首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DMT1: which metals does it transport?   总被引:2,自引:0,他引:2  
DMT1-Divalent Metal (Ion) Transporter 1 or SLC11A2/DCT1/Nramp2 - transports Fe2+ into the duodenum and out of the endosome during the transferrin cycle. DMTI also is important in non-transferrin bound iron uptake. It plays similar roles in Mn2+ trafficking. Voltage clamping showed that six other metals evoked currents, but it is unclear if these metals are substrates for DMT1. This report summarizes progress on which metals DMT1 transports, focusing on results from the authors' labs. We recently cloned 1A/+IRE and 2/-IRE DMT1 isoforms to generate HEK293 cell lines that express them in a tetracycline-inducible fashion, then compared induced expression to uninduced expression and to endogenous DMT1 expression. Induced expression increases approximately 50x over endogenous expression and approximately 10x over uninduced levels. Fe2+, Mn2+, Ni2+ and Cu1+ or Cu2+ are transported. We also explored competition between metal ions using this system because incorporation essentially represents DMT1 transport and find this order for transport affinity: Mn>?Cd>?Fe>Pb-Co-Ni>Zn. The effects of decreased DMT1 also could be examined. The Belgrade rat has diminished DMT1 function and thus provides ways of testing. A series of DNA constructs that generate siRNAs specific for DMT1 or certain DMT1 isoforms yield another way to test DMT1-based transport.  相似文献   

2.
Human lead (Pb) exposure induces many adverse health effects, including some related to lead accumulation in organs. Although lead bio-distribution in the body has been described, the molecular mechanism underlying distribution and excretion is not well understood. The transport of essential and toxic metals is principally mediated by proteins. How lead affects the expression of metal transporter proteins in the principal metal excretory organs, i.e., the liver and kidney, is unknown. Considering that co-administration of melatonin and lead reduces the toxic effects of lead and lead levels in the blood in vivo, we examined how lead and co-administration of lead and melatonin affect the gene and protein expression of metal transporter proteins (ZIP8, ZIP14, CTR1 and DMT1) in these organs. Rats were exposed intraperitoneally to lead or lead-melatonin. Our results show that Pb exposure induces changes in the protein and gene expression of ZIP8, ZIP14 and CTR1. Alterations in the copper/zinc ratio found in the blood, liver and kidney were likely related to these changes. With DMT1 expression (gene and protein), a positive correlation was found with lead levels in the kidney. Co-administration of melatonin and lead reduced lead-induced DMT1 expression through an unknown mechanism. This effect of melatonin relates to reduced lead levels in the blood and kidney. The metal transport protein function and our results suggest that DMT1 likely contributes to lead accumulation in organs. These data further elucidate the effects of lead on Cu and Zn and the molecular mechanism underlying lead bio-distribution in animals.  相似文献   

3.
Divalent metal transporter 1 (DMT1) is likely responsible for the release of iron from endosomes to the cytoplasm in placental syncytiotrophoblasts (STB). To determine the localization and the regulation of DMT1 expression by iron directly in placenta, the expression of DMT1 in human term placental tissues and BeWo cells (human placental choriocarcinoma cell line) was detected and the change in expression in response to different iron treatments on BeWo cells was observed. DMT1 was shown to be most prominent near the maternal side in human term placenta and predominantly in the cytoplasm of BeWo cells. BeWo cells were treated with desferrioxamine (DFO) and human holotransferrin (hTf-2Fe) and it was found that both DMT1 mRNA and protein increased significantly with DFO treatment and decreased with hTf-2Fe treatment. Further, DMT1 mRNA responded more significantly to treatments if it possessed an iron-responsive element than mRNA without this element. This study indicated that DMT1 is likely involved in endosomal iron transport in placental STB and placental DMT1 + IRE expression was primarily regulated by the IRE/IRP mechanism.  相似文献   

4.
A divalent metal transporter, DMT1, located on the apical membrane of intestinal enterocytes is the major pathway for the absorption of dietary non-haem iron. Using human intestinal Caco-2 TC7 cells, we have shown that iron uptake and DMT1 protein in the plasma membrane were significantly decreased by exposure to high iron for 24 h, in a concentration-dependent manner, whereas whole cell DMT1 protein abundance was unaltered. This suggests that part of the response to high iron involved redistribution of DMT1 between the cytosol and cell membrane. These events preceded changes in DMT1 mRNA, which was only decreased following 72 h exposure to high iron.  相似文献   

