首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pagliaro P  Penna C  Gattullo D 《Life sciences》1999,64(12):1071-1078
During the myocardial protection induced by ischemic preconditioning a reduction in myocardial metabolism occurs due to activation of the A1 adenosine receptors. This study investigates whether preconditioning changes both resting coronary flow and the magnitude of coronary reactive hyperemia and whether A1 adenosine receptors are involved in the observed changes. Experiments were performed in 14 goats (30-50 kg body weight). After the animals were anesthetized with ketamine, an electromagnetic flow-probe was used to record blood flow in the left circumflex coronary artery. Distal to the probe, an occluder was placed to produce ischemic preconditioning and reactive hyperemia. Preconditioning was obtained with two periods of 2.5 min of coronary occlusion separated from each other by 5 min of reperfusion. Coronary reactive hyperemia was obtained with 15 s of occlusion of the artery before and after preconditioning. In a group of goats before preconditioning 0.2 mg kg(-1) of 8-cyclopentyl-dipropylxanthine (CPX), an A1 adenosine receptor blocker, were given intravenously. In all animals ischemic preconditioning did not alter resting coronary flow, but, in the absence of A1 adenosine receptor blockade, reduced the reactive hyperemic response. The total hyperemic flow and the excess/debt flow ratio were reduced by about 25% and 30% respectively. The A1 adenosine receptor blockade "per se" did not cause any change in the resting flow and in the parameters of the reactive hyperemia. Unlike what observed in the absence of blockade, after CPX ischemic preconditioning was unable to reduce total hyperemic flow and the excess/debt flow ratio. The results suggest that ischemic preconditioning reduces the coronary hyperemic response by decreasing the myocardial metabolism through the activation of the A1 adenosine receptors.  相似文献   

2.
The purpose of this investigation is to describe our preliminary observations of the overall pattern of flow in a mold of the left coronary artery of a pig. Flow in the coronary mold was visualized by the injection of dye into the sinus of Valsalva. Studies were performed during steady flow at rates of 100, 200, 300, 400, and 500 mL/min. Studies were also performed during pulsatile flow, using a pulse duplicator that simulated the magnitude and phasic pattern of coronary flow at rest and during reactive hyperemia. At conditions that simulated rest, mean coronary flow was adjusted to 121 mL/min of which 24 mL/min (20 percent) was systolic. During simulated reactive hyperemia, mean flow was 440 mL/min. Visualization of flow revealed the absence of disturbances of turbulence during both steady and pulsatile flow in the left anterior descending (LAD) and left circumflex (CIRC) coronary arteries throughout the entire range of flow studied. Prominent spiraling of flow occurred during steady and pulsatile flow. Spiraling of flow was not observed in the LAD at rest during pulsatile flow, but developed during simulated reactive hyperemia. Helical flows were observed in the CIRC both during simulated rest and reactive hyperemia. These observations suggest that helical flows may be characteristic features of flow in the left coronary artery; whereas turbulence may not be a feature of this flow field. Whether the spiraling of flow that we observed related to the spiral distribution of early atheroma reported by others, is undetermined.  相似文献   

