首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The growth characteristics and acetate production of several Escherichia coli strains were compared by using shake flasks, batch fermentations, and glucose-feedback-controlled fed-batch fermentations to assess the potential of each strain to grow at high cell densities. Of the E. coli strains tested, including JM105, B, W3110, W3100, HB101, DH1, CSH50, MC1060, JRG1046, and JRG1061, strains JM105 and B were found to have the greatest relative biomass accumulation, strain MC1060 accumulated the highest concentrations of acetic acid, and strain B had the highest growth rates under the conditions tested. In glucose-feedback-controlled fed-batch fermentations, strains B and JM105 produced only 2 g of acetate.liter-1 while accumulating up to 30 g of biomass.liter-1. Under identical conditions, strains HB101 and MC1060 accumulated less than 10 g of biomass.liter-1 and strain MC1060 produced 8 g of acetate.liter-1. The addition of various concentrations of sodium acetate to the growth medium resulted in a logarithmic decrease, with respect to acetate concentration, in the growth rates of E. coli JM105, JM105(pOS4201), and JRG1061. These data indicated that the growth of the E. coli strains was likely to be inhibited by the acetate they produced when grown on media containing glucose. A model for the inhibition of growth of E. coli by acetate was derived from these experiments to explain the inhibition of acetate on E. coli strains at neutral pH.  相似文献   

2.
Summary This study highlights data about the production of a recombinant protein (glyceraldehyde-3-phosphate dehydrogenase) byE. coli HB 101 (GAPDH) during batch and fed-batch fermentations in a complex medium. From a small number of experiments, this strain has been characterized in terms of protein production performance and glucose and acetate influences on growth and recombinant protein production. The present results show that this strain is suitable for recombinant protein production, in fed-batch culture 55 g L–1 of biomass and 6 g L–1 of GAPDH are obtained. However this strain, and especially GAPDH overproduction is sensitive to glucose availability. During fermentations, maximum yields of GAPDH production have been obtained in batch experiments for glucose concentration of 10 g L–1, and in fed-batch experiments for glucose availability of 10 g h–1 (initial volume 1.5 L). The growth of the strain and GAPDH overproduction are also inhibited by acetate. Moreover acetate has been noted as an activator of its own formation.  相似文献   

3.
The productivity of Escherichia coli as a producer of recombinant proteins is affected by its metabolic properties, especially by acetate production. Two commercially used E. coli strains, BL21 (lambdaDE3) and JM109, differ significantly in their acetate production during batch fermentation at high initial glucose concentrations. E. coli BL21 grows to an optical density (OD, 600 nm) of 100 and produces no more than 2 g/L acetate, while E. coli JM109 grows to an OD (600 nm) of 80 and produces up to 14 g/L acetate. Even in fed-batch fermentation, when glucose concentration is maintained between 0.5 and 1.0 g/L, JM109 accumulates 4 times more acetate than BL21. To investigate the difference between the two strains, metabolites and enzymes involved in carbon utilization and acetate production were analyzed (isocitrate, ATP, phosphoenolpyruvate, pyruvate, isocitrate lyase, and isocitrate dehydrogenase). The results showed that during batch fermentation isocitrate lyase activity and isocitrate concentration were higher in BL21 than in JM109, while pyruvate concentration was higher in JM109. The activation of the glyoxylate shunt pathway at high glucose concentrations is suggested as a possible explanation for the lower acetate accumulation in E. coli BL21. Metabolic flux analysis of the batch cultures supports the activity of the glyoxylate shunt in E. coli BL21.  相似文献   