5.
Divalent metal transporter 1 (DMT1 also known as DCT1, NRAMP2 or SCL11A2) is a membrane-bound divalent metal transporter which is conserved from prokaryotes to higher eukaryotes. It has been postulated to play important roles in intestinal iron absorption at the brush border of duodenal enterocytes, erythroid iron utilization, hepatic iron accumulation, placental iron transfer, and other processes. DMT1 gene which contains at least four isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE) is located on chromosome 12q13 in human. DMT1 mediates the transport of a wide range of metals, including the essential metals Fe2+, Zn2+, Mn2+, Cu2+, Co2+, Ni2+ and toxic metals such as Cd2+ and Pb2+. The intention of this study is to determine that IVS4+44C/A single nucleotide polymorphism in DMT1 gene of Turkish population. For this purpose blood samples from 192 female and 192 male volunteers were analyzed. DMT1 gene was amplified with the polymerase chain reaction-restriction fragment length polymorphism technique and 351 bp oligonucleotide was produced. The amplified oligonucleotides were cut with MnlI restriction enzyme according to their polymorphic characteristics. Digested and undigested products were separated on a 2% agarose gel electrophoresis, visualized by ethidium bromide staining under an ultraviolet illuminator. The genotype frequencies of DMT1 IVS4+44C/A polymorphism were determined as 47.9% for CC, 40.1% for AC and 12.0% for AA genotypes. The frequency of the C allele was found to as 68.0% and of the A allele as 32.0%. The genotype frequencies were consistent with Hardy-Weinberg equilibrium (χ2=2.394; Exact P=0.128).  相似文献   

6.
The divalent metal ion transporter DMT1 is localized in the brush border membrane (BBM) of the upper small intestine and has been shown to be able to transport Mn2+, Fe2+, Co2+, Ni2+, and Cu2+. Belgrade rats have a glycine-to-arginine (G185R) mutation in DMT1, which affects its function. We investigated copper transport with BBM vesicles of Belgrade rats loaded with calcein, which exhibits fluorescence quenching by various metal ions. Transport of copper was disrupted in unenergized BBM vesicle of b/b Belgrade rats, as had been described for iron transport, while +/b vesicles exhibited normal transport by DMT1. When either b/b or +/b vesicles were loaded with ATP and magnesium, similar high-affinity accumulation of copper was observed in both types of vesicles. Thus, brush border membranes possess an ATP-driven, high-affinity copper transport system which could serve as the primary route for copper uptake by the intestine.  相似文献   

7.
Wang D  Song Y  Li J  Wang C  Li F 《Biochimica et biophysica acta》2011,1808(6):1639-1644
DMT1 is an integral membrane protein with 12 putative transmembrane domains. As a divalent metal ion transporter, it plays an important role in metal ion homeostasis from bacteria to human. Loss-function mutations at the conserved motif DPGN located within the first transmembrane domain (TMD1) of DMT1 indicate the significance of TMD1 in the biological function of the protein. In the present work, we study the structure, topology and metal ion binding of DMT1-TMD1 peptide by nuclear magnetic resonance using sodium dodecyl sulfate and dodecylphosphocholine micelles as membrane mimics. We find that the peptide forms an α-helix-extended segment-α-helix configuration in which the motif DPGN locates at the central flexible region. The N-terminal part of the peptide is deeply embedded in micelles, while the motif section and the C-terminal part are close to the surface of micelles. The peptide can bind to Mn2+ and Co2+ ions by the side chains of the negatively charged residues in the motif section and the C-terminal part of TMD1. The crucial role of the central flexible region and the C-terminal part of TMD1 in metal ion capture is confirmed by the binding of the N-terminal part truncated TMD1 to metal ions.  相似文献   