3.
The goal of the current study was to determine the effects of cAMP-mediated coronary reactivity in conscious pigs with stunned myocardium induced by 1.5 h coronary stenosis (CS) and 12 h coronary artery reperfusion (CAR). Domestic swine (n = 5) were chronically instrumented with a coronary artery blood flow (CBF) probe, hydraulic occluder, left ventricular pressure gauge, wall-thickening crystals in the ischemic and nonischemic zones, and a coronary sinus catheter. The hydraulic occluder was inflated to induce a CS with a stable 38 +/- 1% reduction in CBF for 1.5 h. Before flow reduction and during CAR, cAMP-induced coronary vasodilation was investigated by forskolin (20 nmol. kg(-1). min(-1)). Enhanced CBF responses [+62 +/- 9%, P < 0.05, compared with pre-CS (+37 +/- 3%)] were observed for forskolin at 12 h after CAR as well as for bradykinin and reactive hyperemia. With the use of a similar protocol during systemic nitric oxide (NO) synthase inhibition with N(omega)-nitro-L-arginine (30 mg. kg(-1). day(-1) for 3 days), the enhanced CBF responses to forskolin, bradykinin, and reactive hyperemia were not observed after CS. Isolated microvessel preparations from pigs (n = 8) also demonstrated enhanced NO production to direct stimulation of adenylyl cyclase with forskolin (+71 +/- 12%) or NKH-477 (+60 +/- 10%) and administration of 8-bromo-cAMP (+74 +/- 13%), which were abolished by protein kinase A or NO synthase inhibition. These data indicate that cAMP stimulation elicits direct coronary vasodilation and that this action is amplified in the presence of sustained myocardial stunning after recovery from CS. This enhanced cAMP coronary vasodilation is mediated by an NO mechanism that may be involved in myocardial protection from ischemic injury.  相似文献   

4.
Sildenafil, a selective inhibitor of phosphodiesterase type 5, produces relaxation of isolated epicardial coronary artery segments by causing accumulation of cGMP. Because shear-induced nitric oxide-dependent vasodilation is mediated by cGMP, this study was performed to determine whether sildenafil would augment the coronary resistance vessel dilation that occurs during the high-flow states of exercise or reactive hyperemia. In chronically instrumented dogs, sildenafil (2 mg/kg per os) augmented the vasodilator response to acetylcholine, with a leftward shift of the dose-response curve relating coronary flow to acetylcholine dose. Sildenafil caused a 6. 7 +/- 2.1 mmHg decrease of mean aortic pressure, which was similar at rest and during treadmill exercise (P < 0.05), with no change of heart rate, left ventricular (LV) systolic pressure, or LV maximal first time derivative of LV pressure. Sildenafil tended to increase myocardial blood flow at rest and during exercise (mean increase = 14 +/- 3%; P < 0.05 by ANOVA), but this was associated with a significant decrease in hemoglobin, so that the relationship between myocardial oxygen consumption and oxygen delivery to the myocardium (myocardial blood flow x arterial O(2) content) was unchanged. Furthermore, sildenafil did not alter coronary venous PO(2), indicating that the coupling between myocardial blood flow and myocardial oxygen demands was not altered. In addition, sildenafil did not alter the peak coronary flow rate, debt repayment, or duration of reactive hyperemia that followed a 10-s coronary occlusion. The findings suggest that cGMP-mediated resistance vessel dilation contributes little to the increase in myocardial flow that occurs during exercise or reactive hyperemia.  相似文献   

5.
Recent experiments demonstrate that feedforward sympathetic beta-adrenoceptor coronary vasodilation occurs during exercise. The present study quantitatively examined the contributions of epinephrine and norepinephrine to exercise coronary hyperemia and tested the hypothesis that circulating epinephrine causes feedforward beta-receptor-mediated coronary dilation. Dogs (n = 10) were chronically instrumented with a circumflex coronary artery flow transducer and catheters in the aorta and coronary sinus. During strenuous treadmill exercise, myocardial oxygen consumption increased by approximately 3.9-fold, coronary blood flow increased by approximately 3.6-fold, and arterial plasma epinephrine concentration increased by approximately 2.4-fold over resting levels. At arterial concentrations matching those during strenuous exercise, epinephrine infused at rest (n = 6) produced modest increases (18%) in flow and myocardial oxygen consumption but no evidence of direct beta-adrenoceptor-mediated coronary vasodilation. Arterial norepinephrine concentration increased by approximately 5. 4-fold during exercise, and coronary venous norepinephrine was always higher than arterial, indicating norepinephrine release from cardiac sympathetic nerves. With the use of a mathematical model of cardiac capillary norepinephrine transport, these norepinephrine concentrations predict an average interstitial norepinephrine concentration of approximately 12 nM during strenuous exercise. Published dose-response data indicate that this norepinephrine concentration increases isolated coronary arteriolar conductance by approximately 67%, which can account for approximately 25% of the increase in flow observed during exercise. It is concluded that a significant portion of coronary exercise hyperemia ( approximately 25%) can be accounted for by direct feedforward beta-adrenoceptor coronary vascular effects of norepinephrine, with little effect from circulating epinephrine.  相似文献   

