首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The separation between the two reactive thiols SH1 (Cys-704) and SH2 (Cys-694) and that between SH1 and the active site of myosin subfragment-1 were further investigated by F?rster energy transfer techniques. The SH1-SH2 distance was determined with the probe 5-[[2-[(iodoacetyl)amino]ethyl] amino]naphthalene-1-sulfonic acid (AEDANS) attached to SH1 as the energy donor and 5-(iodoacetamido)fluorescein (IAF) attached to SH2 as energy acceptor. The results derived from measurements of donor lifetimes yielded a donor-acceptor separation in the range 26-52 A, with the distance R(2/3) based on rapid and isotropic probe motions being 40 A. These parameters were not sensitive to added MgADP, in agreement with previous results obtained by using the steady-state method. The SH1-SH2 distance was also determined with AEDANS attached to SH1 and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) attached to SH2. The range in R for the AEDANS/DDPM pair was 12-36 A, with R(2/3) equal to 27 A. The transfer efficiency between these two probes increased by an average of 38% upon addition of MgADP. These results are in agreement with those previously reported (Dalbey, R.E., Weiel, J. and Yount, R.G. (1983) Biochemistry 22, 4696-4706), but the uncertainty in choosing an appropriate value of the orientation factor to describe the AEDANS-DDPM separation does not allow a unique interpretation of the observed increase in energy transfer because it could reflect either an increase in the average orientation factor or a decrease in the donor-acceptor separation. Nevertheless, the results are consistent with the notion that nucleotide binding induces structural perturbations that can be sensed by SH1 and SH2. The distance between SH1 and the ATPase site was determined with AEDANS linked to SH1 and the nucleotide analogue 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-diphosphate (TNP-ADP) noncovalently bound to the active site as energy acceptor. The bound TNP-ADP was highly immobilized, with a depolarization factor approaching unity. The separation between AEDANS at SH1 and TNP-ADP at the active site was in the range 15-44 A. The actual minimal separation between SH1 and the active site is probably less than 15 A, which suggests that direct interaction between the two sites cannot be ruled out from energy transfer results.  相似文献   

2.
The fluorescence resonance energy transfer distance between 5-[2-[iodoacetyl)amino)ethyl]aminoaphthalene-1-sulfonic acid covalently attached to the SH1 thiol of myosin subfragment 1 as the energy donor and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide attached to SH2 as the energy acceptor has been found to decrease by about 7 A in the presence of MgADP (Dalby, R. E., Weiel, J., and Yount, R. G. (1983) Biochemistry 22, 4696-4706; Cheung, H. C., Gonsoulin, F., and Garland, F. (1985) Biochim. Biophys. Acta 832, 52-62). Fluorescence stopped-flow experiments on the same system have yielded biphasic traces which are resolvable into a fast and slow component, k1 and k2, respectively. Results of experiments in which k1 and k2 were measured as a function of excess ADP concentration showed: 1) a nonlinear dependence of the apparent rate constants on [ADP]; 2) k1 is a factor of 10 faster than k2. These results are consistent with the 3-step mechanism previously proposed for nucleotide binding to myosin S1 (Garland, F., and Cheung, H. C. (1979) Biochemistry 18, 5281-5289). Kinetic experiments in which the anisotropy of the donor was monitored show this quantity to be unchanged over the course of the reaction. The biphasic decrease of donor intensity is assigned to an increase in energy transfer efficiency which, from the above results, is due to a decrease in donor-acceptor distance, occurring in two steps. The fast step is associated with a 4-5-A decrease of the donor-acceptor separation, while the slow step is associated with a further decrease of approximately 2 A.  相似文献   