4.
5.
ArcA is a global regulator that switches on the expression of fermentation genes and represses the aerobic pathways when Escherichia coli enters low oxygen growth conditions. The metabolic profile of E. coli CT1062 (DeltaarcA)and CT1061 (arcA2) grown in microaerobiosis with glycerol as carbon source were determined and compared with E. coli K1060, the arcA+ parent strain. Both arcA mutants achieved higher biomass yields than the wild-type strain. The production of acetate, formate, lactate, pyruvate, succinate and ethanol were determined in the supernatants of cultures grown on glycerol under microaerobic conditions for 48 h. The yield of extracellular metabolites on glycerol showed lower acid and higher ethanol values for the mutants. The ethanol/acetate ratio was 0.87 for the parent strain, 2.01 for CT1062, and 12.51 for CT1061. Accordingly, the NADH/NAD+ ratios were 0.18, 0.63, and 0.97, respectively. The extracellular succinate yield followed a different pattern, with yield values of 0.164 for K1060, 0.442 for CT1062 and 0.214 for CT1061. The dissimilarities observed can be attributed to the different effects exerted by the deletion and point mutations in a global regulator.  相似文献   

6.
Two Escherichia coli strains, widely used for the production of various recombinant proteins, were compared for their pre-induction growth and acetate accumulation patterns. The strains studied were E. coli BL21 (lambdaDE3), transformed with a plasmid encoding Pseudomonas exotoxin A, and an E. coli K12 derived strain, JM109, carrying a plasmid encoding maltose-binding protein fused with HIV protease. Cultures were grown in controlled bench-top fermentors to the optimal pre-induction density in both high glucose batch and low glucose fed batch strategies. The results showed the superiority of E. coli BL21 (lambdaDE3) as a host for a recombinant protein expression system. For example, JM109 responds differently to high glucose concentration and to low glucose concentration. Its acetate concentration was as high as 10 g/L in a batch mode and 5 g/L in a fed batch mode. In comparison, strain BL21 (lambdaDE3) reached 2 g/L acetate when grown in batch mode and not more than 1 g/L acetate when grown in a fed batch mode. E. coli BL21 (lambdaDE3), most likely, possesses an acetate self-control mechanism which makes it possible to grow to the desired pre-induction density in a high glucose medium using simple batch propagation techniques. Such a technique is cost effective, reproducible, and easy to scale up. (c) 1996 John Wiley & Sons, Inc.  相似文献   

7.
A stable high-copy-number plasmid pSYL105 containing the Alcaligenes eutrophus polyhydroxyalkanoic acid (PHA) biosynthesis genes was constructed. This plasmid was transferred to seven Escherichia coli strains (K12, B, W, XL1-Blue, JM109, DH5alpha, and HB101), which were subsequently compared for their ability to synthesize and accumulate ploy- (3-hydroxybutyric acid) (PHB). Growth of recombinant cells and PHB synthesis were investigated in detail in Luria-Bertani (LB) medium containing 20 g/L glucose. Cell growth, the rate of PHB synthesis, the extent of PHB accumulation, the amount of glucose utilized, and the amount of acetate formed varied from one strain to another. XL1-Blue (pSYL105) and B (pSYL105) synthesized PHB at the fastest rate, which was ca. 0.2 g PHB/g true cell mass-h, and produced PHB up to 6-7 g/L. The yields of cell mass, true cell mass, and PHB varied considerably among the strains. The PHB yield of XL1-Blue (pSYL105) in LB plus 20 g/L glucose was as high as 0.369 g PHB/g glucose. Strains W (pSYL105) and K12 (pSYL105) accumulated the least amount of PHB with the lowest PHB yield at the lowest synthesis rate. JM109 (pSYL105) accumulated PHB to the highest extent (85.6%) with relatively low true cell mass (0.77 g/L). Considerable filamentation of cells accumulating PHB was observed for all strains except for K12 and W, which seemed to be due either to the overexpression of the foreign PHA biosynthesis enzymes or to the accumulation of PHB. (c) 1994 John Wiley & Sons, Inc.  相似文献   

8.
L J Reha-Krantz 《Gene》1985,38(1-3):275-276
The Escherichia coli JM105 strain was constructed as a sup0 strain to facilitate the cloning of selected recombinants (Yanisch-Perron et al., 1985). In our work with bacteriophage T4, we observed that several T4 am mutants could grow on JM105. To characterize the suppressor activity of JM105, we tested the growth of several T4 am mutants on a variety of E. coli suppressor-containing strains.  相似文献   