6.
The experiments on dogs showed that 60-min blood flow restriction in the left coronary artery branch resulted in pumping and contractile heart dysfunctions. The removal of the blood flow barrier caused reinforcement of the above dysfunctions. The administration of 50 mg/kg liposome prior to reperfusion improved pumping and contractile heart functions and allowed maintenance of stable hemodynamics during the reperfusion.  相似文献   

7.
Because adenosine is commonly used for inducing maximal coronary hyperemia in the clinic, it is imperative that adenosine-induced hyperemia (AH) resembles coronary hyperemia that can be attained by endogenous stimuli. In the present study we hypothesized that coronary reactive hyperemia (RH) is limited compared with AH due to the presence of the glycocalyx and that the AH response is therefore unable to detect glycocalyx modifications. In anesthetized open-chest dogs, blood flow and pressure were measured in the left circumflex artery. RH after 15-s occlusion was compared with an intracoronary infusion of adenosine (650 microg; AH) during control conditions and after intracoronary treatment of the glycocalyx with hyaluronidase (20.000 U, 2 x 20 min; n = 6) or heat-inactivated hyaluronidase (n = 5). During control, coronary conductance during RH was 1.49 +/- 0.15 ml.mmHg(-1).min(-1) and 76 +/- 7% of coronary conductance during AH (P < 0.05). After hyaluronidase, RH conductance increased (P < 0.01) by 43 +/- 13% and became 93 +/- 4% of AH conductance (P = NS). Heat-inactivated hyaluronidase had no effect on RH and AH conductance. Our results demonstrate that adenosine-induced coronary hyperemia profoundly exceeds RH and that the difference is virtually abolished on selective removal of the glycocalyx. It is concluded that, compared with RH, adenosine-induced coronary hyperemia is not affected by modification of the glycocalyx. This glycocalyx insensitivity should be taken into account when using adenosine-induced coronary hyperemia as a marker for vasodilating capacity to an ischemic stimulus.  相似文献   

8.
A linear relationship was found between coronary flow and adenosine release during the course of reactive hyperemia. Isolated guinea pig heart was perfused with a modified Krebs Ringer bicarbonate buffer containing 2.0 mM pyruvate. Hyperemia was induced with 30, 60 and 90-second coronary occlusions. The hyperemic response was divided into three consecutive 13-second intervals (I, II and III), and perfusate efflux from coronary circulation was collected during the last 10 seconds of each interval for adenosine assay using the HPLC. The data show a control flow of 3.13 +/- 0.4 ml/min/g and adenosine release of 66 +/- 4 pmoles/min/g. Flow increased by 99, 38 and 23% at I, II and III, respectively following 30-second occlusion, whereas adenosine release increased by 241, 132 and 91% for I, II and III. A 60-second occlusion increased the flow by 125, 64 and 34% with a simultaneous increase in the release of adenosine by 464, 155 and 133%, respectively, for I, II and III. Marked elevations in flow (165, 92 and 59%) and in adenosine release (659, 194 and 176%) for I, II and III were observed following 90-second occlusion. The linear relationship between coronary flow and adenosine release had r values of 0.84, 0.74 and 0.88 for 30, 60 and 90-second occlusions, respectively. This study quantifies the relationship between coronary flow and adenosine release during the course of reactive hyperemia. It also suggests that on a percent basis, adenosine contributes equally to the hyperemia at I, II and III.  相似文献   