8.
Whole body homeostasis can be viewed as the balance between absorption and excretion, which can be regulated independently. Present evidence suggests that for iron, intestinal absorption is the main site for homeostatic regulation, while for copper it is biliary excretion. There are connections between iron and copper in intestinal absorption and transport. The blue copper plasma protein, ceruloplasmin, and its intracellular homologue, hephaestin, play a role in cellular iron release. The studies reviewed here compare effects of Fe(II) and Cu(II) on their uptake and overall transport by monolayers of polarized Caco2 cells, which model intestinal mucosa. In the physiological range of concentrations, depletion of cellular iron or copper (by half) increased uptake of both metal ions. Depletion of iron or copper also enhanced overall transport of iron from the apical to the basal chamber. Copper depletion enhanced overall copper transport, but iron depletion did not. Pretreatment with excess copper also stimulated copper absorption. Plasma ceruloplasmin (added to the basal chamber) failed to enhance basolateral iron release, and Zn(II) failed to compete with Cu(II) for uptake. Neither copper nor iron deficiency altered expression of IREG1 or DMT1 (-IRE form) at the mRNA level. Thus, in the low-normal range of iron and copper availability, intestinal absorption of both metals appears to be positively related to the need for these elements by the whole organism. The two metal ions also influenced each other's transport; but with copper excess, other mechanisms come into play.  相似文献   

9.
Knöpfel M  Zhao L  Garrick MD 《Biochemistry》2005,44(9):3454-3465
Belgrade rats exhibit microcytic, hypochromic anemia and systemic iron deficiency due to a glycine-to-arginine mutation at residue 185 in a metal ion transporter of a divalent metal transporter/divalent cation transporter/solute carrier 11 group A member 2 or 3 (DMT1/DCT1/SLC11A2), a member of the natural-resistance-associated macrophage protein (Nramp) family. By use of rabbit duodenal tissue, a calcein fluorescence assay has previously been developed to assess transport of divalent metal ions across the small-intestinal brush border membrane (BBM). The assay was readily applied here to rat BBM to learn if it detects DMT1 activity. The results demonstrate protein-mediated transport across the BBM of all tested ions: Mn(2+), Fe(2+), and Ni(2+). Transport into BBM vesicles (BBMV) from (b/b) Belgrade rats was below the detection limit. BBMV of +/b origin had substantial activity. The kinetic rate constant for Ni(2+) membrane transport for +/b BBMV was within the range for normal rabbit tissue. Vesicles from +/b basolateral membranes (BLM) showed similar activity to BBMV while b/b BLM vesicles (BLMV) lacked transport activity. Immunoblots using isoform-specific antibodies demonstrated that intestinal levels of b/b DMT1 were increased compared to +/b DMT1, reflecting iron deficiency. Immunoblots on BBMV indicated that lack of activity in b/b vesicles was not due to a failure of DMT1 to localize to the BBMV; an excess of specific isoforms was present compared to +/b BBMV or duodenal extracts. Immunoblots from BLMV also exhibited enrichment in DMT1 isoforms, despite their distinct origin. Immunofluorescent staining of thin sections of b/b and +/b proximal intestines confirmed that DMT1 localized similarly in mutant and control enterocytes and showed that DMT1 isoforms have distinct distributions within intestinal tissue.  相似文献   

10.
Chronic exposure to cadmium causes preferential accumulation of cadmium in the kidney, leading to nephrotoxicity. In the process of renal cadmium accumulation, the cadmium bound to a low-molecular-weight metal-binding protein, metallothionein, has been considered to play an important role in reabsorption by epithelial cells of proximal tubules in the kidney. However, the role and mechanism of the transport of Cd(2+) ions in proximal tubule cells remain unclear. Zinc transporters such as Zrt, Irt-related protein 8 (ZIP8) and ZIP14, and divalent metal transporter 1 (DMT1) have been reported to have affinities for Cd(2+) and Mn(2+). To examine the roles of these metal transporters in the absorption of luminal Cd(2+) and Mn(2+) into proximal tubule cells, we utilized a cell culture system, in which apical and basolateral transport of metals can be separately examined. The uptake of Cd(2+) and Mn(2+) from the apical side of proximal tubule cells was inhibited by simultaneous addition of Mn(2+) and Cd(2+), respectively. The knockdown of ZIP8, ZIP14 or DMT1 by siRNA transfection significantly reduced the uptake of Cd(2+) and Mn(2+) from the apical membrane. The excretion of Cd(2+) and Mn(2+) was detected predominantly in the apical side of the proximal tubule cells. In situ hybridization of these transporters revealed that ZIP8 and ZIP14 are highly expressed in the proximal tubules of the outer stripe of the outer medulla. These results suggest that ZIP8 and ZIP14 expressed in the S3 segment of proximal tubules play significant roles in the absorption of Cd(2+) and Mn(2+) in the kidney.  相似文献   

