首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salinity is one of the major environmental factors affecting plant growth and survival by modifying source and sink relationships at physiological and metabolic levels. Individual metabolite levels and/or ratios in sink and source tissues may reflect the complex interplay of metabolic activities in sink and source tissues at the whole‐plant level. We used a non‐targeted gas chromatography–mass spectrometry (GC‐MS) approach to study sink and source tissue‐specific metabolite levels and ratios from bermudagrass under salinity stress. Shoot growth rate decreased while root growth rate increased which lead to an increased root/shoot growth rate ratio under salt stress. A clear shift in soluble sugars (sucrose, glucose and fructose) and metabolites linked to nitrogen metabolism (glutamate, aspartate and asparagine) in favor of sink roots was observed, when compared with sink and source leaves. The higher shifts in soluble sugars and metabolites linked to nitrogen metabolism in favor of sink roots may contribute to the root sink strength maintenance that facilitated the recovery of the functional equilibrium between shoot and root, allowing the roots to increase competitive ability for below‐ground resource capture. This trait could be considered in breeding programs for increasing salt tolerance, which would help maintain root functioning (i.e. water and nutrient absorption, Na+ exclusion) and adaptation to stress.  相似文献   

2.
Leaf developmental patterns were characterized in four rainforest tree species of Syzgium. Leaf optical properties, pigment changes, expansion characteristics, stomatal development, and photosynthetic rates were studied. In both S. luehmannii and S. wilsonii photosynthetic development was delayed until after full leaf expansion. Rates of O2 evolution were negative during expansion of S. luehmannii and S. wilsonii leaves and stomatal conductance was 10-20 mmol m-2 s-1 lower than for corresponding leaves of S. moorei. Stomatal conductance showed that the development of functional stomata was delayed until after full leaf expansion in S. luehmannii and S. wilsonii, however, low stomatal conductance was not responsible for the lack of photosynthetic potential during leaf expansion in these species. Leaves of S. luehmannii and S. wilsonii required less than 10 d for full leaf expansion and contained anthocyanin during expansion. In contrast, leaves of S. moorei and S. corynanthum expanded slowly (20-40 d required for full leaf expansion), exhibited positive rates of O2 evolution and did not accumulate anthocyanin. In S. luehmannii and S. wilsonii anthocyanin was located in the vacuole of distinct cell layers just below the upper epidermis and the possible functions of anthocyanin accumulation are discussed. This is the first report where such variation in leaf development has been characterized in the one genus.Key words: Anthocyanin, leaf expansion, photosynthetic development, delayed leaf greening, stomatal development.   相似文献   

3.
The present study analyses changes in nitrogen compounds, amino acid composition, and glutamate metabolism in the resurrection plant Sporobolus stapfianus during dehydration stress. Results showed that older leaves (OL) were desiccation-sensitive whereas younger leaves (YL) were desiccation-tolerant. OL lost their soluble protein more rapidly, and to a larger extent than YL. Enzymes of primary nitrogen assimilation were affected by desiccation and the decrease in the glutamine synthetase (GS, EC 6.3.1.2) and ferredoxin-dependent GOGAT (Fd-GOGAT, EC 1.4.7.1) activities was higher in OL than in YL, thus suggesting higher sensibility to dehydration. Moreover, YL showed higher total GS enzyme activity at the end of the dehydration stress and was shown to maintain high chloroplastic GS protein content during the entire stress period. Free amino acid content increased in both YL and OL between 88% and 6% relative water content. Interestingly, OL and YL did not accumulate the same amino acids. OL accumulated large amounts of proline and gamma-aminobutyrate whereas YL preferentially accumulated asparagine and arginine. It is concluded (i) that modifications in the nitrogen and amino acid metabolism during dehydration stress were different depending on leaf development and (ii) that proline and gamma-aminobutyrate accumulation in S. stapfianus leaves were not essential for the acquisition of desiccation tolerance. On the contrary, the accumulation of large amounts of asparagine and arginine in the YL during dehydration could be important and serve as essential nitrogen and carbon reservoirs useful during rehydration. In this context, the role of GS for asparagine accumulation in YL is discussed.  相似文献   