9.
In exercising dogs, increased myocardial O2 consumption (MVO2) of the left ventricle is met primarily by hyperemia, whereas increased O2 extraction makes a greater contribution to right ventricular (RV) O2 supply. We hypothesized that alpha-adrenergic vasoconstrictor tone limits right coronary (RC) blood flow during exercise, forcing increased O2 extraction. This tone might also contribute to lesser RC vascular conductance at rest. Accordingly, RV O2 balance was examined at rest and during graded treadmill exercise before and during alpha-adrenergic blockade with phentolamine (1 mg/kg, i.v., n=6). The transmural distribution of RC flow was measured with radiolabeled microspheres in 4 additional dogs. At rest, alpha-adrenergic receptor blockade did not significantly increase RC flow or conductance. During exercise, alpha-adrenergic blockade increased RC flow and conductance responses to increased RV MVO2 by 25% and 60%, respectively. The transmural distribution of RC flow was not altered by exercise or by alpha-adrenergic blockade. Before alpha-adrenergic blockade, hyperemia provided 39%-66% of the additional O2 consumed by the right ventricle during graded exercise; after alpha-adrenergic blockade, hyperemia contributed 74%-85%. After alpha-adrenergic blockade, the slope of the relationship between RC venous PO2 and RV MVO2 became less steep, reflecting less O2 extraction due to enhanced hyperemia. Additional experiments were conducted on 5 anesthetized, open-chest dogs with constant RC perfusion pressure and beta-adrenergic blockade. The RC flow response to intracoronary norepinephrine was shifted to the left compared with that measured in the left coronary circulation, consistent with observations in the conscious exercising dogs. In conclusion, alpha-adrenergic vasoconstrictor tone does not restrict resting RC blood flow, but during exercise, this tone transmurally blunts RC hyperemia and forces the right ventricle to mobilize its O2 extraction reserve. This effect is more pronounced than has been reported for the left ventricle.  相似文献   

10.
The effect of an antioxidant dibunol and calcium antagonist verapamil on postperfusion release of myoglobin (Mb) and MB-creatine kinase (MB-CK) has been assessed in 30 dogs with experimental coronary occlusive myocardial infarction. It has been shown that reperfusion after 3-hour ischemia does not only accelerate the release of intracellular proteins, but also leads to pronounced myoglobinemia and blood enzymes. In postischemic blood flow recovery with combined dibunol and verapamil preliminary injections, an almost threefold decrease in MB-CK and Mb blood content, as compared to "reperfusion" indexes, was observed by the 10th minute of reperfusion.  相似文献   

11.
We tested the hypothesis that hyperglycemia alters retrograde coronary collateral blood flow by a nitric oxide-mediated mechanism in a canine Ameriod constrictor model of enhanced collateral development. Administration of 15% dextrose to increase blood glucose concentration to 400 or 600 mg/dl decreased retrograde blood flow through the left anterior descending coronary artery to 78 +/- 9 and 82 +/- 8% of baseline values, respectively. In contrast, saline or L-arginine (400 mg x kg(-1) x h(-1)) had no effect on retrograde flow. Coronary hypoperfusion and 1 h of reperfusion decreased retrograde blood flow similarly in saline- or L-arginine-treated dogs (76 +/- 11 and 89 +/- 4% of baseline, respectively), but these decreases were more pronounced in hyperglycemic dogs (47 +/- 10%). L-arginine prevented decreases in retrograde coronary collateral blood flow during hyperglycemia (100 +/- 5 and 95 +/- 6% of baseline at blood glucose concentrations of 400 and 600 mg/dl, respectively) and after coronary hypoperfusion and reperfusion (84 +/- 14%). The results suggest that hyperglycemia decreases retrograde coronary collateral blood flow by adversely affecting nitric oxide availability.  相似文献   

