首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Microbial degradation of poly(amino acid)s   总被引:2,自引:0,他引:2  
Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.  相似文献   

3.
Microbial products trigger amino acid exudation from plant roots   总被引:16,自引:0,他引:16  
Plants naturally cycle amino acids across root cell plasma membranes, and any net efflux is termed exudation. The dominant ecological view is that microorganisms and roots passively compete for amino acids in the soil solution, yet the innate capacity of roots to recover amino acids present in ecologically relevant concentrations is unknown. We find that, in the absence of culturable microorganisms, the influx rates of 16 amino acids (each supplied at 2.5 microm) exceed efflux rates by 5% to 545% in roots of alfalfa (Medicago sativa), Medicago truncatula, maize (Zea mays), and wheat (Triticum aestivum). Several microbial products, which are produced by common soil microorganisms such as Pseudomonas bacteria and Fusarium fungi, significantly enhanced the net efflux (i.e. exudation) of amino acids from roots of these four plant species. In alfalfa, treating roots with 200 microm phenazine, 2,4-diacetylphloroglucinol, or zearalenone increased total net efflux of 16 amino acids 200% to 2,600% in 3 h. Data from (15)N tests suggest that 2,4-diacetylphloroglucinol blocks amino acid uptake, whereas zearalenone enhances efflux. Thus, amino acid exudation under normal conditions is a phenomenon that probably reflects both active manipulation and passive uptake by microorganisms, as well as diffusion and adsorption to soil, all of which help overcome the innate capacity of plant roots to reabsorb amino acids. The importance of identifying potential enhancers of root exudation lies in understanding that such compounds may represent regulatory linkages between the larger soil food web and the internal carbon metabolism of the plant.  相似文献   

4.
Microbial metabolism of amino alcohols via aldehydes   总被引:5,自引:0,他引:5  
  相似文献   

5.
Eighty-nine microorganisms were isolated that were able to use 2-methyl amino acids and related compounds as the sole source of nitrogen. All of these cultures produced low levels of ammonia in culture supernatant solutions None was capable of fixing nitrogen gas. Whole-cell and cell-free-extract experiments showed that ammonia was not released directly from the 2-methyl amino acids. All of these strains except those isolated with 2-methylserine as a nitrogen source appeared to metabolize 2-methyl amino compounds by a single enzymatic reaction involving simultaneous decarboxylation and transamination. Pyruvate served as an acceptor for the transamination with the concomitant formation of alanine. The strains utilizing 2-methylserine produced a specific 2-methylserine transhydroxymethylase.  相似文献   

6.
Microbial hyaluronic acid production   总被引:18,自引:0,他引:18  
Hyaluronic acid (HA) is a commercially valuable medical biopolymer increasingly produced through microbial fermentation. Viscosity limits product yield and the focus of research and development has been on improving the key quality parameters, purity and molecular weight. Traditional strain and process optimisation has yielded significant improvements, but appears to have reached a limit. Metabolic engineering is providing new opportunities and HA produced in a heterologous host is about to enter the market. In order to realise the full potential of metabolic engineering, however, greater understanding of the mechanisms underlying chain termination is required.  相似文献   

7.
Microbial fatty acid specificity   总被引:1,自引:0,他引:1  
Strains ofRhodotorula sp.,Candida spp. andLangermania sp. cultivated on polyunsaturated oil preferentially incorporated more unsaturated fatty acids. These fatty acids were used mainly for growth needs whereas the saturated ones accumulated in the microbial cell. The cellular oil and the remaining oil in the culture had a lower degree of unsaturation as compared to the initial oil, and a modified fatty acid composition.Candida lipolytica, in a chemostat continuous culture, incorporated C18 fatty acids in the order of C18:3>C18:2>C18:1>C18:0, and accumulated mostly the saturated ones. The specific productivity of the cellular oil and of the oil remaining in the culture medium was 0.036 and 0.487 gg−1 h−1, respectively, at dilution rateD=0.2/h.  相似文献   