3.
The procedure of thermal ion-exchange chromatography has been used to examine the effect of prior tryptic cleavage on the stability of myosin subfragment 1 (SF1). Although it is found that digestion does destabilize the subunit interactions at physiological temperatures, the heavy-chain subunit can be isolated either as an equimolar complex comprised of 50K, 27K, and 21K fragments or as one comprised of 50K, 27K, and 18K peptides. Thus, the interactions within the heavy chain are considerably more stable than those between the two subunits. Both forms of the free severed heavy chain exhibit ATPase properties similar to those of the parent tryptic SF1. The Vmax for the actin-activated MgATPase of the free severed heavy chain is the same as that for both undigested and tryptic SF1 (A2). Since its Km for actin is similar to that of tryptic SF1(A2), it may be concluded that changes in the affinity of SF1 for actin induced by trypsin [Botts, J., Muhlrad, A., Takashi, R., & Morales, M. F. (1982) Biochemistry 21, 6903-6905] are not dependent on the presence of the associated alkali light chain. Furthermore, the communication between the SH1 site and the ATPase site is also shown to be independent of the associated alkali light chain, and it persists despite the cleavages present in the free heavy chain. Studies on the ability of these severed heavy chains to reassociate with free A1 and A2 chains indicate that the binding site is retained in the 21K-severed heavy chain but is lost in the 18K form.  相似文献   

4.
Fluorescence energy transfer was measured by time-resolved and steady-state fluorimetry in order to investigate the spatial relationships between the nucleotide binding site of actin, the Cys-373 residue of actin, and the SH1 of myosin subfragment-1 in the rigor complex of acto-subfragment-1. N-Iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) bound to the Cys-373 of actin or the fluorescent ADP analogue 1-N6-ethenoadenosine-5'-diphosphate (epsilon-ADP) bound to F-actin was used as a donor and 4-(N-(iodoacetoxy)ethyl-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazo le (IANBD) or 5-iodoacetamidofluorescein (IAF) bound to SH1 of myosin subfragment-1 was used as an acceptor. Assuming the random orientation factor, K2, to be 2/3, the distance between Cys-373 residue of actin and SH1 of myosin subfragment-1 was calculated to be about 50 A, in agreement with the values previously reported, 60 A (Takashi, R. (1969) Biochemistry 18, 5164-69) and 50 A (Trayer, H.R. and Trayer, I.P. (1983) Eur. J. Biochem. 135, 47-59). The distance between the nucleotide binding site of actin and SH1 of myosin subfragment-1 was calculated to be about 70 A or greater.  相似文献   

5.
H R Trayer  I P Trayer 《Biochemistry》1988,27(15):5718-5727
Fluorescence resonance energy transfer measurements have been made between Cys-374 on actin and Cys-177 on the alkali light chain of myosin subfragment 1 (S1) using several pairs of donor-acceptor chromophores. The labeled light chain was exchanged into subfragment 1 and the resulting fluorescently labeled subfragment 1 isolated by ion-exchange chromatography on SP-Trisacryl. The efficiency of energy transfer was measured by steady-state fluorescence in a strong binding complex of acto-S1 and found to represent a spatial separation between the two probes of 5.6-6.3 nm. The same measurements were then made with weak binding acto-S1 complexes generated in two ways. First, actin was complexed with p-phenylenedimaleimide-S1, a stable analogue of S1-adenosine 5'-triphosphate (ATP), obtained by cross-linking the SH1 and SH2 heavy-chain thiols of subfragment 1 [Greene, L. E., Chalovich, J. M., & Eisenberg, E. (1986) Biochemistry 25, 704-709]. Large increases in transfer efficiency indicated that the two probes had moved closer together by some 3 nm. Second, weak binding complexes were formed between subfragment 1 and actin in the presence of the regulatory proteins troponin and tropomyosin, the absence of calcium, and the presence of ATP [Chalovich, J. M., & Eisenberg, E. (1982) J. Biol. Chem. 257, 2432-2437]. The measured efficiency of energy transfer again indicated that the distance between the two labeled sites had moved closer by about 3 nm. These data support the idea that there is a considerable difference in the structure of the acto-S1 complex between the weakly and strongly bound states.  相似文献   