11.
Divalent metal-ion transporter-1 (DMT1) is a H+-coupled metal-ion transporter that plays essential roles in iron homeostasis. DMT1 exhibits reactivity (based on evoked currents) with a broad range of metal ions; however, direct measurement of transport is lacking for many of its potential substrates. We performed a comprehensive substrate-profile analysis for human DMT1 expressed in RNA-injected Xenopus oocytes by using radiotracer assays and the continuous measurement of transport by fluorescence with the metal-sensitive PhenGreen SK fluorophore. We provide validation for the use of PhenGreen SK fluorescence quenching as a reporter of cellular metal-ion uptake. We determined metal-ion selectivity under fixed conditions using the voltage clamp. Radiotracer and continuous measurement of transport by fluorescence assays revealed that DMT1 mediates the transport of several metal ions that were ranked in selectivity by using the ratio Imax/K0.5 (determined from evoked currents at −70 mV): Cd2+ > Fe2+ > Co2+, Mn2+ ≫ Zn2+, Ni2+, VO2+. DMT1 expression did not stimulate the transport of Cr2+, Cr3+, Cu+, Cu2+, Fe3+, Ga3+, Hg2+, or VO+. 55Fe2+ transport was competitively inhibited by Co2+ and Mn2+. Zn2+ only weakly inhibited 55Fe2+ transport. Our data reveal that DMT1 selects Fe2+ over its other physiological substrates and provides a basis for predicting the contribution of DMT1 to intestinal, nasal, and pulmonary absorption of metal ions and their cellular uptake in other tissues. Whereas DMT1 is a likely route of entry for the toxic heavy metal cadmium, and may serve the metabolism of cobalt, manganese, and vanadium, we predict that DMT1 should contribute little if at all to the absorption or uptake of zinc. The conclusion in previous reports that copper is a substrate of DMT1 is not supported.  相似文献   

12.
Duodenal biopsies are considered a suitable source of enterocytes for studies of dietary iron absorption. However, the expression level of molecules involved in iron absorption may vary along the length of duodenum. We aimed to determine whether the expression of molecules involved in the absorption of heme and non‐heme iron differs depending on the location in the duodenum. Analysis was performed with samples of duodenal biopsies from 10 individuals with normal iron metabolism. Samples were collected at the following locations: (a) immediately post‐bulbar, (b) 1–2 cm below the papilla of Vater and (c) in the distal duodenum. The gene expression was analyzed at the mRNA and protein level using real‐time PCR and Western blot analysis. At the mRNA level, significantly different expression of HCP1, DMT1, ferroportin and Zip8 was found at individual positions of duodenum. Position‐dependent expression of other molecules, especially of FLVCR1, HMOX1 and HMOX2 was also detected but with no statistical significances. At the protein level, we observed statistically significantly decreasing expression of transporters HCP1, FLVCR1, DMT1, ferroportin, Zip14 and Zip8 with advancing positions of duodenum. Our results are consistent with a gradient of diminishing iron absorption along the duodenum for both heme and non‐heme iron.  相似文献   

13.
In Wilson’s disease (WND), biallelic ATP7B gene mutation is responsible for pathological copper accumulation in the liver, brain and other organs. It has been proposed that copper transporter 1 (CTR1) and the divalent metal transporter 1 (DMT1) translocate copper across the human intestinal epithelium, while Cu-ATPases: ATP7A and ATP7B serve as copper efflux pumps. In this study, we investigated the expression of CTR1, DMT1 and ATP7A in the intestines of both WND patients and healthy controls to examine whether any adaptive mechanisms to systemic copper overload function in the enterocytes. Duodenal biopsy samples were taken from 108 patients with Wilson’s disease and from 90 controls. CTR1, DMT1, ATP7A and ATP7B expression was assessed by polymerase chain reaction and Western blot. Duodenal CTR1 mRNA and protein expression was decreased in WND patients in comparison to control subjects, while ATP7A mRNA and protein production was increased. The variable expression of copper transporters may serve as a defense mechanism against systemic copper overload resulting from functional impairment of ATP7B.  相似文献   