9.
高产稳产聚羟基烷酸的重组大肠杆菌的构建   总被引:7,自引:0,他引:7  
重组大肠杆菌Escherichia coliHMS174(pTZ18UPHB) 含有携带聚羟基烷酸(PHA) 合成基因( phaCAB)** 的质粒pTZ18UPHB,是很有潜力的PHA 生产菌,但存在着质粒不稳定和不能合成3羟基丁酸(3HB) 与3羟基戊酸(3HV) 共聚物[P(3HBco3HV)] 的缺陷。将RK2 质粒上的par DE 基因引入pTZ18UPHB 构成质粒pJMC2 ,该质粒可以在宿主E.ColiHMS174 中稳定遗传。将培养基中的磷酸盐浓度降至18 m mol/L,发现E.Coli HMS174(pJMC2) 能够以丙酸为前体合成P(3HBco3HV) ,其中3HV 在共聚物中的含量为5 % ~8 % 。在5L自动发酵罐中分批补料培养E.Coli HMS174(pJMC2) ,培养基初始磷酸盐浓度为15 m mol/L,30 h 后每升培养液中干菌体可达42-5 g,P(3HBco3HV) 占干重的70 % ,其中3HV 在共聚物中的含量为4-9 % 。  相似文献   

10.
We constructed a new type of cloning vector, pERISH2, that transforms Escherichia coli HB101 only when a foreign DNA fragment is ligated into the cloning site of the plasmid vector. Plasmid pERISH2 carries the rcsB gene which is derived from the chromosome of E. coli HB101 and is involved in the regulation of colanic acid production. When E. coli HB101 is transformed by this vector carrying the intact rcsB gene, the gene product RcsB blocks bacterial growth. However, if the rcsB gene is inactivated by the insertion of a foreign DNA fragment, this recombinant plasmid no longer inhibits the growth of E. coli HB101. Although E. coli HB101 is not stably transformed by pERISH2, E. coli K-12 strains such as JM109 and C600 can harbor this vector. Therefore, pERISH2 can be amplified in JM109 and be prepared from this strain in a large quantity using conventional methods. A chromosomal gene library of Klebsiella pneumoniae is constructed easily and efficiently by the utilization of this new cloning vector.  相似文献   

11.
To study the role played by acetate metabolism during high-cell-density growth of Escherichia coli cells, we constructed isogenic null mutants of strain W3100 deficient for several genes involved either in acetate metabolism or the transition to stationary phase. We grew these strains under identical fed-batch conditions to the highest cell densities achievable in 8 h using a predictive-plus-feedback-controlled computer algorithm that maintained glucose at a set-point of 0.5 g/l, as previously described. Wild-type strains, as well as mutants lacking the ss subunit of RNA polymerase (rpoS), grew reproducibly to high cell densities (44–50 g/l dry cell weights, DCWs). In contrast, a strain lacking acetate kinase (ackA) failed to reach densities greater than 8 g/l. Strains lacking other acetate metabolism genes (pta, acs, poxB, iclR, and fadR) achieved only medium cell densities (15–21 g/l DCWs). Complementation of either the acs or the ackA mutant restored wild-type high-cell-density growth. On a dry weight basis, poxB and fadR strains produced approximately threefold more acetate than did the wild-type strain. In contrast, the pta, acs, or rpoS strains produced significantly less acetate per cell dry weight than did the wild-type strain. Our results show that acetate metabolism plays a critical role during growth of E. coli cultures to high cell densities. They also demonstrate that cells do not require the ss regulon to grow to high cell densities, at least not under the conditions tested. Journal of Industrial Microbiology & Biotechnology (2000) 24, 421–430. Received 12 November 1999/ Accepted in revised form 24 February 2000  相似文献   

