首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ecological role of parasites in the early life-history stages of coral reef fish, and whether this varies between fish with and without a pelagic phase, was investigated. The susceptibility to, and effect of reef-based micropredatory gnathiid isopods on larval, recently settled, and juvenile fishes was tested using two damselfishes (Pomacentridae): Neopomacentrus azysron, which has pelagic larvae, and Acanthochromis polyacanthus, which does not. When larval and recently settled stages of N. azysron and very young A. polyacanthus juveniles (smaller than larval N. azysron) were exposed to one or three gnathiids, the proportion of infections did not vary significantly among the three host types or between the number of gnathiids to which the fish were exposed. The overall infection was 35%. Mortality, however, differed among the three gnathiid-exposed host types with most deaths occurring in larval N. azysron; no mortalities occurred for recently settled N. azysron exposed to one or three gnathiids, and A. polyacanthus exposed to one gnathiid. Mortality did not differ significantly between larval N. azysron and A. polyacanthus juveniles, failing to provide support for the hypothesis that reef-based A. polyacanthus juveniles are better adapted to gnathiid attack than fish with a pelagic phase. The study suggests that settling on the reef exposes young fish to potentially deadly micropredators. This supports the idea that the pelagic phase may allow young fish to avoid reef-based parasites.  相似文献   

2.
Duong  B.  Blomberg  S. P.  Cribb  T. H.  Cowman  P. F.  Kuris  A. M.  McCormick  M. I.  Warner  R. R.  Sun  D.  Grutter  A. S. 《Coral reefs (Online)》2019,38(2):199-214

The pelagic larval stage is a critical component of the life cycle of most coral reef fishes, but the adaptive significance of this stage remains controversial. One hypothesis is that migrating through the pelagic environment reduces the risk a larval fish has of being parasitised. Most organisms interact with parasites, often with significant, detrimental consequences for the hosts. However, little is known about the parasites that larval fish have upon settlement, and the factors that affect the levels of parasitism. At settlement, coral reef fishes vary greatly in size and age (pelagic larval duration), which may influence the degree of parasitism. We identified and quantified the parasites of pre-settlement larvae from 44 species of coral reef fishes from the Great Barrier Reef and explored their relationship with host size and age at settlement, and phylogeny. Overall, less than 50% of the larval fishes were infected with parasites, and over 99% of these were endoparasites. A Bayesian phylogenetic regression was used to analyse host-parasite (presence and intensity) associations. The analysis showed parasite presence was not significantly related to fish size, and parasite intensity was not significantly related to fish age. A phylogenetic signal was detected for both parasite presence and intensity, indicating that, overall, closely related fish species were likely to have more similar susceptibility to parasites and similar levels of parasitism when compared to more distantly related species. The low prevalence of infection with any parasite type and the striking rarity of ectoparasites is consistent with the ‘parasite avoidance hypothesis’, which proposes that the pelagic phase of coral reef fishes results in reduced levels of parasitism.

  相似文献   

3.
There is an increasing interest in the relationship between adult coral reef fishes and their parasites; however, there is almost no information concerning post larvae (i.e. newly recruited) fish and their parasites. Newly recruited and juvenile fish are highly sensitive to their environment and they have a very low survival rate. Fish grouping behavior has been studied in several ways and many studies have shown that increasing group size might be a way to share a cost linked to parasitism, via a dilution effect. To my knowledge, this hypothesis has never been tested for juveniles of fish. The potential influence of school size and density of a juvenile coral reef fish, Haemulon flavolineatum (Haemulidae), on the success of a monogenean fish parasite, Haliotrema sp., was studied. First, the fish acquired their monogeneans when they were more than 40 mm long, size corresponding also to a change in their foraging behavior. Second, there was a positive effect of fish density on the success of the establishment of the parasite on the host population. Finally, although the parasite success was not directly related to fish group size, the parasite abundance was higher for intermediate shoal size. These results are discussed in terms of the consequence parasitism may have on a fish's shoaling and to a larger extent on the fish population.  相似文献   

4.

