共查询到20条相似文献,搜索用时 0 毫秒
1.
Bateman RJ Munsell LY Morris JC Swarm R Yarasheski KE Holtzman DM 《Nature medicine》2006,12(7):856-861
Certain disease states are characterized by disturbances in production, accumulation or clearance of protein. In Alzheimer disease, accumulation of amyloid-beta (Abeta) in the brain and disease-causing mutations in amyloid precursor protein or in enzymes that produce Abeta indicate dysregulation of production or clearance of Abeta. Whether dysregulation of Abeta synthesis or clearance causes the most common form of Alzheimer disease (sporadic, >99% of cases), however, is not known. Here, we describe a method to determine the production and clearance rates of proteins within the human central nervous system (CNS). We report the first measurements of the fractional production and clearance rates of Abeta in vivo in the human CNS to be 7.6% per hour and 8.3% per hour, respectively. This method may be used to search for novel biomarkers of disease, to assess underlying differences in protein metabolism that contribute to disease and to evaluate treatments in terms of their pharmacodynamic effects on proposed disease-causing pathways. 相似文献
2.
3.
Coupled K+-water flux through the HERG potassium channel measured by an osmotic pulse method 下载免费PDF全文
The streaming potential (V(stream)) is a signature feature of ion channels in which permeating ions and water molecules move in a single file. V(stream) provides a quantitative measure of the ion and water flux (the water-ion coupling ratio), the knowledge of which is a prerequisite for elucidating the mechanisms of ion permeation. We have developed a method to measure V(stream) with the whole-cell patch-clamp configuration. A HEK293 cell stably expressing the HERG potassium channel was voltage clamped and exposed to hyperosmotic solutions for short periods of time (<1 s) by an ultrafast solution switching system (the osmotic pulse [quick jump-and-away] method). The reversal potentials were monitored by a series of voltage ramps before, during, and after the osmotic pulse. The shifts of the reversal potentials immediately after the osmotic jump gave V(stream). In symmetrical K+ solutions (10 mM), the V(stream)s measured at different osmolalities showed a linear relationship with a slope of -0.7 mV/DeltaOsm, from which the water-ion coupling ratio (n, the ratio of the flux of water to the flux of cations; Levitt, D.G., S.R. Elias, and J.M. Hautman. 1978. Biochim. Biophys. Acta. 512:436-451) was calculated to be 1.4. In symmetrical 100 mM K+ solutions, the coupling ratio was decreased significantly (n = 0.9), indicating that the permeation process through states with increased ion occupancy became significant. We presented a diagrammatic representation linking the water-ion coupling ratio to the mode of ion permeation and suggested that the coupling ratio of one may represent the least hydrated ion flux in the single-file pore. 相似文献
4.
5.
Basavappa S Mangel AW Boulpaep EL 《Biochemical and biophysical research communications》2003,308(4):759-763
In most mammalian cells, regulatory volume decrease (RVD) is mediated by swelling-activated Cl(-) and K(+) channels. Previous studies in the human neuroblastoma cell line CHP-100 have demonstrated that exposure to hypoosmotic solutions activates Cl(-) channels which are sensitive to Ca(2+). Whether a Ca(2+)-dependent K(+) conductance is activated after cell swelling was investigated in the present studies. Reducing the extracellular osmolarity from 290 to 190 mOsm/kg H(2)O rapidly activated 86Rb effluxes. Hypoosmotic stress also increased cytosolic Ca(2+) in fura-2 loaded cells. Pretreatment with 2.5 mM EGTA and nominally Ca(2+) free extracellular solution significantly decreased the hypoosmotically induced rise in cytosolic Ca(2+) and the swelling-activated 86Rb efflux. In cell-attached patch-clamp studies, decreasing the extracellular osmolarity activated a K(+) conductance that was blocked by Ba(2+). In addition, the swelling-activated K(+) channels were significantly inhibited in the presence of nominally free extracellular Ca(2+) and 2.5mM EGTA. These results suggest that in response to hypoosmotic stress, a Ca(2+)-dependent K(+) conductance is activated in the human neuroblastoma cell line CHP-100. 相似文献
6.
7.
8.
The aim of this investigation was preparation and comparative evaluation of fabricated matrix (FM), osmotic matrix (OM), and
osmotic pump (OP) tablets for controlled delivery of diclofenac sodium (DS). All formulations were evaluated for various physical
parameters, and in vitro studies were performed on USP 24 dissolution apparatus II in pH 7.4 buffer and distilled water. In
vivo studies were performed in 6 healthy human volunteers; the drug was assayed in plasma using HPLC, and results were compared
with the performance of 2 commercial tablets of DS. Various pharmacokinetic parameters (ie, Cmax, Tmax, area under the curve [AUC0–24], and mean residence time) and relative bioavailability were compared. All fabricated formulations showed more prolonged
and controlled DS release compared with commercial tablets studied. The OM and OP tablets, however, performed better than
the matrix tablets. The rate and extent of drug release from FM1 matrix tablets (single polymer) was significantly different
from that of FM2 (admixed polymers). Type of porosigenic agents and osmogens also influenced the drug release. Analysis of
in vitro data by regression coefficient analysis revealed zero-order release kinetics for OM and OP tablets, while FM tablets
exhibited Higuchi kinetics. In vivo results indicated prolonged blood levels with delayed peak and improved bioavailability
for fabricated tablets compared to commercial tablets. It was concluded that the osmotic matrix and osmotic pump tablets could
provide more prolonged, controlled, and gastrointestinal environmental-independent DS release that may result in an improved
therapeutic efficacy and patient compliance. 相似文献
9.