4.
Asparagine is the predominant free amino acid in potato tubers and the present study aimed to establish whether it is imported from the leaves or synthesised in situ. Free amino acid concentrations are important quality determinants for potato tubers because they react with reducing sugars at high temperatures in the Maillard reaction. This reaction produces melanoidin pigments and a host of aroma and flavour volatiles, but if free asparagine participates in the final stages, it results in the production of acrylamide, an undesirable contaminant. 14CO2 was supplied to a leaf or leaves of potato plants (cv. Saturna) in the light and radioactivity incorporated into amino acids was determined in the leaves, stems, stolons and tubers. Radioactivity was found in free amino acids, including asparagine, in all tissues, but the amount incorporated in asparagine transported to the tubers and stolons was much less than that in glutamate, glutamine, serine and alanine. The study showed that free asparagine does not play an important role in the transport of nitrogen from leaf to tuber in potato, and that the high concentrations of free asparagine that accumulate in potato tubers arise from synthesis in situ. This indicates that genetic interventions to reduce free asparagine concentration in potato tubers will have to target asparagine metabolism in the tuber.  相似文献   

5.
Muskmelon (Cucumis melo L.) plants were exposed to a 10°C chilling treatment for 72 hours, which induced leaf chilling injury symptoms (wilting, appearance of water-soaked areas, necrosis). Chilling caused an accumulation of starch, sucrose, hexoses (glucose and fructose), and certain amino acids (glutamate, aspartate, and citrulline) in source leaf tissues, but no accumulation of stachyose or other galactosyl-oligosaccharides occurred. Chilling also caused a general increase in sugar (stachyose, raffinose, sucrose) and amino acid content of the phloem sap, although rates of phloem transport were apparently reduced. Pretreatment of the leaves with a 20-milligram per liter abscisic acid (ABA) spray before chilling prevented the appearance of chilling injury symptoms. ABA pretreatment had little or no affect on sugar accumulation in leaf tissues but greatly reduced or eliminated the chilling-induced amino acid accumulation. Higher levels of aspartate and particularly of arginine were found in phloem saps from ABA-pretreated plants. The data indicate that changes in leaf metabolism caused by environmental stresses such as chilling may change the composition of cucurbit phloem sap. This raises the possibility that some of the deleterious effects of stress on sink tissues may, in part, be due to alterations in the nature of the assimilate supply.  相似文献   

6.
Nitrogen re-mobilization and changes in free amino acids werestudied as a function of time in leaves, stubble, and rootsduring ryegrass (Lolium perenne L.) re-growth. Experiments with15N labelling clearly showed that during the first days nearlyall the nitrogen in new leaves came from organic nitrogen re-mobilizedfrom roots and stubble. On the days of defoliation, stubblehad the highest content of free amino acids with 23 mg per gdry weight against 15 mg and 14 mg in leaves and roots, respectively.The major amino acids in leaves were asparagine (23% of totalcontent in free amino acids), aminobutyrate, serine, glutamine,and glutamate (between 7% and 15%) whereas in roots and stubblethe contribution of amides was high, especially asparagine (about50%). Re-growth after cutting was associated with a rapid increaseof the free amino acid content in leaves, with a progressivedecrease in roots while stubble content remained virtually unchanged.In leaves, asparagine increased from the first day of re-growth,while the aspartate level remained unchanged and glutamine increasedstrongly on the first day but decreased steadily during thenext few days of re-growth. Asparagine in stubble and rootschanged in opposite directions: in stubble it tended to increasewhereas in roots it clearly decreased. In contrast, stubbleand roots showed a similar decrease in glutamine. In these twoplant parts, as in leaves, aspartate remained at a low level.Results concerning free amino acids are discussed with referenceto nitrogen re-mobilization from source organs (stubble androots) to the sink organ (regrowing leaves). Key words: Lolium perenne L, re-growth, nitrogen, free amino acids, glutamine, asparagine  相似文献   

7.
63Ni was applied to nonsenescent source leaves and found to be transported to sink tissues in pea (Pisum sativum L.) and geranium plants (Pelargonium zonale L.). The comparative mobilities (percent tracer transported out of source leaf ÷% 86Rb transported) for 63Ni in peas was 2.12 and in geranium 0.25. The value for the phloem mobile 86Rb was 1.00. By contrast, the comparative mobility of 45Ca, which is relatively immobile in the phloem, was low (0.05 in peas, 0.00 in geranium). Interruption of the phloem pathway between source and sink leaves by steam girdling almost completely inhibited 63Ni accumulation in the sink leaves of both species. We conclude that Ni is transported from nonsenescent source leaves to sink tissues via the phloem of leguminous and nonleguminous plants.  相似文献   