12.
The purpose of this investigation was to quantitatively evaluate the role of adenosine in coronary exercise hyperemia. Dogs (n = 10) were chronically instrumented with catheters in the aorta and coronary sinus, and a flow probe on the circumflex coronary artery. Cardiac interstitial adenosine concentration was estimated from arterial and coronary venous plasma concentrations using a previously tested mathematical model. Coronary blood flow, myocardial oxygen consumption, heart rate, and aortic pressure were measured at rest and during graded treadmill exercise with and without adenosine receptor blockade with either 8-phenyltheophylline (8-PT) or 8-p-sulfophenyltheophylline (8-PST). In control vehicle dogs, exercise increased myocardial oxygen consumption 4.2-fold, coronary blood flow 3.8-fold, and heart rate 2.5-fold, whereas mean aortic pressure was unchanged. Coronary venous plasma adenosine concentration was little changed with exercise, and the estimated interstitial adenosine concentration remained well below the threshold for coronary vasodilation. Adenosine receptor blockade did not significantly alter myocardial oxygen consumption or coronary blood flow at rest or during exercise. Coronary venous and estimated interstitial adenosine concentration did not increase to overcome the receptor blockade with either 8-PT or 8-PST as would be predicted if adenosine were part of a high-gain, negative-feedback, local metabolic control mechanism. These results demonstrate that adenosine is not responsible for local metabolic control of coronary blood flow in dogs during exercise.  相似文献   

13.
A reduced coronary flow reserve (CFR) has been demonstrated in diabetes, but the underlying mechanisms are unknown. We assessed thermodilution-derived CFR after 5-min intravenous adenosine infusion through a pressure-temperature sensor-tipped wire in 30 coronary arteries without significant lumen reduction in 30 patients: 13 with and 17 without a history of diabetes. We determined CFR as the ratio of basal and hyperemic mean transit times (T(mn)); fractional flow reserve (FFR) as the ratio of distal and proximal pressures at maximal hyperemia to exclude local macrovascular disease; and an index of microvascular resistance (IMR) as the distal coronary pressure at maximal hyperemia divided by the inverse of the hyperemic T(mn). We also assessed insulin resistance by the homeostasis model assessment (HOMA) index. FFR was normal in all investigated arteries. CFR was significantly lower in diabetic vs. nondiabetic patients [median (interquartile range): 2.2 (1.4-3.2) vs. 4.1 (2.7-4.4); P = 0.02]. Basal T(mn) was lower in diabetic vs. nondiabetic subjects [median (interquartile range): 0.53 (0.25-0.71) vs. 0.64 (0.50-1.17); P = 0.04], while hyperemic T(mn) and IMR were similar. We found significant correlations at linear regression analysis between logCFR and the HOMA index (r(2) = 0.35; P = 0.0005) and between basal T(mn) and the HOMA index (r(2) = 0.44; P < 0.0001). In conclusion, compared with nondiabetic subjects, CFR is lower in patients with diabetes and epicardial coronary arteries free of severe stenosis, because of increased basal coronary flow, while hyperemic coronary flow is similar. Basal coronary flow relates to insulin resistance, suggesting a key role of cellular metabolism in the regulation of coronary blood flow.  相似文献   

