首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyclonal lymphocyte activation is one of the major immunological disturbances observed after microbial infections and among the primary strategies used by the parasite Trypanosoma cruzi to avoid specific immune responses and ensure survival. T. cruzi is the insect-transmitted protozoan responsible for Chagas' disease, the third public health problem in Latin America. During infection of its mammalian host, the parasite secretes a proline racemase that contributes to parasite immune evasion by acting as a B-cell mitogen. This enzyme is the first described eukaryotic amino acid racemase and is encoded by two paralogous genes per parasite haploid genome, TcPRACA and TcPRACB that give rise, respectively, to secreted and intracellular protein isoforms. While TcPRACB encodes an intracellular enzyme, analysis of TcPRACA paralogue revealed putative signals allowing the generation of an additional, non-secreted isoform of proline racemase by an alternative trans-splicing mechanism. Here, we demonstrate that overexpression of TcPRAC leads to an increase in parasite differentiation into infective forms and in its subsequent penetration into host cells. Furthermore, a critical impairment of parasite viability was observed in functional knock-down parasites. These results strongly emphasize that TcPRAC is a potential target for drug design as well as for immunomodulation of parasite-induced B-cell polyclonal activation.  相似文献   

2.
Trypanosoma cruzi, the etiological agent of Chagas disease, uses arginine for several metabolic processes, including energy reserves management. In the present work, a novel low-affinity arginine transport system has been studied. Maximum velocity (97 pmol min(-1) per 10(7) cells), and an estimate for the apparent Km value (350 microM) of this arginine transporter, were 6-fold and 80-fold higher respectively, when compared with the previously described high-affinity arginine transport system. This transport activity seems to be H+ -mediated, presents a broad specificity by other amino acids such as methionine, and is regulated along the parasite growth curve and life cycle.  相似文献   

3.
4.
The pathway for RNA interference is widespread in metazoans and participates in numerous cellular tasks, from gene silencing to chromatin remodeling and protection against retrotransposition. The unicellular eukaryote Trypanosoma cruzi is missing the canonical RNAi pathway and is unable to induce RNAi-related processes. To further understand alternative RNA pathways operating in this organism, we have performed deep sequencing and genome-wide analyses of a size-fractioned cDNA library (16-61 nt) from the epimastigote life stage. Deep sequencing generated 582,243 short sequences of which 91% could be aligned with the genome sequence. About 95-98% of the aligned data (depending on the haplotype) corresponded to small RNAs derived from tRNAs, rRNAs, snRNAs and snoRNAs. The largest class consisted of tRNA-derived small RNAs which primarily originated from the 3' end of tRNAs, followed by small RNAs derived from rRNA. The remaining sequences revealed the presence of 92 novel transcribed loci, of which 79 did not show homology to known RNA classes.  相似文献   

5.
During Trypanosoma cruzi cell invasion, signal transduction pathways are triggered in parasite and host cells, leading to a rise in intracellular Ca(2+) concentration. We posed the question whether calcineurin (CaN), in particular the functional regulatory subunit CaNB, a Ca(2+)-binding EF-hand protein, was expressed in T. cruzi and whether it played a role in cell invasion. Here we report the cloning and characterization of CL strain CaNB gene, as well as the participation of CaNB in cell invasion. Treatment of metacyclic trypomastigotes (MT) or tissue-culture trypomastigotes (TCT) with the CaN inhibitors cyclosporin or cypermethrin strongly inhibited (62-64%) their entry into HeLa cells. In assays using anti-phospho-serine/threonine antibodies, a few proteins of MT were found to be dephosphorylated in a manner inhibitable by cyclosporin upon exposure to HeLa cell extract. The phosphatase activity of CaN was detected by a biochemical approach in both MT and TCT. Treatment of parasites with antisense phosphorothioate oligonucleotides directed to TcCaNB-CL, which reduced the expression of TcCaNB and affected TcCaN activity, resulted in approximately 50% inhibition of HeLa cell entry by MT or TCT. Given that TcCaNB-CL may play a key role in cell invasion and differs considerably in its primary structure from the human CaNB, it might be considered as a potential chemotherapeutic target.  相似文献   

6.
We investigated the in vitro action of an hydrosoluble 2-nitroimidazole, Etanidazole (EZL), against Trypanosoma cruzi, the etiologic agent of Chagas disease. EZL displayed lethal activity against isolated trypomastigotes as well as amastigotes of T. cruzi (RA strain) growing in Vero cells or J774 macrophages, without affecting host cell viability. Although not completely equivalent to Benznidazole (BZL), the reference drug for Chagas chemotherapy, EZL takes advantage in exerting its anti-T. cruzi activity for longer periods without serious toxic side effects, as those recorded in BZL-treated patients. Our present results encourage further experiments to study in depth the trypanocidal properties of this drug already licensed for use in human cancers.  相似文献   