12.
A simple pulse-based method for the determination of the maximum uptake capacities for glucose and oxygen in glucose limited cultivations of E. coli is presented. The method does not depend on the time-consuming analysis of glucose or acetate, and therefore can be used to control the feed rate in glucose limited cultivations, such as fed-batch processes. The application of this method in fed-batch processes of E. coli showed that the uptake capacity for neither glucose nor oxygen is a constant parameter, as often is assumed in fed-batch models. The glucose uptake capacity decreased significantly when the specific growth rate decreased below 0.15 h(-1) and fell to about 0.6 mmol g(-1) h(-1) (mmol per g cell dry weight and hour) at the end of fed-batch fermentations, where specific growth rate was approximately 0.02 h(-1). The oxygen uptake capacity started to decrease somewhat earlier when specific growth rate declined below 0.25 h(-1) and was 5 mmol g(-1) h(-1) at the end of the fermentations. The behavior of both uptake systems is integrated in a dynamic model which allows a better fitting of experimental values for glucose in fed-batch processes in comparison to generally used unstructured kinetic models.  相似文献   

13.
The kinetics of cell growth and foreign protein production, as well as factors affecting protein stability, were studied and optimized in batch and fed-batch fermentations of a recombinant strain of Escherichia coli. The pL promoter from bacteriophage lambda under the control of a temperature-sensitive cl represser, with the entire construct integrated into the E. coli chromosome through the use of a defective bacteriophage lambda lysogen, was used to direct the synthesis of T4 DNA ligase. The biphasic fermentations consisted of a primary growth phase at 30 degrees C followed by an induction phase which was initiated by shifting the temperature to 42 degrees C. In the fed-batch fermentations, additional nutrients were added at the time of initiating induction. Maintenance of sufficiently high concentrations of the organic substrates (glucose and casamino acids) during the induction phase was required for continued cell growth at 42 degrees C. Such growth was essential for T4 DNA ligase formation and in vivo stability. Hence, fed-batch fermentations produced the highest yield of the foreign protein Commensurate with providing lower total amounts of substrates. In such cases, high cell densities (6 g dry wt/L) with substantial intracellular levels of T4 DNA ligase (4.6% total cellular protein, or 2.7% of the dry biomass) were achieved.  相似文献   

14.
The expression of Vitreoscilla hemoglobin (VHb) in Escherichia coli JM101 (pRED2) causes the incorporation of the TEM beta-lactamase precursor into cytoplasmic inclusion bodies (IBs). Less pre-beta-lactamase is translocated and processed to its mature, periplasmic form in the strain coexpressing VHb than in the control strain E. coli JM101(pUC19) not expressing VHb. When cells are grown in a special fed-batch procedure, the formation of cytoplasmic IBs consisting of pre-beta-lactamase is also inducible in the control strain. Comparative microscopic and compositional analyses of IBs generated in E. coli JM101(pUC19) and JM101(pRED2) under identical growth conditions strongly suggest that pre-beta-lactamase and VHb coaggregate into common IBs in E. coli JM101 (pRED2).  相似文献   

15.
In the last decade, a major goal of research in biofuels has been to metabolically engineer microorganisms to ferment multiple sugars from biomass or agricultural wastes to fuel ethanol. Escherichia coli strains genetically engineered to contain the pet operon (Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase B genes) produce high levels of ethanol. Strains carrying the pet operon in plasmid (e.g., E. coli B/pLOI297) or in chromosomal (e.g., E. coli KO11) sites require antibiotics in the media to maintain genetic stability and high ethanol productivity. To overcome this requirement, we used the conditionally lethal E. coli strain FMJ39, which carries mutations for lactate dehydrogenase and pyruvate formate lyase and grows aerobically but is incapable of anaerobic growth unless these mutations are complemented. E. coli FBR1 and FBR2 were created by transforming E. coli FMJ39 with the pet operon plasmids pLOI295 and pLOI297, respectively. Both strains were capable of anaerobic growth and displayed no apparent pet plasmid losses after 60 generations in serially transferred (nine times) anaerobic batch cultures. In contrast, similar aerobic cultures rapidly lost plasmids. In high-cell-density batch fermentations, 3.8% (wt/vol) ethanol (strain FBR1) and 4.4% (wt/vol) ethanol (strain FBR2) were made from 10% glucose. Anaerobic, glucose-limited continuous cultures of strain FBR2 grown for 20 days (51 generations; 23 with tetracycline and then 28 after tetracycline removal) showed no loss of antibiotic resistance. Anaerobic, serially transferred batch cultures and high-density fermentations were inoculated with cells taken at 57 generations from the previous continuous culture. Both cultures continued to produce high levels of ethanol in the absence of tetracycline. The genetic stability conferred by selective pressure for pet-containing cells without requirement for antibiotics suggests potential commercial suitability for E. coli FBR1 and FBR2.  相似文献   