Widespread coral mortality is leading to coral reef degradation worldwide. Many juvenile reef fishes settle on live coral, and their predator-avoidance behaviour is disrupted in seawater exposed to dead corals, ultimately increasing predation risk. Gnathiid isopods are micropredatory fish ectoparasites that occur in higher abundances in dead coral. However, the effect of seawater associated with dead coral on the susceptibility of fish to micropredators has never been investigated. We tested whether the infection rate of cultured gnathiid ectoparasites on individual damselfish, Pomacentrus amboinensis Bleeker 1868, from two different ontogenetic stages (juveniles and adults) was influenced by seawater exposed to three different treatments: dead coral, live coral, or no coral. Seawater treatments were presumed to contain different chemical properties and are meant to represent environmental changes associated with habitat degradation on coral reefs. Gnathiid infection of juvenile fish in seawater exposed to dead coral was twice as high as that of fish in live coral or no coral. Infection rates did not significantly differ between live coral and no coral treatments. In contrast to juveniles, the susceptibility of adults to gnathiids was not affected by seawater treatment. During experiments, juvenile fish mortality was relatively low, but was higher for infected fish (9.7%), compared to fish held without exposure to gnathiids (1.7%). No mortality occurred in adult fish that became infected with gnathiids. Our results suggest that chemical cues released from dead corals and/or dead coral colonisers affect the ability of juvenile, but not adult fish to avoid parasite infection. Considering increased habitat degradation on coral reefs and that gnathiids are more abundant in dead coral substrate, it is possible that wild juvenile fish may experience increased susceptibility to parasitic infection and reduced survival rate. This highlights the importance of including parasitism in ecological studies of global environmental change.

  相似文献   

5.
In marine species with a pelagic larval stage, search behavior and selection of a suitable reef habitat can maximize the settlement success of recently settled juveniles and their subsequent performance (growth and survival of juveniles). Our objective was to test this hypothesis for a single target coral reef fish species (Chromis viridis) at Moorea Island. C. viridis settle on living coral colonies of Porites rus already populated with conspecifics. In the present study (conducted in experimental cages), we found that: 1) mortality rate of recently settled juveniles of C. viridis was lower in the settlement habitat (living coral colonies of P. rus) than in other habitats having physical structure different from those of P. rus colonies; 2) C. viridis juveniles preferentially colonized coral heads of P. rus with conspecifics present rather than uninhabited coral heads and they also preferentially colonized uninhabited coral heads rather than coral heads with heterospecifics; 3) mortality rate of C. viridis juveniles did not vary with the presence or absence of conspecifics or heterospecifics on P. rus colonies. Overall, the study allows us to highlight that site selection by juveniles for habitat containing conspecifics does not benefit their short term mortality rates, suggesting that in the short term at least, site selection has little importance.  相似文献   

6.
The lagoon of Moorea Island was characterised by 12 distinct reef zones. Visual censuses allowed us to document the spatial distributions of recently settled juveniles vs adults of 17 nocturnal fish species among the 12 reef zones. Five distinct patterns in habitat use were found: an increase in the number of reef zones used during the adult stage (four species); a decrease in the number of reef zones adults used compared to recently settled juveniles (two species); the use of different reef zones (one species); the use of same reef zones but with relative densities different (one species); and no change in habitat use (nine species). Overall, this study is the first to explore the use of space by a broad range of nocturnal fish taxa to document the patterns and determinism of habitat shifts between juvenile and adult life stages.  相似文献   

7.
Recruiting coral reef fish larvae from 38 species and 19 families from New Caledonia were examined for parasites. We found 13 parasite species (Platyhelminthes: Monogenea, Cestoda and Trematoda) but no acanthocephalan, crustacean or nematode parasites. Over 23% of individual fish were infected. Didymozoid metacercariae were the most abundant parasites. We conclude that most of the parasites are pelagic species that become ‘lost’ once the fish larvae have recruited to the reef. Larval coral reef fish probably contribute little to the dispersal of the parasites of the adult fish so that parasite dispersal is more difficult than that of the fish themselves.  相似文献   