14.
Transferrin and transferrin receptor are two key proteins of iron metabolism that have been identified to be hypoxia-inducible genes. Divalent metal transporter 1 (DMT1) is also a key transporter of iron under physiological conditions. In addition, in the 5' regulatory region of human DMT1 (between -412 and -570), there are two motifs (CCAAAGTGCTGGG) that are similar to hypoxia-inducible factor-1 (HIF-1) binding sites. It was therefore speculated that DMT1 might also be a hypoxia-inducible gene. We investigated the effects of hypoxia and hypoxia/re-oxygenation on the expression of DMT1 and the content of HIF-1alpha in HepG2 cells. As we expected, a very similar tendency in the responses of the expression of HIF-1alpha, DMT1+IRE (iron response element) and DMT1-IRE proteins to chemical (CoCl(2)) or physical hypoxia was observed. A highly significant correlation was found between the expression of DMT1 proteins and the contents of HIF-1 in hypoxic cells. After the cells were exposed to hypoxia and subsequent normoxia, no HIF-1alpha could be detected and a significant decrease in DMT1+IRE expression (P<0.05), but not in DMT1-IRE protein (versus the hypoxia group), was observed. The findings implied that the HIF-1 pathway might have a role in the regulation of DMT1+IRE expression during hypoxia.  相似文献   

15.
Diabetes mellitus is associated with altered iron homeostasis in both human and animal diabetic models. Iron is a metal oxidant capable of generating reactive oxygen species (ROS) and has been postulated to contribute to diabetic nephropathy. Two proteins involved in iron metabolism that are expressed in the kidney are the divalent metal transporter, DMT1 (Slc11a2), and the Transferrin Receptor (TfR). Thus, we investigated whether renal DMT1 or TfR expression is altered in diabetes, as this could potentially affect ROS generation and contribute to diabetic nephropathy. Rats were rendered diabetic with streptozotocin (STZ-diabetes) and renal DMT1 and TfR expression studied using semi-quantitative immunoblotting and immunofluorescence. In STZ-diabetic Sprague-Dawley rats, renal DMT1 expression was significantly reduced and TfR expression increased after 2 weeks. DMT1 downregulation was observed in both proximal tubules and collecting ducts. Renal DMT1 expression was also decreased in Wistar rats following 12 weeks of STZ-diabetes, an effect that was fully corrected by insulin-replacement but not by cotreatment with the aldose reductase inhibitor, sorbinil. Increased renal TfR expression was also observed in STZ-diabetic Wistar rats together with elevated cellular iron accumulation. Together these data demonstrate renal DMT1 downregulation and TfR upregulation in STZ-diabetes. Whilst the consequence of altered DMT1 expression on renal iron handling and oxidant damage remains to be determined, the attenuation of the putative lysosomal iron exit pathway in proximal tubules could potentially explain lysosomal iron accumulation reported in human diabetes and STZ-diabetic animals.  相似文献   

16.
Divalent metal transporter 1 (DMT1) can transport a large range of ions, including toxic lead (Pb) and cadmium (Cd), across membranes. In this study, a total of 24 rats were divided into four groups for intragastrical perfusion treatment: control, Pb alone, Cd alone, and Pb + Cd. Pb and Cd contents in blood were detected, and the mRNA and protein levels of DMT1 were analyzed in the cerebellum, cortex, and hippocampus. Both Pb and Cd levels were elevated in all groups perfused with Pb and/or Cd, except for Pb level in the Cd-alone group (P < 0.05). The mRNA level of DMT1 did not differ among the four groups (P > 0.05). However, the DMT1 protein expression was significantly increased by 0.9-, 1.0-, and 1.1-fold in cerebellum, cortex, and hippocampus of the Pb + Cd group than in controls, respectively. Pb and Cd exposure can synergistically induce DMT1 protein synthesis and has implications for transportation of toxic ions in the developing rat’s brain. Chengwu Gu and Songjian Chen contributed equally to this work, they are joint first authors.  相似文献   