14.
We previously demonstrated a role for voltage-dependent K(+) (K(V)) channels in coronary vasodilation elicited by myocardial metabolism and exogenous H(2)O(2), as responses were attenuated by the K(V) channel blocker 4-aminopyridine (4-AP). Here we tested the hypothesis that K(V) channels participate in coronary reactive hyperemia and examined the role of K(V) channels in responses to nitric oxide (NO) and adenosine, two putative mediators. Reactive hyperemia (30-s occlusion) was measured in open-chest dogs before and during 4-AP treatment [intracoronary (ic), plasma concentration 0.3 mM]. 4-AP reduced baseline flow 34 +/- 5% and inhibited hyperemic volume 32 +/- 5%. Administration of 8-phenyltheophylline (8-PT; 0.3 mM ic or 5 mg/kg iv) or N(G)-nitro-L-arginine methyl ester (L-NAME; 1 mg/min ic) inhibited early and late portions of hyperemic flow, supporting roles for adenosine and NO. 4-AP further inhibited hyperemia in the presence of 8-PT or L-NAME. Adenosine-induced blood flow responses were attenuated by 4-AP (52 +/- 6% block at 9 microg/min). Dilation of arterioles to adenosine was attenuated by 0.3 mM 4-AP and 1 microM correolide, a selective K(V)1 antagonist (76 +/- 7% and 47 +/- 2% block, respectively, at 1 microM). Dilation in response to sodium nitroprusside, an NO donor, was attenuated by 4-AP in vivo (41 +/- 6% block at 10 microg/min) and by correolide in vitro (29 +/- 4% block at 1 microM). K(V) current in smooth muscle cells was inhibited by 4-AP (IC(50) 1.1 +/- 0.1 mM) and virtually eliminated by correolide. Expression of mRNA for K(V)1 family members was detected in coronary arteries. Our data indicate that K(V) channels play an important role in regulating resting coronary blood flow, determining duration of reactive hyperemia, and mediating adenosine- and NO-induced vasodilation.  相似文献   

15.
In two series of experiments we studied the effects of indomethacin on (a) coronary reactive hyperemia and, (b) renal blood flow, autoregulation, and reactive dilation. Coronary blood flow was measured in closed-chest dogs. Reactive hyperemia was induced by coronary occlusion for 5 and 15 sec. Indomethacin, an inhibitor of prostaglandin synthesis, was infused intra-arterially in doses of 90-200 mg over periods ranging from 30-120 min. Coronary reactive hyperemia was not affected by indomethacin. The canine renal vascular bed was studied under conditions of natural flow, controlled flow, and controlled pressure. Intra-arterial infusion of 90 mg of indomethacin over a 30- to 60- min period caused increased renal vascular resistance and an attenuation of reactive dilation (induced by stopping renal blood flow for 90 sec). Indomethacin slightly attenuated the autoregulatory response to decreasing perfusion pressures, but did not affect the respone to increasing pressures. Thus the study fails to provide evidence for participation of the prostaglandins in regulation of coronary blood flow and suggests only minimal participation of prostaglandings in renal blood flow regulation.  相似文献   

16.
The 894T allele of a G894T polymorphism in the endothelial nitric oxide synthase (eNOS) gene is associated with decreased eNOS activity, cleavage of the protein, and endothelial dysfunction. The present study evaluated the association with coronary blood flow (CBF) at rest and during adenosine (ADO)-induced hyperemia. CBF was determined by Doppler flow wire and angiography in 97 left anterior descending arteries of individuals without coronary artery disease. At rest, average peak velocity (APV) was lower and coronary vascular resistance (CVR) was higher in homozygous carriers of the 894T allele than in heterozygotes and individuals without the 894T allele. CBF tended to be lower in eNOS 894T allele carriers. During ADO-induced hyperemia (18 microg ic), APV, CVR, and CBF were not statistically different between the genotypes. The reduced APV at rest in conjunction with an increased CVR indicates a vasomotor dysfunction related to an increased microvascular resting tone in eNOS 894T allele carriers.  相似文献   

17.
The effects of pressure overload left ventricular hypertrophy (LVH) on heart performance and coronary circulation were investigated in dog experiments. The data obtained clearly demonstrate that left ventricular systolic and end-diastolic pressures were increased in LVH dogs. The heart rate and cardiac output were unchanged. However, there was a tendency toward lowering in the maximal rate of myocardial contractility and relaxation (+dP/dtmax and--dP/dtmax). It has been shown that in LVH dogs, the coronary blood flow was higher and coronary artery resistance was lower than in control ones. The peak reactive hyperemic flow was higher in LVH dogs but the coronary artery resistance calculated at the height of reactive hyperemia was similar both in control and LVH dogs, evidence of a reduction in the total coronary vasodilator reserves in the latter ones. The diastolic pressure-time index-tension time index (DPTI/TTI) ratio in LVH dogs decreased so that the value was sufficiently low to predict a reduction in endocardial perfusion even in experimental increased coronary perfusion pressure.  相似文献   