8.
The structural complexity of coral reefs is important for their function as shelter and feeding habitats for coral reef fishes, but physical disturbance by human activities often reduce complexity of the reefs by selectively destroying fragile and more complex coral species. The damselfish Springer's demoiselle Chrysiptera springeri primarily utilize complex coral heads for shelter and are hence vulnerable to human disturbance. In order to evaluate the potential effect of habitat degradation on juvenile fish growth, coral reef cover, fish age at settling and otolith growth, juvenile Springer's demoiselle was investigated on a protected and non‐protected coral reef in Darvel Bay, Borneo. The protected reef had higher coverage of complex branching corals and exhibited a more complex 3‐dimensional structure than the non‐protected reef. Springer's demoiselle settled at the same age on non‐protected and protected reefs. The growth rates of the otoliths from Springer's demoiselle were similar during the pre‐settlement period on the two reefs (manova , P > 0.05), but from age 20 to 48 days (post‐settlement period) the otolith growth rate of juveniles on the non‐protected reef was reduced compared to those from the protected reef (manova , P = 0.017). However, the differences in the otolith size, and by inference, fish size, after 48 days were small. The small effect of habitat degradation on growth is likely related to the fact that the Springer's demoiselles collected on the non‐protected reef were associated with the few remaining complex coral heads. Increased foraging‐predation tradeoffs on the non‐protected reef may decrease food intake and growth of juvenile Springer's demoiselle, but the main effect of habitat degradation on their abundance is likely to be related to lack of suitable shelter, and consequently reduced carrying capacity, on disturbed reefs.  相似文献   

9.
Poulin R  Leung TL 《Oecologia》2011,166(3):731-738
Within food webs, trophically transmitted helminth parasites use predator–prey links for their own transfer from intermediate prey hosts, in which they occur as larval or juvenile stages, to predatory definitive hosts, in which they reach maturity. In large taxa that can be used as intermediate and/or definitive hosts, such as fish, a host species’ position within a trophic network should determine whether its parasite fauna consists mostly of adult or larval helminths, since vulnerability to predation determines an animal’s role in predator–prey links. Using a large database on the helminth parasites of 303 fish species, we tested whether the proportion of parasite species in a host that occur as larval or juvenile stages is best explained by their trophic level or by their body size. Independent of fish phylogeny or habitat, only fish body length emerged as a significant predictor of the proportion of parasites in a host that occur as larval stages from our multivariate analyses. On average, the proportion of larval helminth taxa in fish shorter than 20 cm was twice as high as that for fish over 100 cm in length. This is consistent with the prediction that small fishes, being more vulnerable to predation, make better hosts for larval parasites. However, trophic level and body length are strongly correlated among fish species, and they may have separate though confounded effects on the parasite fauna exploiting a given species. Helminths show varying levels of host specificity toward their intermediate host when the latter is the downstream host involved in trophic transmission toward an upstream definitive host. Given this broad physiological compatibility of many helminths with fish hosts, our results indicate that fish body length, as a proxy for vulnerability to predators, is a better predictor of their use by helminth larvae than their trophic level based on diet content.  相似文献   

10.
Counting growth increments in otoliths recently has become an accepted method of ageing tropical fishes, however, verification is essential for each new species. In this study, growth increments in otoliths of the juveniles of several coral reef damselfishes (Pomacentridae) were deposited daily and a distinct transition from wide to narrow increments coincided with settlement from the pelagic larval phase into the demersal habitat. Thus, the data of settlement for each individual fish could be calculated with acceptable accuracy. The daily pattern of recruitment to a coral reef was successfully reconstructed using the otoliths from a large sample of juvenile fish collected at the end of the breeding season. This was because the original pattern of settlement was preserved in the age distribution for at least 4 to 5 months. This application of otolith ageing techniques may be extended to reveal the temporal patterns of recruitment to many localities encompassing spatial scales larger than would be logistically possible using visual censuses.  相似文献   