6.
R Takashi  A Muhlrad  J Botts 《Biochemistry》1982,21(22):5661-5668
Fluorescence energy transfer was used to examine the spatial proximity between two key side chains in myosin subfragment 1 (S-1), viz., the reactive thiol (SH1) located on the C-terminal 20K tryptic fragment and the reactive lysyl (RLR) on the N-terminal 27K tryptic fragment of S-1 heavy chain. S-1 was specifically labeled at SH1 with an energy donor, N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine (AEDANS), and at RLR with an energy acceptor, 2,4,6,-trinitrobenzenesulfonate (TNBS). Prior blocking of SH1 with AEDANS increased the pK of RLR from 9.04 to 9.42. Trinitrophenylation of SH1-blocked S-1 was about 50% slower and sharply reduced the Ca2+ ATPase activity. Reciprocally, blocking of RLR with TNBS slowed the rate of reaction of SH1 and AEDANS by 40-60%. Addition of the second label does not grossly alter the conformation resulting from the first label. S-1 labeled at RLR with TNBS and at SH1 with optically inert iodoacetamide shows the same TNP difference spectrum +/- MgADP (lambda min 365 nm) as S-1 with S 1 free. Also, S-1 labeled at SH1 with AEDANS and at RLR with an optically inert methyl group shows the same AEDANS emission spectrum (lambda em max 475 nm), excited-state lifetime (tau = 20.3 ns) and rotational correlation time (phi = 106 ns) as S-1 with RLR free. When the decrease of either the quantum yield or the excited-state lifetime of the donor in the absence and presence of the acceptor was measured, the energy transfer efficiency was found to be 70%. The apparent interchromophore distance was calculated to be 2.6 nm through the use of the F?rster equation with an uncertainty of less than 12%.  相似文献   

7.
D J Moss  D R Trentham 《Biochemistry》1983,22(23):5261-5270
F?rster energy-transfer techniques have been applied to labeled myosin subfragment 1 from rabbit skeletal muscle to determine an intramolecular distance and whether this distance changes during magnesium-dependent ATPase activity. The alkali one light chain was labeled at Cys-177 with N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine (1,5-IAEDANS) and then exchanged into subfragment 1. High specificity of labeling was indicated by high-performance liquid chromatography analysis of a tryptic digest of the labeled light chain. 2'(3')-O-(2,4,6-Trinitrophenyl)adenosine 5'-diphosphate (TNP-ADP) was bound to the labeled protein at the ATPase active site. The efficiency of energy transfer between the probes was 0.09 when measured by both steady-state and time-resolved fluorescence. Anisotropy measurements of the bound AEDANS indicated considerable freedom of motion of the probe. The probable distance between the probes was 57 A. This distance was unchanged during triphosphatase activity. Two further sites of TNP-ADP interaction with subfragment 1 were found. The effect of these interactions on the energy-transfer measurements was reduced to a minimum by careful choice of reaction conditions.  相似文献   

8.
R Takashi 《Biochemistry》1979,18(23):5164-5169
The fast-reacting thiol (SH1) of myosin subfragment-1 (S-1) was covalently and specifically labeled with (iodoacetamido)fluorescein (IAF), while Cys-373 of actin was also covalently and preferentially labeled with N-(iodoacetyl)-N'-(1-sulfo-5-naphthyl)ethylenediamine (1,5-IAEDANS). The method of fluorescence energy transfer was used to examine the spatial proximity between the two sites, i.e., SH1 and Cys-373, in the rigor complex of acto-S-1. Approximately 30% fluorescence energy transfer was observed from the 1,5-IAEDANS on actin as a donor to the IAF on S-1 as an acceptor in their rigor complex; under certain assumptions this corresponds to a distance of ca. 6.0 nm.  相似文献   