8.
Cultivated tetraploid potatoes (Solanum tuberosum L.) are moderately salt sensitive but greater stress tolerance exists in diploid wild types. However, little work has been published on salt-tolerance in diploid potato. This study utilized sensitive and tolerant diploid potatoes as well as a commercially cultivated potato to investigate mechanisms of stress tolerance. Stem cuttings from salt-tolerant (T) and sensitive (S) clones of early-maturing (EM) and late-maturing (LM) diploid potato clones were stressed for 5 days at the tuber initiation stage with 150 mmol NaCl in a hydroponic sand culture under greenhouse conditions. The stress responses of the early- and late-maturing potato clones were distinctly different. Under stress, early-maturing clones accumulated Na+ in the leaf tissues while late-maturing clones generally excluded Na+ from the leaf tissues. Salt tolerant clones of both maturity types were able to tolerate high levels of Na+ in the leaf tissues. The lower leaves accumulated more Na+ than the upper leaves in both maturity types. The potassium to sodium ratio was significantly greater in the leaves of the late-maturing types, reflecting differences in Na+ accumulation rather than alterations in K+ levels. Proline levels increased upon salt exposure but were not clearly associated with salinity tolerance. Tolerance was manifested in maintenance of vegetative growth, tuber yield, and reduced leaf necrosis. These responses require efficient uptake of water and source–sink translocation. Maintenance of stomatal conductance under stress was not associated with these responses but tuber yield was related to lower-leaf osmotic potential (OP) in both early- and late-maturity types. Salt tolerant clones of both maturity types also had less negative tuber OP under salt stress than sensitive types. High yielding EMT and LMT clones either minimized tuber yield loss or even increased yield after exposure to salt stress. Mechanistic studies and screening experiments for salt tolerant clones should consider maturity type, leaf position and source–sink relationships enhancing tuber yield.  相似文献   

9.
The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic‐active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane‐localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element‐companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels.  相似文献   

10.
The composition of the free amino acid pool in embryonic cotton (Gossypium hirsutum) cotyledons is quite distinct from that of endosperm, and that of germinated, greened cotyledons is quite distinct from that of leaves. During germination (including the precocious germination of immature seeds), the pool expands considerably showing a pronounced accumulation of asparagine. The high level of asparagine found in seedling roots and in the cotyledon vascular exudate indicates that this is the major transported amino acid in germination. There is no pool expansion in the presence of abscisic acid. In the presence of actinomycin D, the pool expands, but an enormous accumulation of glutamine takes place. The composition of the pool at any stage is not related to the composition of the isoacceptor transfer RNA pool, nor to the composition of the storage protein. Anaerobiosis leads to an accumulation of aspartate, alanine, and glycine at the expense of asparagine; however, desiccation does not result in an accumulation of proline. Conspicuously high levels of arginine are maintained through embryogenesis and germination. The levels of individual amino acids are presented as nanomol per cotyledon pair and as per cent of total pool.  相似文献   

11.
The construction cost of plant tissues is used in crop models to convert the products of photosynthesis into biomass. As for other greenhouse crops, tomato tissues are specific in that they have a high mineral content. The consequences of this accumulation of minerals on the construction cost of the tissues and the possible interactions with the physiological age of the organs and with the CO2 concentration in the atmosphere was examined. For that purpose, three methods of estimating the construction cost were used and compared. Large quantities of minerals accumulated in the tissues of tomato plants (ranging from 0.05 in fruits to 0.26 g g-1 DM in leaves). The subsequent dilution of the organic matter explained why the estimated construction cost of the dry matter (organic matter + minerals) was fairly low in comparison to that of other crops species. The construction cost was higher in fruits than in vegetative organs, partly because of a lower mineral content. It decreased by 7-12% from top to bottom of the canopy, following the increase in the physiological age of the tissues. This ontogenic drift was partly explained by the accumulation of minerals in the older organs. In the conditions of CO2 enrichment of a commercial greenhouse, no effect of CO2 concentration on the mineral content and on the construction cost of tissues was observed. Such a variability of the construction cost of tomato plant tissues due to the accumulation of minerals or to the ontogeny questions the use of standard values in crop models.Key words: Lycopersicon esculentum Mill., construction cost, heat of combustion, elemental composition, mineral content.   相似文献   