7.
A procedure was developed to purify a coated vesicle fraction from the protozoan parasite Trypanosoma brucei. Electron microscopy revealed a difference between T. brucei coated vesicles and clathrin-coated vesicles from other eukaryotes: trypanosome vesicles were larger (100 to 150 nm in diameter) and contained an inner coat of electron-dense material in addition to the external coat. Evidence suggests that the internal coat is the parasite's variant surface glycoprotein (VSG) coat. The SDS-PAGE analysis shows the major protein of T. brucei coated vesicles has a molecular mass of 61 kD, similar to VSG; this protein was recognized in an immunoblot by anti-VSG serum. Trypanosome coated vesicles also contain a protein which comigrates with the major protein (clathrin) of coated vesicles purified from rat brains. However, this protein is a minor component and it is not serologically cross-reactive with mammalian clathrin. Immunoblot analysis demonstrated that the parasite vesicles contained host IgG, IgM, and serum albumin.  相似文献   

8.
Adenylate kinases supply energy routes in cellular energetic homeostasis. In this work, we identified and characterized the adenylate kinase activity in extracts from the flagellated parasite Trypanosoma cruzi, the causative agent of Chagas' disease. Adenylate kinase activity was detected in different subcellular fractions and the cytosolic isoform was biochemically characterized. Cytosolic adenylate kinase specific activity increases continuously during the epimastigote growth and is down-regulated when other soluble phosphotransferase, arginine kinase, is overexpressed. Six different genes of adenylate kinase isoforms were identified and the mRNA expression was confirmed by RT-PCR and Northern Blot. Three open reading frames coding for different enzyme isoforms named TzADK1, TzADK2 and TzADK5 were cloned and functionally expressed in E. coli. This work reports an unusually large number of genes of adenylate kinases and suggests a coordinated regulation of phosphotransferase-mediated ATP regenerating pathways in the unicellular parasite Trypanosoma cruzi.  相似文献   

9.
Murine T cell lines responsive to the protozoan parasite Trypanosoma cruzi were generated in vitro by stimulating hyperimmune C57BL/6 lymphoid cells with trypomastigote stage antigen. A spleen-derived line designated ST1 and eight clones derived from ST1 were characterized. All lines bear the surface phenotype Thy-1.2+, Ly-1.2+, 2.2- and respond to T. cruzi antigen only in the presence of antigen-presenting cells matched at the I-A subregion of the H2 locus. Clonal specificity analyses indicated that these T. cruzi-selected T cells are species specific and recognize antigenic determinants that are expressed predominantly in the trypomastigote stage. On the basis of their distinct patterns of response to a panel of different T. cruzi strains, clones recognizing strain-specific, shared, or common determinants were identified. Functional studies indicated that ST1 and some but not all of the clones are capable of expressing antigen-specific T helper function in vitro and in vivo. In addition, co-incubation of T. cruzi-specific T cells with cultured T. cruzi-infected syngeneic macrophages led to the dose-dependent destruction of intracellular parasites. Most notably, ST1 and several of the cloned T. cruzi-specific T cell lines were able to passively protect syngeneic recipients from lethal T. cruzi challenge infection. Efforts to identify the parasite antigens recognized by these T cell lines, particularly the protective clones, are currently in progress.  相似文献   

10.
Tryparedoxin peroxidase from Trypanosoma cruzi (TcTXNPx) belongs to the family of typical 2-Cys peroxiredoxins. These enzymes function as antioxidants through their peroxidase and peroxynitrite reductase activities. In T. cruzi, as in all trypanosomatids, this enzyme is the final electron acceptor of a unique system for detoxifying hydroperoxides, constituting a relevant target for drug design. We have determined the crystal structure of TcTXPNx in the reduced active state. The structure comprises 10 subunits in the asymmetric unit, associated to form a decamer of toroidal shape obeying 52 (D5) point group symmetry. We have analyzed the structure of TcTXNPx by comparing it with other structures of typical 2-Cys peroxiredoxins in both redox states, and have identified key residues in the structural rearrangement taking place in the enzymatic cycle. This is the first report of the structure of an active peroxiredoxin that has peroxidase and peroxynitrite reductase activity, and it is noteworthy that it is from a human parasite. This knowledge is of interest for further understanding peroxide metabolism in these parasites, and in the design of new trypanosomatidal drugs against Chagas disease.  相似文献   