11.
Post-settlement ecology, ontogenesis of morphology and behaviour were studied in juvenile Pempheris vanicolensis (Pempheridae, Teleostei) in the Gulf of Aqaba, Red Sea. Postflexion larvae of 5.6-6.0 mm total length settled around breakwater heads and natural rocky outcrops of the subtidal zone, widely separated from adults dwelling in groups in coral reef crevices and caves. Settling juveniles formed groups of uniform age and foraged on zooplankton around their habitats. Their circadian behaviour was regulated by levels of illumination in the water, differing slightly in the various age groups. At sunset, juvenile P. vanicolensis migrated and dispersed in deeper water, returning before sunrise to their rocky habitats. Their patterns of foraging and migration behaviours were analysed. At 28.0-32.0 mm total length and 500 mg body weight, the increase in height and length ( H/L ratio) of the juvenile changed from monoto heterochronous, after which a rhomboid body shape, typical for this species, was formed. Concomitantly, the retina of the juvenile changed from a photopic to a scotopic one, the body became heavily pigmented, and the fish left the subtidal rocks, migrating to crevices in coral formations where they settled in close proximity to groups of adult P. vanicolensis .  相似文献   

12.
Processes occurring at the end of the larval stage are of major importance in shaping spatial structure of fish assemblages in coral reefs. However, because of the difficulty in identifying larvae to species, many studies dealing with these stages are limited to the family level. It remains unknown if variation in the spatial structure of coral‐reef fish assemblages across life stages can be detected at such a coarse taxonomic level. Two different surveys conducted in a similar area of New Caledonia, Southwest Pacific, provided the opportunity to compare the structure of coral‐reef fish assemblages collected as pre‐settlement larvae, juveniles and adults along a coast to barrier reef gradient. Adult and juvenile fish were sampled using underwater visual counts (UVC) during the warm seasons of 2004 and 2005. Pre‐settlement larvae were sampled with light‐traps during the same seasons. In order to standardize data between sampling methods, analyses were conducted on the relative abundance (for larvae) and density (for juveniles and adults) of 21 families commonly collected with both methods. Relative abundances/densities of families were analysed as a function of life stage (larvae, juveniles or adults), large‐scale spatial location (coast, lagoon or barrier) and years (2004, 2005) using non‐parametric multidimensional scaling (nMDS) and permutational multivariate analysis of variance (permanova ). Kruskal–Wallis tests were then used to examine differences among life stages and locations for individual families. Different levels of spatial and temporal variability characterized fish assemblages from different life stages, and differences among life stages were detected at all locations and years. Differences among life stages were also significant at the level of individual families. Overall results indicate that studies conducted at the family level may efficiently reveal changes in coral‐reef fish spatial structure among successive life stages when large spatial scales are considered.  相似文献   

13.
The present study describes ontogenetic shifts in habitat use for 15 species of coral reef fish at Rangiroa Atoll, French Polynesia. The distribution of fish in different habitats at three ontogenetic stages (new settler, juvenile, and adult) was investigated in coral-dominated and algal-dominated sites at two reefs (fringing reef and inner reef of motu). Three main ontogenetic patterns in habitat use were identified: (1) species that did not change habitats between new settler and juvenile life stages (60% of species) or between juvenile and adult stages (55% of species—no ontogenetic shift); (2) species that changed habitats at different ontogenetic stages (for the transition “new settler to juvenile stage”: 15% of species; for the transition “juvenile to adult stage”: 20% of species); and (3) species that increased the number of habitats they used over ontogeny (for the transition “new settler to juvenile stage”: 25% of species; for the transition “juvenile to adult stage”: 25% of species). Moreover, the majority of studied species (53%) showed a spatial variability in their ontogenetic pattern of habitat use according to alternate reef states (coral reef vs algal reef), suggesting that reef state can influence the dynamics of habitat associations in coral reef fish.  相似文献   

