer and sulfatide strongly suggests demyelination in the affected emu brain. Our overall data are consistent with the presence of a unique form of sphingolipidosis in the affected emus, perhaps with secondary demyelination, and suggest a metabolic disorder related to total sphingolipid activator deficiency.  相似文献   

19.
Ganglioside GM3 is particularly abundant in the kidney tissue and is thought to play an important role in the maintenance of the charge-selective filtration barrier of glomeruli. Altered expression of ganglioside GM3 was pathologically related with glomerular hypertrophy occurring in diabetic human and rat kidneys. Considering the role of GM3 ganglioside in kidney function, the aim of this study was to determine the difference in expression of GM3 ganglioside in glomeruli and tubules using immunofluorescence microscopy both in rat models of types 1 and 2 diabetes mellitus. Diabetes was induced with streptozotocin (55 mg/kg for type 1 diabetes and 35 mg/kg for type 2 diabetes) injection to male Sprague–Dawley rats which were fed with normal pellet diet (type 1 diabetes) or high-fat diet (type 2 diabetes). Rats were sacrificed 2 weeks after diabetes induction, frozen renal sections were stained with primary antibody GM3(Neu5Ac) and visualized by secondary antibody coupled with Texas red. In addition, renal gangliosides GM3 were analyzed by high-performance thin-layer chromatography followed by GM3 immunostaining. Immunofluorescent microscopy detected 1.7-fold higher GM3 expression in tubules and 1.25-fold higher GM3 in glomeruli of type 1 diabetes mellitus compared with control group. Type 2 diabetes mellitus rats showed slight GM3 increase in whole kidney, unchanged GM3 in glomeruli, but significant higher GM3 expression in tubules, compared with control animals. Taking into consideration increased tubular GM3 content in both types of diabetes, we could hypothesize the role of GM3 in early pathogenesis of diabetic nephropathy.  相似文献   

20.
This study demonstrates potentiation by GM1 ganglioside treatment of trimethyltin (TMT) induced reactivity of astrocytes, and the expression of astroglial interleukin-lbeta (IL-1beta) and nerve growth factor (NGF) immunoreactivities in the rat hippocampus. GM1 treatment also results in an increase of the number of IL-1beta and NGF immunoreactive astrocytes. Both the intensity of gliosis and stimulation of IL-1beta and NGF expression in astrocytes mostly occurs in the regions of heaviest neurodegeneration in the hippocampus (CA4/CA3c and CA1). It is tempting to assume that enhancement of astroglial NGF expression by GM1 ganglioside may play a role in the protective action of GM1 against neurotoxic insult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号