17.
The natural resistance-associated macrophage protein (Nramp) homologs form a family of proton-coupled transporters that facilitate the cellular absorption of divalent metal ions (Me2+, including Mn2+, Fe2+, Co2+, and Cd2+). The Nramp, or solute carrier 11 (SLC11), family is conserved in eukaryotes and bacteria. Humans and rodents express 2 parologous genes that are associated with iron disorders and immune diseases. The NRAMP1 (SLC11A1) protein is specific to professional phagocytes and extrudes Me2+ from the phagosome to defend against ingested microbes; polymorphisms in the NRAMP1 gene are associated with various immune diseases. Several isoforms of NRAMP2 (SLC11A2, DMT1, DCT1) are expressed ubiquitously in recycling endosomes or specifically at the apical membrane of epithelial cells in intestine and kidneys, and can contribute to iron overload, whereas mutations impairing NRAMP2 function cause a form of congenital microcytic hypochromic anemia. Structure-function studies, using various experimental models, and mutagenesis approaches have begun to reveal the overall transmembrane organization of Nramp, some of the transmembrane segments (TMS) that are functionally important, and an unusual mechanism coupling Me2+ and proton H+ transport. The approaches used include functional complementation of yeast knockout strains, electrophysiology analyses in Xenopus oocytes, and transport assays that use mammalian and bacterial cells and direct and indirect measurements of SLC11 transporter properties. These complementary studies enabled the identification of TMS1 and 6 as crucial structural segments for Me2+ and H+ symport, and will help develop a deeper understanding of the Nramp transport mechanism and its contribution to Me2+ homeostasis in human health and diseases.  相似文献   

18.
19.
Divalent metal ion transporter 1 (DMT1) is a recently identified metal-ion transporter that appears to mediate the absorption of iron in the intestine. DMT1 mRNA is also present in discrete areas of the brain. In this study, we examined the expression of DMT1 mRNA in developing rat brain. DMT1 mRNA was found by in situ hybridization in the striatum, cortex, hippocampus and cerebellum. During development, DMT1 mRNA was found in Purkinje and granule cells in the cerebellum at post-natal day (PND) 14 and PND 30. DMT1 mRNA was also expressed in the external granular layer of the cerebellum at PND 14. No change in the level of DMT1 mRNA was observed by Northern analysis in the cerebellum at different ages between PND 1 and 21. DMT1 was found by Northern analysis in cultures of rat astrocytes. Activation of protein kinase C increased the expression of DMT1 in kidney epithelial cells but not astrocytes from newborn rats. Because DMT1 is expressed in a wide variety of types of cells, we suggest that it plays an important role in metal homeostasis in the brain.  相似文献   

20.
Regulation of the metal transport protein divalent metal transporter-1 (DMT1) may contribute to the uptake and detoxification of iron by cells resident in the respiratory tract. Inflammation has been associated with an increased availability of this metal resulting in an oxidative stress. Because proinflammatory cytokines and LPS have been demonstrated to affect an elevated expression of DMT1 in a macrophage cell line, we tested the hypothesis that tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, and LPS increase DMT1 expression in airway epithelial cells. We used RT-PCR to detect mRNA for both -IRE DMT1 and +IRE DMT1 in BEAS-2B cells. Treatment with TNF-alpha, IFN-gamma, or LPS increased both forms. Western blot analysis also demonstrated an increase in the expression of both isoforms of DMT1 after these treatments. Twenty-four hours after exposure of an animal model to TNF-alpha, IFN-gamma, or LPS, a significant increase in pulmonary expression of -IRE DMT1 was seen by immunohistochemistry; the level of +IRE DMT1 was too low in the lung to be visualized using this methodology. Finally, iron transport into BEAS-2B cells was increased after inclusion of TNF-alpha, IFN-gamma, or LPS in the media. We conclude that proinflammatory cytokines and LPS increase mRNA and protein expression of DMT1 in airway cells in vitro and in vivo. Furthermore, both -IRE and +IRE isoforms are elevated after exposures. Increased expression of this protein appears to be included in a coordinated response of the cell and tissue where the function might be to diminish availability of metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号