alpha-Hemolysin of Staphylococcus aureus is a self-assembling toxin that forms a water-filled transmembrane channel upon oligomerization in a lipid membrane. Apart from being one of the best-studied toxins of bacterial origin, alpha-hemolysin is the principal component in several biotechnological applications, including systems for controlled delivery of small solutes across lipid membranes, stochastic sensors for small solutes, and an alternative to conventional technology for DNA sequencing. Through large-scale molecular dynamics simulations, we studied the permeability of the alpha-hemolysin/lipid bilayer complex for water and ions. The studied system, composed of approximately 300,000 atoms, included one copy of the protein, a patch of a DPPC lipid bilayer, and a 1 M water solution of KCl. Monitoring the fluctuations of the pore structure revealed an asymmetric, on average, cross section of the alpha-hemolysin stem. Applying external electrostatic fields produced a transmembrane ionic current; repeating simulations at several voltage biases yielded a current/voltage curve of alpha-hemolysin and a set of electrostatic potential maps. The selectivity of alpha-hemolysin to Cl(-) was found to depend on the direction and the magnitude of the applied voltage bias. The results of our simulations are in excellent quantitative agreement with available experimental data. Analyzing trajectories of all water molecule, we computed the alpha-hemolysin's osmotic permeability for water as well as its electroosmotic effect, and characterized the permeability of its seven side channels. The side channels were found to connect seven His-144 residues surrounding the stem of the protein to the bulk solution; the protonation of these residues was observed to affect the ion conductance, suggesting the seven His-144 to comprise the pH sensor that gates conductance of the alpha-hemolysin channel. 相似文献
10.
Membrane chloride conductance and capacitance in Jurkat T lymphocytes during osmotic swelling. 总被引:5,自引:0,他引:5 下载免费PDF全文
Video microscopy and whole-cell patch-clamp recording were used to monitor changes in relative cell volume (V/Vo), chloride conductance (gCl), and membrane capacitance (Cm) during osmotically induced swelling in Jurkat T lymphocytes. Cellular swelling was initiated with hyperosmotic pipette solutions. Simultaneous evaluation of V/Vo and gCl revealed a 59-s delay between the inception of swelling and the activation of outwardly rectifying, ATP-dependent Cl- channels. Following the delay, increases in V/Vo and gCl progressed in parallel. In contrast, Cm, a measure of cell surface area, fell gradually at a rate of approximately 150 fF/min after whole-cell access was achieved. The decline in Cm lasted 200 s and was followed by a rapid rise (approximately 750 fF/min). The rise in Cm coincided with a variable increase in "leak" current, gCl increased at a slower rate and reached lower peak values in experiments performed without ATP; ATP had no effect on the biphasic Cm time course. The temporal separation of conductance and capacitance during swelling suggests that gCl and Cm vary independently, supporting the hypothesis that a large portion, if not all, of the whole-cell Cl- conductance activated during swelling is provided by volume-sensitive Cl- channels preexisting in the plasma membrane. 相似文献
11.
12.
13.
L.E. Moore 《生物化学与生物物理学报:生物膜》1975,375(1):115-123
Temperature-jump experiments on isolated myelinated nerve fibers were done using a pulsed laser system in the Q switched mode. Voltage-clamp and temperature perturbations were used to measure the relaxing ionic conductances of both the Na+ and K+ systems. It is shown that the T jump can be used to probe the K+ and Na+ conductances during non-steady state conditions and thereby elicit relaxation times for a variety of initial states. Temperature-induced K+ conductance relaxation times were consistent with voltage-clamp measurements. The temperature-perturbation experiments were done as a combination of a temperature step and impulse change due to an adsorption of carbon black particles on the nerve. The experiments support the hypothesis that the relaxation times of the K+ system are independent of the previous history of the axon. It is concluded that the K+ conductance is at least a second-order system whose relaxation spectrum is composed of two exponential terms the magnitudes of which are markedly dependent on the initial conditions. 相似文献
14.
15.