18.
The present investigation was to study the time course of changes in myocardial blood flow (MBF) in response to cold stimulation. Thirty-eight patients having risk factors of cardiovascular complications were examined. The time course of MBF changes was estimated by positron emission tomography (PET) using 13N-ammonium at rest and during a cold test (CT). Endothelium-dependent vasodilation of the brachial artery was determined from the results of a reactive hyperemia test, by applying ultrasonic duplex scanning. No significant MBF increase in response to the cold test was an indicator of coronary arterial endothelial dysfunction at cardiac 13N-ammonium PET. Agreement of the results of brachial arterial ultrasonography during reactive hyperemia and cardiac 13N-ammonium PET in the presence of the cold test suggests that endothelial dysfunction is generalized. Cardiovascular risk factors, such as left ventricular hypertrophy, smoking, dyslipidemia, and diabetes mellitus, substantially affect coronary arterial function. Left ventricular hypertrophy is an independent factor that influences the size of the coronary reserve and, in combination with endothelial dysfunction, worsens coronary microcirculation.  相似文献   

19.
The purpose of the present investigation was to study the time course of changes in myocardial blood flow (MBF) in response to cold stimulation. Thirty-eight patients having risk factors of cardiovascular complications were examined. The time course of MBF changes was estimated by positron emission tomography (PET) using 13N-ammonium at rest and during a cold test (CT). Endothelium-dependent vasodilation of the brachial artery was determined from the results of a reactive hyperemia test, by applying ultrasound duplex scanning. No significant MBF increase in response to the cold test was an indicator of coronary arterial endothelial dysfunction at cardiac 13N-ammonium PET. Agreement of the results of brachial arterial ultrasonography during reactive hyperemia and cardiac 13N-ammonium PET in the presence of the cold test suggests that endothelial dysfunction is generalized. Cardiovascular risk factors, such as left ventricular hypertrophy, smoking, dyslipidemia, and diabetes mellitus, substantially affect coronary arterial function. Left ventricular hypertrophy is an independent factor that influences the amount of the coronary reserve and, in combination with endothelial dysfunction, worsens coronary microcirculation.  相似文献   

20.
Late preconditioning (PC) against myocardial stunning develops after coronary artery occlusion (CAO) at rest and subsequent reperfusion. We investigated whether late PC occurs after exercise-induced ischemia (high-flow ischemia) in dogs. A circumflex coronary artery stenosis (by using occluders) was set up before the onset of treadmill exercise in nine chronically instrumented dogs to suppress exercise-induced increase in mean coronary blood flow velocity (CBFV, Doppler) without simultaneously affecting left ventricular (LV) wall thickening (Wth) at rest. Two similar exercises were performed 24 h apart. On day 1, LV Wth was reduced by 84 +/- 5% (P < 0.01), and exercise-induced increases in transmural myocardial blood flow (MBF, fluorescent microspheres) in the ischemic zone were blunted. LV Wth was depressed throughout the first 10 h and returned to its baseline value after 24 h. On day 2, changes in LV Wth and MBF were similar as was the time course for LV Wth recovery, indicating lack of late PC. Also, CBFV responses to acetylcholine, nitroglycerin, and reactive hyperemia (20-s CAO) were not significantly different on days 1 and 2. Similar results were obtained in a subgroup of four additional dogs with more severe stenosis during exercise. Late PC against myocardial stunning was confirmed to occur in a model of 10-min CAO followed by coronary artery reperfusion (CAR) in another four dogs. Thus in contrast with CAO at rest followed by CAR, severe myocardial ischemia in coronary flow-limited exercising dogs does not induce late PC against myocardial stunning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号