14.
Mangroves and seagrass beds have long been perceived as important nurseries for many fish species. While there is growing evidence from the Western Atlantic that mangrove habitats are intricately connected to coral reefs through ontogenetic fish migrations, there is an ongoing debate of the value of these coastal ecosystems in the Indo-Pacific. The present study used natural tags, viz. otolith stable carbon and oxygen isotopes, to investigate for the first time the degree to which multiple tropical juvenile habitats subsidize coral reef fish populations in the Indo Pacific (Tanzania). Otoliths of three reef fish species (Lethrinus harak, L. lentjan and Lutjanus fulviflamma) were collected in mangrove, seagrass and coral reef habitats and analyzed for stable isotope ratios in the juvenile and adult otolith zones. δ13C signatures were significantly depleted in the juvenile compared to the adult zones, indicative of different habitat use through ontogeny. Maximum likelihood analysis identified that 82% of adult reef L. harak had resided in either mangrove (29%) or seagrass (53%) or reef (18%) habitats as juveniles. Of adult L. fulviflamma caught from offshore reefs, 99% had passed through mangroves habitats as juveniles. In contrast, L. lentjan adults originated predominantly from coral reefs (65–72%) as opposed to inshore vegetated habitats (28–35%). This study presents conclusive evidence for a nursery role of Indo-Pacific mangrove habitats for reef fish populations. It shows that intertidal habitats that are only temporarily available can form an important juvenile habitat for some species, and that reef fish populations are often replenished by multiple coastal habitats. Maintaining connectivity between inshore vegetated habitats and coral reefs, and conserving habitat mosaics rather than single nursery habitats, is a major priority for the sustainability of various Indo Pacific fish populations.  相似文献   

15.
The presence of bluestreak cleaner wrasse, Labroides dimidiatus, on coral reefs increases total abundance and biodiversity of reef fishes. The mechanism(s) that cause such shifts in population structure are unclear, but it is possible that young fish preferentially settle into microhabitats where cleaner wrasse are present. As a first step to investigate this possibility, we conducted aquarium experiments to examine whether settlement-stage and young juveniles of ambon damselfish, Pomacentrus amboinensis, selected a microhabitat near a cleaner wrasse (adult or juvenile). Both settlement-stage (0 d post-settlement) and juvenile (~5 weeks post-settlement) fish spent a greater proportion of time in a microhabitat adjacent to L. dimidiatus than in one next to a control fish (a non-cleaner wrasse, Halichoeres melanurus) or one where no fish was present. This suggests that cleaner wrasse may serve as a positive cue during microhabitat selection. We also conducted focal observations of cleaner wrasse and counts of nearby damselfishes (1 m radius) to examine whether newly settled fish obtained direct benefits, in the form of cleaning services, from being near a cleaner wrasse. Although abundant, newly settled recruits (<20 mm total length) were rarely (2 %) observed being cleaned in 20 min observations compared with larger damselfishes (58 %). Individual damselfish that were cleaned were significantly larger than the median size of the surrounding nearby non-cleaned conspecifics; this was consistent across four species. The selection by settlement-stage fish of a microhabitat adjacent to cleaner wrasse in the laboratory, despite only being rarely cleaned in the natural environment, suggests that even rare cleaning events and/or indirect benefits may drive their settlement choices. This behaviour may also explain the decreased abundance of young fishes on reefs from which cleaner wrasse had been experimentally removed. This study reinforces the potentially important role of mutualism during the processes of settlement and recruitment of young reef fishes.  相似文献   

16.
Influence of habitat degradation on fish replenishment   总被引:1,自引:0,他引:1  
Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.  相似文献   

17.
Due to an increasing emphasis for fish population survey and regulation, efficient tools for evaluating the abundance and diversity of fish from various life stages are needed, especially for coral reef species that present a high taxonomic diversity. The characteristics of six different techniques used for sampling pelagic larvae (a plankton-net and two light-traps), newly settled juveniles (one type of artificial reef), and older juveniles (an underwater seine net in seagrass and macroalgal beds, and rotenone poisoning in coral patches) are described in this study. Larvae belonging to 70 families and juveniles belonging to 34 families were collected. An analysis of similarity (ANOSIM) showed that the taxonomic composition of assemblages collected with the plankton-net and the two light-traps were overlapping but clearly different, due to the higher occurrence of Gobiidae in the plankton-net and of Pomacentridae in both light-traps. Larvae being 2–4 mm standard length (SL) dominated in the plankton-net, whereas larvae being 9–11 mm SL dominated in both light-traps. Pomacentridae juveniles were more abundant in rotenone samples, whereas Labridae dominated in the underwater seine. Juvenile fish collected with the artificial reefs, the underwater seine, and rotenone poisoning largely overlapped in size, with mean sizes of 22, 38, and 33 mm SL, respectively. Seven families were caught by the six sampling techniques, but with unequal success. This study provides ecologists and managers with a unique review of six techniques for sampling a wide range of developmental stages of young fish in different habitats of a coral reef lagoon.
Laure CarassouEmail:
  相似文献   