12.
Ta TC  Joy KW  Ireland RJ 《Plant physiology》1984,75(3):527-530
The fate of nitrogen originating from the amide group of asparagine in young pea leaves (Pisum sativum) has been studied by supplying [15N-amide]asparagine and its metabolic product, 2-hydroxysuccinamate (HSA) via the transpiration stream. Amide nitrogen from asparagine accumulated predominantly in the amide group of glutamine and HSA, and to a lesser extent in glutamate and a range of other amino acids. Treatment with 5-diazo,4-oxo-L-norvaline (DONV) a deamidase inhibitor, caused a decrease in transfer of label to glutamine-amide. Virtually no 15N was detected in HSA of leaves supplied with asparagine and the transaminase inhibitor aminooxyacetate. When [15N]HSA was supplied to pea leaves, most of the label was also found in the amide group of glutamine and this transfer was blocked by the addition of methionine sulfoximine, which caused a large increase in NH3 accumulation. DONV was not specific for asparaginase, and inhibited the deamidation of HSA, causing a decrease in transfer of 15N into glutamine-amide, NH3, and other amino acids. It is concluded from these results that use of the amide group of asparagine as a nitrogen source for young pea leaves involves deamidation of both asparagine and its transamination product HSA (possibly also oxosuccinamate). The amide group, released as ammonia, is then reassimilated via the glutamine synthetase/glutamate synthase system.  相似文献   

13.
Grapevine (Vitis vinifera) roots and leaves represent major carbohydrate and nitrogen (N) sources, either as recent assimilates, or mobilized from labile or storage pools. This study examined the response of root and leaf primary metabolism following defoliation treatments applied to fruiting vines during ripening. The objective was to link alterations in root and leaf metabolism to carbohydrate and N source functioning under conditions of increased fruit sink demand. Potted grapevine leaf area was adjusted near the start of véraison to 25 primary leaves per vine compared to 100 leaves for the control. An additional group of vines were completely defoliated. Fruit sugar and N content development was assessed, and root and leaf starch and N concentrations determined. An untargeted GC/MS approach was undertaken to evaluate root and leaf primary metabolite concentrations. Partial and full defoliation increased root carbohydrate source contribution towards berry sugar accumulation, evident through starch remobilization. Furthermore, root myo‐inositol metabolism played a distinct role during carbohydrate remobilization. Full defoliation induced shikimate pathway derived aromatic amino acid accumulation in roots, while arginine accumulated after full and partial defoliation. Likewise, various leaf amino acids accumulated after partial defoliation. These results suggest elevated root and leaf amino N source activity when leaf N availability is restricted during fruit ripening. Overall, this study provides novel information regarding the impact of leaf source restriction, on metabolic compositions of major carbohydrate and N sources during berry maturation. These results enhance the understanding of source organ carbon and N metabolism during fruit maturation.  相似文献   

14.
15.
Some aphid species induce leaf galls, in which the fundatrix parthenogenetically produces many nymphs. In order to ensure high performance, galls have to provide the aphids with sufficient nutrients, in particular, amino acids as a nitrogen source. We tested this hypothesis using six Tetraneura aphid species that induce closed galls. We extracted free amino acids from the whole gall tissues of unit weight and quantified the concentration of each amino acid. There were large differences in the total amino acid concentrations among galls of the Tetraneura species. Tetraneura species in which higher concentrations of total amino acids were found in the gall tended to produce larger numbers of offspring. Of the amino acids found, asparagine was predominant in the gall. The asparagine concentration in T. yezoensis galls was several hundred times as high as in control leaves. We discussed why such a high level of asparagine accumulates in aphid galls.  相似文献   

16.
Rabe E  Lovatt CJ 《Plant physiology》1984,76(3):747-752
Young, fully expanded leaves from 7-month-old P-deficient citrus rootstock seedlings had levels of nonprotein arginine that were 10- to 50-fold greater than those from P-sufficient control plants. Arginine content of the protein fraction increased 2- to 4-fold in P-deficient leaves. Total arginine content, which averaged 72 ± 6 micromoles per gram dry weight of P-sufficient leaf tissue (mean ± se, n = the four rootstocks) was 207, 308, 241, and 178 micromoles in P-deficient leaves from Citrus limon cv rough lemon, Poncirus trifoliata × C. sinensis cv Carrizo citrange and cv Troyer citrange, and P. trifoliata cv Australian trifoliate orange, respectively. For each rootstock, the accumulation of arginine paralleled an increase in the activity of the pathway for the de novo biosynthesis of arginine. The ratio of the nanomoles NaH14CO3 incorporated into the combined pool of arginine plus urea per gram fresh weight intact leaf tissue during a 3-hour labeling period for P-deficient to P-sufficient plants was 91:34, 49:11, 35:11, and 52:41, respectively. When P-deficient plants were supplied with P, incorporation of NaH14CO3 into arginine plus urea was reduced to the level observed for the P-sufficient control plants of the same age and arginine ceased to accumulate. Arginase and arginine decarboxylase activity were either unaffected or slightly increased during phosphorus deficiency. Taken together, these results provide strong evidence that arginine accumulation during phosphorus deficiency is due to increased activity of the de novo arginine biosynthetic pathway.  相似文献   