16.
ABSTRACT: BACKGROUND: Poly(4-hydroxybutyrate) [poly(4HB)] is a strong thermoplastic biomaterial with remarkable mechanical properties, biocompatibility and biodegradability. However, it is generally synthesized when 4-hydroxybutyrate (4HB) structurally related substrates such as gamma-butyrolactone, 4-hydroxybutyrate or 1,4-butanediol (1,4-BD) are provided as precursor which are much more expensive than glucose. At present, high production cost is a big obstacle for large scale production of poly(4HB). RESULTS: Recombinant Escherichia coli strain was constructed to achieve hyperproduction of poly(4-hydroxybutyrate) [poly(4HB)] using glucose as a sole carbon source. An engineering pathway was established in E. coli containing genes encoding succinate degradation of Clostridium kluyveri and PHB synthase of Ralstonia eutropha. Native succinate semialdehyde dehydrogenase genes sad and gabD in E. coli were both inactivated to enhance the carbon flux to poly(4HB) biosynthesis. Four PHA binding proteins (PhaP or phasins) including PhaP1, PhaP2, PhaP3 and PhaP4 from R. eutropha were heterologously expressed in the recombinant E. coli, respectively, leading to different levels of improvement in poly(4HB) production. Among them PhaP1 exhibited the highest capability for enhanced polymer synthesis. The recombinant E. coli produced 5.5 g L-1 cell dry weight containing 35.4% poly(4HB) using glucose as a sole carbon source in a 48 h shake flask growth. In a 6-L fermentor study, 11.5 g L-1 cell dry weight containing 68.2% poly(4HB) was obtained after 52 h of cultivation. This was the highest poly(4HB) yield using glucose as a sole carbon source reported so far. Poly(4HB) was structurally confirmed by gas chromatographic (GC) as well as 1H and 13C NMR studies. CONCLUSIONS: Significant level of poly(4HB) biosynthesis from glucose can be achieved in sad and gabD genes deficient strain of E. coli JM109 harboring an engineering pathway encoding succinate degradation genes and PHB synthase gene, together with expression of four PHA binding proteins PhaP or phasins, respectively. Over 68% poly(4HB) was produced in a fed-batch fermentation process, demonstrating the feasibility for enhanced poly(4HB) production using the recombinant strain for future cost effective commercial development.  相似文献   

17.
An integrated metabolic model for the production of acetate by Escherichia coli growing on glucose under aerobic conditions was presented previously (Ko et al., 1993). The resulting model equations can be used to explain phenomena often observed with industrial fermentations, i.e., increased acetate production which follows from high glucose uptake rate, a low dissolved oxygen concentration, a high specific growth rate, or a combination of these conditions. However, several questions still need to be addressed. First, cell composition is growth rate and media dependent. Second, the macromolecular composition varied between E. coli strains. And finally, a model that represents the carbon fluxes between the Embden-Meyerhof-Parnas (EMP) and the hexose monophosphate (HMP) pathways when cells are subject to internal and/or external stresses is still not well defined. In the present work, we have made an effort to account for these effects, and the resulting model equations show good agreement for wild-type and recombinant E. coli experimental data for the acetate concentration, the onset of acetate secretion, and cell yield based on glucose. These results are useful for optimizing aerobic E. coli fermentation processes. More specifically, we have determined the EMP pathway carbon flux profiles required by the integrated metabolic model for an accurate fit of the acetic acid profile data from a wild-type E. coli strain ML308. These EMP carbon flux profiles were correlated with a dimensionless measurement of biomass and then used to predict the acetic acid profiles for E. coli strain F-122 expressing human immunodeficiency virus-(HIV(528)) beta-galactosidase fusion protein. The effect of different macromolecular compositions and growth rates between these two E. coli strains required a constant scaling factor for improved quantitative predictions.  相似文献   