8.
From one amino acid to another: tRNA-dependent amino acid biosynthesis   总被引:2,自引:0,他引:2  
Aminoacyl-tRNAs (aa-tRNAs) are the essential substrates for translation. Most aa-tRNAs are formed by direct aminoacylation of tRNA catalyzed by aminoacyl-tRNA synthetases. However, a smaller number of aa-tRNAs (Asn-tRNA, Gln-tRNA, Cys-tRNA and Sec-tRNA) are made by synthesizing the amino acid on the tRNA by first attaching a non-cognate amino acid to the tRNA, which is then converted to the cognate one catalyzed by tRNA-dependent modifying enzymes. Asn-tRNA or Gln-tRNA formation in most prokaryotes requires amidation of Asp-tRNA or Glu-tRNA by amidotransferases that couple an amidase or an asparaginase to liberate ammonia with a tRNA-dependent kinase. Both archaeal and eukaryotic Sec-tRNA biosynthesis and Cys-tRNA synthesis in methanogens require O-phosophoseryl-tRNA formation. For tRNA-dependent Cys biosynthesis, O-phosphoseryl-tRNA synthetase directly attaches the amino acid to the tRNA which is then converted to Cys by Sep-tRNA: Cys-tRNA synthase. In Sec-tRNA synthesis, O-phosphoseryl-tRNA kinase phosphorylates Ser-tRNA to form the intermediate which is then modified to Sec-tRNA by Sep-tRNA:Sec-tRNA synthase. Complex formation between enzymes in the same pathway may protect the fidelity of protein synthesis. How these tRNA-dependent amino acid biosynthetic routes are integrated into overall metabolism may explain why they are still retained in so many organisms.  相似文献   

9.
10.
11.
Methanesulfonic acid is a very stable strong acid and a key intermediate in the biogeochemical cycling of sulfur. It is formed in megatonne quantities in the atmosphere from the chemical oxidation of atmospheric dimethyl sulfide (most of which is of biogenic origin) and deposited on the Earth in rain and snow, and by dry deposition. Methanesulfonate is used by diverse aerobic bacteria as a source of sulfur for growth, but is not known to be used by anaerobes either as a sulfur source, a fermentation substrate, an electron acceptor, or as a methanogenic substrate. Some specialized methylotrophs (including Methylosulfonomonas, Marinosulfonomonas, and strains of paragraph signHyphomicrobium and Methylobacterium) can use it as a carbon and energy substrate to support growth. Methanesulfonate oxidation is initiated by cleavage catalysed by methanesulfonate monooxygenase, the properties and molecular biology of which are discussed.  相似文献   

12.
13.
Microbial growth on mercaptosuccinic acid   总被引:3,自引:0,他引:3  
  相似文献   

14.
Several organisms were isolated for their ability to utilize piperonylate as a sole carbon source for growth and aPseudomonas species (Ps. PP-2) was selected for a study of the degradation of this substrate. Only vanillate, isovanillate,p-hydroxybenzoate and protocatechuate, of several possible catabolities, served as growth and oxidation substrates for the organism. Detailed analysis of the culture fluid from piperonylate-grown cells revealed the presence of vanillate and protocatechuate but isovanillate,p-hydroxybenzoate andm-hydroxybenzoate were not detected. The evidence presented suggests that piperonylate is metabolized first to vanillate by methylenedioxy ring cleavage and next to protocatechuate by direct demethylation of vanillate.  相似文献   

15.
A pure bacterial culture and a two-membered mixed culture were isolated that degraded trichloroacetic acid if a second, readily metabolizable substrate was present in the growth medium. Previous doubts over the microbial dehalogenation of trichloroacetic acid (TCA) may be due to its inability to act as a sole carbon and energy source. TCA dehalogenation was associated with conventional 2-haloalkanoic acid dehalogenases but oxalate, the putative dehalogenase product, was not detected. CO2 was produced rapidly and concomitantly with Cl ion release during dehalogenation of TCA. An alternative mechanism is suggested for TCA dehalogenation via an initial decarboxylation reaction. This mechanism predicts that carbon monoxide is a product of TCA decarboxylation and it was significant that one of the organisms isolated,Pseudomonas carboxydohydrogens, was a carboxytroph and a second was an unidentified facultative methylotroph.  相似文献   

16.
17.
Amino acid N-carboxyanhydrides (NCA), convenient monomer for polypeptide synthesis, are easily prepared in high purity as the result of N-carbamoyl amino acids (CAA) nitrosation by gaseous NOx (4:1 NO + O2 mixture, or NOCl) in toluene. Removal of polar side products is then efficiently carried out during subsequent work-up and crystallisation so that the resulting NCA obtained in good yield is suitable for controlled, primary amine-initiated polymerisation.  相似文献   

18.
Placental amino acid transport   总被引:4,自引:0,他引:4  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号