17.
Prior to sowing, seeds of bean (Phaseolus vulgaris L.) were treated with 4 mM arginine or 0.1% urea, as nitrogen source. The seeds were then subjected to salinity stress. Arginine and urea treatments stimulated germination of both unstressed and salinity-stressed seeds. It was interesting to observe that the increased germination percentage in response to arginine and urea treatments was associated with increased content of polyamines, particularly putrescine (Put), spermidine (Spd) and spermine (Spm). Growth of the seedlings was also improved by application of arginine and urea, which was also associated with increased content of the polyamines Spd and Spm, while the Put content decreased. Total soluble sugars were much accumulated in response to arginine and urea treatments under salinity stress for cellular osmoregulation. The ratio of K+/Na+ increased in the leaves by application of arginine and urea, indicating a more alleviation to the adverse effects of salinity stress. Changes in proteinogenic amino acids were also investigated.  相似文献   

18.
In wild-type Arabidopsis, levels of ASN1 mRNA and asparagine (Asn) are tightly regulated by environmental factors and metabolites. Because Asn serves as an important nitrogen storage and transport compound used to allocate nitrogen resources between source and sink organs, we tested whether overexpression of the major expressed gene for Asn synthetase, ASN1, would lead to changes in nitrogen status in the ultimate storage organ for metabolites-seeds. Transgenic Arabidopsis constitutively overexpressing ASN1 under the cauliflower mosaic virus 35S promoter were constructed (35S-ASN1). In seeds of the 35S-ASN1 lines, three observations support the notion that the nitrogen status was enhanced: (a) elevations of soluble seed protein contents, (b) elevations of total protein contents from acid-hydrolyzed seeds, and (c) higher tolerance of young seedlings when grown on nitrogen-limiting media. Besides quantitative differences, changes in the relative composition of the seed amino acid were also observed. The change in seed nitrogen status was accompanied by an increase of total free amino acids (mainly Asn) allocated to flowers and developing siliques. In 35S-ASN1 lines, sink tissues such as flowers and developing siliques exhibit a higher level of free Asn than source tissues such as leaves and stems, despite significantly higher levels of ASN1 mRNA observed in the source tissues. This was at least partially due to an enhanced transport of Asn from source to sink via the phloem, as demonstrated by the increased levels of Asn in phloem exudates of the 35S-ASN1 plants.  相似文献   

19.
The distribution of solutes in the various cells of sugar beet (Beta vulgaris L.) source leaves, petioles, and sink leaves was studied in tissue prepared by freeze-substitution. The differences in degree of cryoprotection indicated that sieve elements and companion cells of the source leaf, petiole, and sink leaf contain a high concentration of solute. The osmotic pressure of various types of cells was measured by observing incipient plasmolysis in freeze-substituted tissues equilibrated with a series of mannitol solutions prior to rapid freezing. Analysis of source leaf tissue revealed osmotic pressure values of 13 bars for the mesophyll and 30 bars for the sieve elements and companion cells. The osmotic pressure of the mesophyll of sink leaves was somewhat higher.  相似文献   

20.
Accumulation of assimilates in source leaves of magnesium‐deficient plants is a well‐known feature. We had wished to determine whether metabolite concentrations in sink leaves and roots are affected by magnesium nutrition. Eight‐week‐old spinach plants were supplied either with a complete nutrient solution (control plants) or with one lacking Mg (deficient plants) for 12 days. Shoot and root fresh weights and dry weights were lower in deficient than in control plants. Mg concentrations in deficient plants were 11% of controls in source leaves, 12% in sink leaves and 26% in roots, respectively. As compared with controls, increases were found in starch and amino acids in source leaves and in sucrose, hexoses, starch and amino acids in sink leaves, whereas they were only slightly enhanced in roots. In phloem sap of magnesium‐deficient and control plants no differences in sucrose and amino acid concentrations were found. To prove that sink leaves were the importing organs they were shaded, which did not alter the response to magnesium deficiency as compared with that without shading. Since in the shaded sink leaves the photosynthetic production of metabolites could be excluded, those carbohydrates and amino acids that accumulated in the sink leaves of the deficient plants must have been imported from the source leaves. It is concluded that in magnesium‐deficient spinach plants the growth of sink leaves and roots was not limited by carbohydrate or amino acid supply. It is proposed that the accumulation of assimilates in the source leaves of Mg‐deficient plants results from a lack of utilization of assimilates in the sink leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号