9.
We have employed the method of radial distance measurements in order to orient the actin monomer in the F-actin filament. This method utilizes fluorescence resonance energy transfer measurements of the distance between two equivalent chemical points located on two different monomers. The interprobe distance obtained this way is used to compute the radial coordinate of the labeled amino acid [Taylor, D. L., Reidler, J., Spudich, J. A., & Stryer, L. (1981) J. Cell Biol. 89, 362-367]. Theoretical analysis has indicated that if radial coordinates of four points are determined and six intramolecular distances are known, one can, within symmetry limits, position the monomer about the filament axis. The radial distance of Gln-41 that had been enzymatically modified with dansyl, rhodamine, and fluorescein derivatives of cadaverine was found to be approximately 40-42 A. The determination of the radial distance of Cys-374 was accomplished by using monobromobimane and N-[[(iodoacetyl)amino]ethyl]-5- naphthylamine-1-sulfonate as donors and N-[4-[[4-(dimethylamino)phenyl]azo]phenyl]maleimide as acceptor; the results were consistent with a radial coordinate for this residue of 20-25 A. The effect of myosin subfragment 1 (S1) binding on the radial coordinates of (1) Gln-41, (2) Cys-374, and (3) the nucleotide binding site was also examined. S1 had a small effect on the radial coordinate of Gln-41, increasing it to 44-47 A. In the two remaining lases the change in the radial coordinate due to the S1 binding was negligible. This finding excludes certain models of the interaction between actin and S1 in which actin monomer rotates by a large angle when subfragment 1 binds to it.  相似文献   

10.
Modification of Lys-61 in actin with fluorescein-5-isothiocyanate (FITC) blocks actin polymerization [Burtnick, L. D. (1984) Biochim. Biophys. Acta 791, 57-62]. FITC-labelled actin recovered its ability to polymerize on addition of phalloidin. The polymers had the same characteristic helical thread-like structure as normal F-actin and the addition of myosin subfragment-1 to the polymers formed the characteristic arrowhead structure in electron microscopy. The polymers activated the ATPase activity of myosin subfragment-1 as efficiently as normal F-actin. These results indicate that Lys-61 is not directly involved in an actin-actin binding region nor in myosin binding site. From static fluorescence polarization measurements, the rotational relaxation time of FITC-labelled actin filaments was calculated to be 20 ns as the value reduced in water at 20 degrees C, while any rotational relaxation time of 1,5-IAEDANS bound to Cys-374 on F-actin in the presence of a twofold molar excess of phalloidin could not be detected by static polarization measurements under the same conditions. This indicates that the Lys-61 side chain is extremely mobile even in the filamentous structure. Fluorescence resonance energy transfer between the donor 1,5-IAEDANS bound to SH1 of myosin subfragment-1 and the acceptor fluorescein-5-isothiocyanate bound to Lys-61 of actin in the rigor complex was measured. The transfer efficiency was 0.39 +/- 0.05 which corresponds to the distance of 5.2 +/- 0.1 nm, assuming that the energy donor and acceptor rotate rapidly relative to the fluorescence lifetime and that the transfer occurs between a single donor and an acceptor.  相似文献   

11.
Structural rearrangements of the myosin upper-50 kD subdomain are thought to play a key role in coordinating actin binding with nucleotide hydrolysis during the myosin ATPase cycle. Such rearrangements could open and close the active site in opposition to the actin-binding cleft, helping explain the opposing affinities of myosin for actin and nucleotide. To directly examine conformational changes across the active site during the ATPase cycle we have genetically engineered a mutant of chicken smooth-muscle myosin, F344W motor domain essential light chain, which contains a single tryptophan (344W) located on a short loop between two alpha helixes that traverse the upper-50 kD subdomain in front of the active site. Fluorescence resonance energy transfer was examined between the 344W donor probe and 2'(3')-O-(N-methylanthraniloyl) (mant)-nucleotide acceptor probes in the active site of this construct. The observed fluorescence resonance energy transfer efficiencies were 6.4% in the presence of mant ADP and 23.8% in the presence of mant ATP, corresponding to distances of 33.4 A and 24.9 A, respectively. Our results are consistent with structural rearrangements in which there is an 8.5-A closure between the 344W residue and the mant moiety during the transition from the strongly (ADP) to weakly (ATP) actin-bound states of the myosin ATPase cycle.  相似文献   