18.
Fermentation conditions were developed in order to achieve simultaneously a high biomass concentration and high-level expression of a hybrid cI-human insulin B peptide gene. In our system, this hybrid gene is under control of the Escherichia coli trp promoter, in a trp derivative strain of E. coli W3110. The dual role of tryptophan concentration on cellular growth and hybrid gene regulation was studied in 10-l batch fermentations. In the best batch conditions, a biomass concentration of 12 g dry weight/l can be obtained, and 0.53 g/l of cI-insulin B hybrid protein is produced. Tryptophan in the culture medium is consumed by the growing culture, until a level is reached that causes induction of the hybrid gene. Plasmid loss was detected, as only 62% of the cells retained the recombinant plasmid. In order to increase the hybrid protein production level, a fed-batch culture strategy was developed whereby the specific growth rate of the cells was restrained. Using the same amount of nutrients as in the batch fermentations, it was possible to increase the final biomass concentration to 20 g/l, plasmid-bearing cells in the population to 90% and recombinant hybrid protein to 1.21 g/l. Correspondence to: F. Bolivar  相似文献   

19.
Escherichia coli W3110 was previously engineered to produce xylitol from a mixture of glucose plus xylose by expressing xylose reductase (CbXR) and deleting xylulokinase (DeltaxylB), combined with either plasmid-based expression of a xylose transporter (XylE or XylFGH) (Khankal et al., J Biotechnol, 2008) or replacing the native crp gene with a mutant (crp*) that alleviates glucose repression of xylose transport (Cirino et al., Biotechnol Bioeng 95:1167-1176, 2006). In this study, E. coli K-12 strains W3110 and MG1655 and wild-type E. coli B were compared as platforms for xylitol production from glucose-xylose mixtures using these same strategies. The engineered strains were compared in fed-batch fermentations and as non-growing resting cells. Expression of CRP* in the E. coli B strains tested was unable to enhance xylose uptake in the presence of glucose. Xylitol production was similar for the (crp*, DeltaxylB)-derivatives of W3110 and MG1655 expressing CbXR (average specific productivities of 0.43 g xylitol g cdw(-1 )h(-1) in fed-batch fermentation). In contrast, results varied substantially between different DeltaxylB-derivative strains co-expressing either XylE or XylFGH. The differences in genetic background between these host strains can therefore profoundly influence metabolic engineering strategies.  相似文献   

20.
Several recombinant Escherichia coli strains, including XL1-Blue, JM109, HB101, and DH5alpha harboring a stable high-copynumber plasmid pSYL105 containing the Alcaligenes eutrophus polyhydroxyalkanoate (PHA) biosynthesis genes were constructed. These recombinant strains were examined for their ability to synthesize and accumulate poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymer from glucose and either propionate or valerate. All recombinant E. coli strains could synthesize the P(3HB-co-3HV) copolymer in the medium containing glucose and propionate. However, only the homopolymer poly-(3-hydroxybutyrate) [P(3HB)] was synthesized from glucose and valerate. The PHA concentration and the 3HV fraction could be increased by inducing with acetate and/or oleate. When supplemented with oleate, the 3HV fraction increased by fourfold compared with that obtained without induction. Induction with propionate resulted in lower PHA concentration due to the inhibitory effect, but an 3HV fraction of as high as 33.0% could be obtained. These results suggest that P(3HB-co-3HV) can be efficiently produced from propionate by recombinant E. coli by inducing with acetate, propionate, or oleate. (c) 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号