11.
The role of amino acids in trypanosomatids goes beyond protein synthesis, involving processes such as differentiation, osmoregulation and energy metabolism. The availability of the amino acids involved in those functions depends, among other things, on their transport into the cell. Here we characterize a glutamate transporter from the human protozoan parasite Trypanosoma cruzi. Kinetic data show a single saturable system with a Km of 0.30 mM and a maximum velocity of 98.34 pmoles min(-1) per 2 x 10(7) cells for epimastigotes and 20 pmoles min(-1) per 2 x 10(7) cells for trypomastigotes. Transport was not affected by parasite nutrient starvation for up to 3h. Aspartate, alanine, glutamine, asparagine, methionine, oxaloacetate and alpha-ketoglutarate competed with the substrate in 10-fold excess concentrations. Glutamate uptake was strongly dependent on pH, but not on Na+ or K+ concentrations in the extracellular medium. These data were consistent with the sensitivity of the system to the H+ ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone, suggesting that transport is driven by H+ concentration gradient across the cytoplasmic membrane. The glutamate transport increased linearly with temperature in a range from 15 to 40 degrees C, allowing the calculation of an activation energy of 52.38 kJ/mol.  相似文献   

12.
Protein tyrosine phosphatases (PTPs) form a large family of enzymes involved in the regulation of numerous cellular functions in eukaryotes. Several protein tyrosine phosphatases have been recently identified in trypanosomatides. Here we report the purification and biochemical characterization of TcPTP1, a protein tyrosine phosphatase from Trypanosoma cruzi, the causing agent of Chagas’ disease. The enzyme was cloned and expressed recombinantly in Escherichia coli and purified by Ni-affinity chromatography. Biochemical characterization of recombinant TcPTP1 with the PTP pseudo-substrate pNPP allowed the estimation of a Michaelis–Menten constant Km of 4.5 mM and a kcat of 2.8 s−1. We were able to demonstrate inhibition of the enzyme by the PTP1b inhibitor BZ3, which on its turn was able to accelerate the differentiation of epimastigotes into metacyclic forms of T. cruzi induced by nutritional stress. Additionally, this compound was able to inhibit by 50% the infectivity of T. cruzi trypomastigotes in a separate cellular assay. In conclusion our results indicate that TcPTP1 is of importance for cellular differentiation and invasivity of this parasite and thus is a valid target for the rational drug design of potential antibiotics directed against T. cruzi.  相似文献   

13.
Base J or beta-d-glucosylhydroxymethyluracil is a modification of thymine residues within the genome of kinetoplastid parasites. In organisms known to contain the modified base, J is located mainly within the telomeric repeats. However, in Trypanosoma brucei, a small fraction of J is also located within the silent subtelomeric variant surface glycoprotein (VSG) gene expression sites, but not in the active expression site, suggesting a role for J in regulating telomeric genes involved in pathogenesis. With the identification of surface glycoprotein genes adjacent to telomeres in the South American Trypanosome, Trypanosoma cruzi, we became interested in the telomeric distribution of base J. Analysis of J and telomeric repeat sequences by J immunoblots and Southern blots following DNA digestion, reveals approximately 25% of J outside the telomeric repeat sequences. Moreover, the analysis of DNA sequences immunoprecipitated with J antiserum, localized J within subtelomeric regions rich in life-stage-specific surface glycoprotein genes involved in pathogenesis. Interestingly, the pattern of J within these regions is developmentally regulated. These studies provide a framework to characterize the role of base J in the regulation of telomeric gene expression/diversity in T. cruzi.  相似文献   

14.
Protozoan parasites are responsible of important healthy problems, among others malaria, leishmaniasis and trypanosomiasis. The present work reports the characterization of the first mammalian ATP-binding cassette transporter, subfamily A (ABCA)-like in Trypanosoma cruzi. TcABC1 is a single copy gene differentially expressed along the life cycle of the parasite, being absent in its infective form. TcABC1 localizes to the plasma membrane, flagellar pocket and intracellular vesicles. Functional studies of TcABC1 in transfected parasites suggest that the protein is implicated in intracellular trafficking, as determined by the analysis of endocytosis and exocytosis events. The accumulation of the endocytic markers FM4-64 and NBD-SM is increased in transfected parasites. Similarly, ectophosphatase and ectoATPase activities are increased in TcABC1 overproducers. Indeed, transmission electronic microscopy analysis showed a higher number of intracellular vesicles in TcABC1 transfectants. Taken together, these results suggest that the protein is involved in the endocytic and exocytic pathways of T. cruzi.  相似文献   