12.
The reactive thiol Cys-697 (SH2) in myosin ATPase was labeled with a fluorescent analog of maleimide, 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid (MIANS) (Hiratsuka, T. (1992) J. Biol. Chem. 267, 14941-14948). Although the tryptophan fluorescence of myosin subfragment-1 (S-1) was slightly affected by incorporation of the MIANS fluorophore, the tryptophan fluorescence of the resultant S-1 derivative (MIANS-S-1) was enhanced by ATP in a manner similar to that of unlabeled S-1. The quenching of tryptophan fluorescence of MIANS-S-1 was shown to result from a transfer of the excitation energy from tryptophanyl residue(s) to the MIANS fluorophore attached to SH2, which absorbed and fluoresced maximally at 325 and 418 nm, respectively. The energy transfer measurements were performed in the presence of acrylamide and compared to those performed in the absence of the quencher. The energy transfer efficiencies were found to be unaltered by acrylamide, indicating that the observed fluorescence energy transfer is originated exclusively from the tryptophanyl residue(s) that are not affected by acrylamide, i.e. the ATP-sensitive tryptophanyl residue(s) of S-1 (Torgerson, P. M. (1984) Biochemistry 23, 3002-3007). The distance between the tryptophanyl residue(s) and Cys-697 was calculated to be 27 A assuming a single donor-acceptor pair. Trp-510 is proposed to be one of the ATP-sensitive tryptophanyl residues.  相似文献   

13.
K Ajtai  L Pótó  T P Burghardt 《Biochemistry》1990,29(33):7733-7741
The nitroxide spin label (iodoacetamido)proxyl (IPSL) was specifically and rigidly attached to sulfhydryl 1 (SH1) on myosin subfragment 1 (S1). The specificity of this label for SH1 was demonstrated by using a technique where the spin label is localized on the electrophoresis-isolated proteolytic fragments of myosin using electron paramagnetic resonance (EPR). Studies of the rigidity of the probe on SH1 indicate that the IPSL is immobilized on the surface of S1 in the presence and absence of the nucleotides MgADP or MgATP. The EPR spectrum of muscle fibers decorated with IPSL-S1 shows that the IPSL-S1 rotates from its orientation in rigor upon binding MgADP. The angular displacement due to nucleotide binding is larger than that detected with the (maleimido)tempo spin label [Ajtai, K., French, A. R., & Burghardt, T. P. (1989) Biophys. J. 56, 535-541], demonstrating that the IPSL is oriented on the myosin cross-bridge in a manner that is favorable for detecting cross-bridge rotation during the rigor to MgADP state transition.  相似文献   