18.
The Mesoamerican Barrier Reef System (MBRS) contains a diverse array of coastal habitats that are critical for the survival of the early stages of reef fish; however, the knowledge on the abundance and distribution of the early stages of coastal fishes is still limited in this region. This study investigated the species richness of larval and juvenile fishes using a combination of a sled net, standard plankton net, and a nightlight lift-net; these were deployed simultaneously at Bacalar Chico, a site on the MBRS within the protected “Parque Nacional Arrecifes de Xcalak” (PNAX). We collected 53 families and 118 species of larval and juvenile fishes in a small area of about 3 km2. This species diversity of early life-history stages is greater than previously found in surveys on the MBRS. Each gear caught a number of species exclusively, so combined sampling with the three methods provided a much fuller picture of the local larval and juvenile fish assemblage. A species-accumulation model estimated that the samples likely represented 84% of the total assemblage. Many species caught were represented predominantly by newly settled juveniles, underscoring the importance of this coastal habitat for settlement of many ecologically and economically important fish species. This information is expected to improve the conservation and management strategies in the fragile PNAX coastal zones by providing additional information based on original field data to raise awareness among managers about the ecological relevance of these coastal habitats. This study provides encouraging evidence that the PNAX is a well-suited natural protected area to preserve a critical fish habitat in a hotspot of marine biodiversity.  相似文献   

19.
This study aimed to investigate the spatial structure of nocturnal fish communities at settlement on coral reefs in Moorea Island lagoon, French Polynesia; and the temporal consistency of habitat selection between winter (April to June 2001) and summer (November 2001). The Moorea lagoon was divided into 12 habitat zones (i.e., coral reef zones), which were distinct in terms of depth, wave exposure, and substratum composition. Nocturnal visual censuses among the 12 habitats found that the recently settled juveniles of 25 species recorded were dispatched among three communities spatially distributed according to the distance from the reef crest (reef crest, barrier reef, and fringing reef communities). This spatial communities structure of nocturnal juveniles was consistent in both winter and summer and would be explained primarily by a current gradient in Moorea lagoon (current speed was high near the reef crest and decreased towards the beach) and by the topographic characteristics of reef zones. Among the 25 species, 13 were recorded in both winter and summer. A comparison of the spatial distribution between summer and winter for 13 species that occurred during both seasons found that only 4 differed between the two seasons. For these species, habitat selection would be organized primarily by some stochastic processes such as inter- and intraspecific competition, predation, and food availability. Overall, the present study allowed us to highlight that most nocturnal coral reef fish juveniles at Moorea Island exhibited striking patterns in their distribution and current and topographic characteristics of reef zones might exert considerable influence on the distribution of fishes.  相似文献   

20.
1. The impact of environmental disturbance and habitat loss on associated species is expected to be dependent on a species' level of specialization. We examined habitat use and specialization of coral reef fish from the diverse and ecologically important family Pomacentridae, and determined which species are susceptible to declines in coral cover due to disturbance induced by crown-of-thorns seastar (COTS, Acanthaster planci L.). 2. A high proportion of pomacentrid species live in association with live coral as adults (40%) or juveniles (53%). Adults of many species had strong affiliations with branching corals, while juveniles favoured plating growth forms, reflecting the sizes of refuge provided by coral types. 3. Juveniles of species that associated with coral had narrower niche breadths than adult conspecifics, due to associations with specific coral types. The especially high coral association and narrower niche breadth of juveniles suggest that the presence of live coral is crucial for many species during early life history, and that disturbance-induced coral loss may have serious flow-on effects on adult abundance. 4. Microhabitat availability was a poor predictor of fish species abundance. Significant correlations between coverage of coral types and abundance of five adults and two juvenile species were detected; however, these relationships explained <35% and <10% of the variation in abundance of adult and juvenile species, respectively. 5. Niche breadth explained 74% of the variation in species' mean response to coral decline and it is clear that disturbance has a greater impact on resource specialists, suggesting that increasing frequency and intensity of coral loss will cause reef fish communities to become dominated by habitat generalists at the expense of coral-dwelling specialists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号