15.
Phorbol ester binding was studied in protein kinase C-containing extracts obtained from Trypanosoma cruzi epimastigote forms. Specific 12-O-tetradecanoyl phorbol 13-acetate, [3H]PMA, or 12,13-O-dibutyryl phorbol, [3H]PDBu, binding activities, determined in T. cruzi epimastigote membranes, were dependent on ester concentration with a Kd of 9x10(-8) M and 11.3x10(-8) M, respectively. The soluble form of T. cruzi protein kinase C was purified through DEAE-cellulose chromatography. Both protein kinase C and phorbol ester binding activities co-eluted in a single peak. The DEAE-cellulose fraction was further purified into three subtypes by hydroxylapatite chromatography. These kinase activity peaks were dependent on Ca2+ and phospholipids and eluted at 40 mM (PKC I), 90 mM (PKC II) and 150 mM (PKC III) phosphate buffer, respectively. Western blot analysis of the DEAE-cellulose fractions, using antibodies against different isoforms of mammalian protein kinase C enzymes, revealed that the parasite expresses high levels of the alpha-PKC isoform. Immunoaffinity purified T. cruzi protein kinase C, isolated with an anti-protein kinase C antibody-sepharose column, were subjected to phosphorylation in the absence of exogenous phosphate acceptor. A phosphorylated 80 kDa band was observed in the presence of Ca2+, phosphatidylserine and diacylglycerol.  相似文献   

16.
Two-dimensional polyacrylamide gel electrophoresis has been used to analyze changes in protein content and protein synthesis in three stages of the life cycle of the protozoan parasite Trypanosoma brucei. The stages examined were slender and stumpy mammalian bloodstream forms and procyclic forms, which are analogous to the tsetse fly midgut stage. Two-dimensional gels of 35S-methionine-labeled proteins were examined by autoradiography to analyze newly synthesized protein, and gels were stained with ammoniacal silver to analyze proteins present. Several stage-specific molecules were noted. The most obvious was the variant surface glycoprotein, which was only present in bloodstream forms. Some other proteins were also bloodstream form specific; they had molecular weights of 120,000 and 38,000. Proteins of 52,000, 46,000, 25-30,000, and 16,000 daltons were present both in stumpy forms and procyclics but not in slender-form trypanosomes. Several proteins (molecular weights of 50-70,000, 43,000, 40,000, 26-24,000, 20-25,000, and 15,000) were present only in one of the three stages. One protein, a molecule of about 18,000 daltons present in both slender and stumpy parasites, did not appear to be synthesized in the stumpy stage. In vitro translation products of mRNA purified from the three stages were also examined. The abundance of mRNA encoding a protein of about 40,000 daltons appeared to be greater in slender than in stumpy parasites although the stumpy forms contained more of the protein and synthesized it at a higher rate.  相似文献   

17.
We report full 1H and 13C NMR assignments for 13 gluco- or galacto-pyranosylated derivatives of GlcNAc-ol, GalNAc-ol or ManNAc-ol, many of which have been prepared by enzymatic methods. These spectra are reference data to aid the structural analysis by NMR spectroscopy of glycosylated alditols derived from the mucin of the protozoan parasite Trypanosoma cruzi. A series of structural reporter groups for the derivatives from this unusual series of O-glycans are described.  相似文献   

18.
19.
20.
Calflagin are flagellar calcium-binding proteins belonging to the EF-hand super family described in several protozoa, including Trypanosoma cruzi. Evidences have shown that Ca(2+) may play an important regulatory role in trypanosomatid flagellar mobility. In these parasites, the response of the cell to variations of Ca(2+) levels is determined by a variety of calcium-modulated proteins. Starting from T. cruzi cDNA lambdagt11 library trypomastigote, a clone encoding a 29-kDa flagellar protein designated recombinant calflagin (rC29) was selected. rC29 is a calcium-acyl switch protein modified by the addition of myristate and palmitate at its amino terminal segment. In this work, unmyristoylated rC29 was expressed in Escherichia coli as an intein fusion protein and purified by affinity chromatography. Circular dichroism (CD) and fluorescence measurements showed conformational changes of rC29 due to Ca(2+) binding. The Ca(2+) binding constants were obtained by tryptophan intrinsic fluorescence spectroscopy. Fluorescence titration exhibited two classes of Ca(2+)-binding sites in the unmyristoylated rC29, which bind calcium with apparent association constant of K(a) of 3.3+/-0.5 (10(6)) and 1.9+/-0.2 (10(4)) M(-1). Experiment using 8-anilinonaphthalene-1-sulfonic acid (ANS) as hydrophobic probe showed that the Ca(2+)-loaded form of rC29 contains exposed hydrophobic surfaces, thus suggesting that rC29 is probably functioning as a calcium sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号