Previous studies suggested that the cytoplasmic COOH-terminal portions of inward rectifier K channels could contribute significant resistance barriers to ion flow. To explore this question further, we exchanged portions of the COOH termini of ROMK2 (Kir1.1b) and IRK1 (Kir2.1) and measured the resulting single-channel conductances. Replacing the entire COOH terminus of ROMK2 with that of IRK1 decreased the chord conductance at V(m) = -100 mV from 34 to 21 pS. The slope conductance measured between -60 and -140 mV was also reduced from 43 to 31 pS. Analysis of chimeric channels suggested that a region between residues 232 and 275 of ROMK2 contributes to this effect. Within this region, the point mutant ROMK2 N240R, in which a single amino acid was exchanged for the corresponding residue of IRK1, reduced the slope conductance to 30 pS and the chord conductance to 22 pS, mimicking the effects of replacing the entire COOH terminus. This mutant had gating and rectification properties indistinguishable from those of the wild-type, suggesting that the structure of the protein was not grossly altered. The N240R mutation did not affect block of the channel by Ba(2+), suggesting that the selectivity filter was not strongly affected by the mutation, nor did it change the sensitivity to intracellular pH. To test whether the decrease in conductance was independent of the selectivity filter we made the same mutation in the background of mutations in the pore region of the channel that increased single-channel conductance. The effects were similar to those predicted for two independent resistors arranged in series. The mutation increased conductance ratio for Tl(+):K(+), accounting for previous observations that the COOH terminus contributed to ion selectivity. Mapping the location onto the crystal structure of the cytoplasmic parts of GIRK1 indicated that position 240 lines the inner wall of this pore and affects the net charge on this surface. This provides a possible structural basis for the observed changes in conductance, and suggests that this element of the channel protein forms a rate-limiting barrier for K(+) transport. 相似文献
16.
《Life sciences》1993,53(18):PL285-PL290
It has been suggested that sigma receptor antagonists may be useful as antipsychotic drugs. N, N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]-ethylamine monohydrochloride (NE-100) is a novel compound with high affinity for the sigma receptor (IC50 = 4.16 nM), but low affinity (IC50 > 1000 nM) for D1, D2, 5-HT1A, 5-HT2 and phencyclidine (PCP) receptors. The head-weaving behavior induced by either (+)SKF10047 or PCP was dose-dependently antagonized by NE-100 with oral ED50 at 0.27 and 0.12 mg/kg, respectively. NE-100 did not affect dopamine agonists-induced stereotyped behavior and/or hyperactivity. NE-100 failed to induce catalepsy in rats. These findings indicate that NE-100 may have antipsychotic activity without the liability of motor side effects typical of neuroleptics. 相似文献
17.
18.
Basolateral K channels in an insect epithelium. Channel density, conductance, and block by barium 下载免费PDF全文
K channels in the basolateral membrane of insect hindgut were studied using current fluctuation analysis and microelectrodes. Locust recta were mounted in Ussing-type chambers containing Cl-free saline and cyclic AMP (cAMP). A transepithelial K current was induced by raising serosal [K] under short-circuit conditions. Adding Ba to the mucosal (luminal) side under these conditions had no effect; however, serosal Ba reversibly inhibited the short-circuit current (Isc), increased transepithelial resistance (Rt), and added a Lorentzian component to power density spectra of the Isc. A nonlinear relationship between corner frequency and serosal [Ba] was observed, which suggests that the rate constant for Ba association with basolateral channels increased as [Ba] was elevated. Microelectrode experiments revealed that the basolateral membrane hyperpolarized when Ba was added: this change in membrane potential could explain the nonlinearity of the 2 pi fc vs. [Ba] relationship if external Ba sensed about three-quarters of the basolateral membrane field. Conventional microelectrodes were used to determine the correspondence between transepithelially measured current noise and basolateral membrane conductance fluctuations, and ion-sensitive microelectrodes were used to measure intracellular K activity (acK). From the relationship between the net electrochemical potential for K across the basolateral membrane and the single channel current calculated from noise analysis, we estimate that the conductance of basolateral K channels is approximately 60 pS, and that there are approximately 180 million channels per square centimeter of tissue area. 相似文献
19.
Lawrence G. Palmer 《The Journal of membrane biology》1986,92(3):217-226
Summary The conductance of the apical membrane of the toad urinary bladder was studied under voltage-clamp conditions at hyperpolarizing potentials (mucosa negative to serosa). The serosal medium contained high KCl concentrations to reduce the voltage and electrical resistance across the basal-lateral membrane, and the mucosal solution was Na free, or contained amiloride, to eliminate the conductance of the apical Na channels. As the mucosal potential (V
m) was made more negative the slope conductance of the epithelium increased, reaching a maximum at conductance of the epithelium increased, reaching a maximum atV
m=–100 mV. This rectifying conductance activated with a time constant of 2 msec whenV
m was changed abruptly from 0 to –100 mV, and remained elevated for at least 10 min, although some decrease of current was observed. ReturningV
m to+100 mV deactivated the conductance within 1 msec. Ion substitution experiments showed that the rectified current was carried mostly by cations moving from cell to mucosa. Measurement of K flux showed that the current could be accounted for by net movement of K across the apical membrane, implying a voltage-dependent conductance to K (G
K). Mucosal addition of the K channel blockers TEA and Cs had no effect onG
K, while 29mm Ba diminished it slightly. Mucosal Mg (29mm) also reducedG
K, while Ca (29mm) stimulated it.G
K was blocked by lowering the mucosal pH with an apparent pK1 of 4.5. Quinidine (0.5mm in the serosal bath) reducedG
K by 80%.G
K was stimulated by ADH (20 mU/ml), 8-Br-cAMP (1mm), carbachol (100 m), aldosterone (5×10–7
m for 18 hr), intracellular Li and extracellular CO2. 相似文献