14.
The spatial relationships between Lys-61, Cys-374 on actin or SH1 on myosin subfragment-1 (S1) and Cys-190 on tropomyosin or Cys-133 on troponin-I (TnI) in a reconstituted thin filament were studied by fluorescence resonance energy transfer. 5-(2-Iodoacetylaminoethyl)aminonaphthalene 1-sulfonic acid (IAEDANS) attached to Lys-190 on tropomyosin or to Cys-133 on TnI was used as a donor. Fluorescein 5-isothiocyanate (FITC) attached to Lys-61 or 5-(iodoacetoamido)fluorescein (IAF) attached to Cys-374 on actin and 4-dimethylaminophenyl-azophenyl 4'-maleimide (DABMI) attached to SH1 on S1 were used as an acceptor. The transfer efficiency between AEDANS attached to Cys-190 on tropomyosin and FITC attached to Lys-61 on actin was 0.42 in the absence of troponin, 0.46 in the presence of troponin and Ca2+ and 0.55 in the presence of troponin and absence of Ca2+. The corresponding distances between the probes were calculated to be 4.7 nm, 4.6 nm and 4.3 nm respectively, assuming a random orientation factor K2 = 2/3. A large difference in the transfer efficiency from AEDANS attached to Cys-133 on TnI to FITC attached to Lys-61 on actin was observed between in the presence (0.52) and absence (0.70) of Ca2+. The corresponding distances between the probes were calculated to be 4.5 nm in the presence of Ca2+ and 3.9 nm in the absence of Ca2+. The distance between Cys-190 on tropomyosin and Cys-374 on actin was measured to be 5.1 nm and the transfer efficiency (0.35) did not change upon addition of troponin whether Ca2+ is present or not, in agreement with the previous report [Tao, T., Lamkin, M. & Lehrer, S. S. (1983) Biochemistry 22, 3059-3064]. The distance between Cys-133 on TnI and Cys-374 on actin was measured to be 4.4 nm. No detectable change in transfer efficiency (0.58) was observed between values in the presence and absence of Ca2+. These results suggest that a relative movement of the two domains of actin monomer in a reconstituted thin filament occurs in response to a change in Ca2+ concentration. The transfer efficiencies between DABMI attached to SH1 on S1 and AEDANS attached to Cys-190 on tropomyosin or Cys-133 on TnI were too small (less than 2%) for an accurate estimation of the distances, suggesting the distances are longer than 7.3 nm.  相似文献   

15.
In order to elucidate the molecular basis of energy transduction by myosin as a molecular motor, a fluorescent ribose-modified ATP analog 2'(3')-O-[6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl]-ATP (NBD-ATP), was utilized to study the conformational change of the myosin motor domain during ATP hydrolysis using the fluorescence resonance energy transfer (FRET) method. The FRET efficiency from the fluorescent probe, BD- or AD-labeled at the reactive cysteine residues, SH1 (Cys 707) or SH2 (Cys697), respectively, to the NBD fluorophore in the ATP binding site was measured for several transient intermediates in the ATPase cycle. The FRET efficiency was greater than that using NBD-ADP. The FRETs for the myosin.ADP.AlF4- and myosin.ADP.BeFn ternary complexes, which mimic the M*.ADP.P(i) state and M.ATP state in the ATPase cycle, respectively, were similar to that of NBD-ATP. This suggests that both the SH1 and SH2 regions change their localized conformations to move closer to the ATPase site in the M*.ATP state and M**.ADP.P(i) state than in the M*.ADP state. Furthermore, we measured energy transfer from BD in the essential light chain to NBD in the active site. Assuming the efficiency at different states, myosin adopts a conformation such that the light chain moves closer to the active site by approximately 9 A during the hydrolysis of ATP.  相似文献   

16.
The photochemical reaction of MgADP-vanadate with the active site of myosin has been used to place a serine at the binding site for the gamma-phosphate of ATP. Irradiation of the MgADP-vanadate myosin subfragment 1 transition state-like complex with UV light specifically photooxidizes the hydroxyl group of a serine residue to an aldehyde (Cremo, C. R., Grammer, J. C., and Yount, R. G. (1988) Biochemistry 27, 8415-8420). Reduction of photooxidized myosin with Na-B3H4 gave only 3H-labeled serine. Here, subsequent extensive proteolytic digestion of 3H-labeled myosin subfragment 1 with trypsin and thermolysin yielded two 3H-labeled peptides, both of which contained the sequence Gly-Glu-Ser-Gly-Ala-Gly-Lys-Thr, in which all the 3H was associated with the serine. This sequence is conserved in all myosin heavy chains sequenced to date and corresponds to residues 178-185 in the rabbit myosin heavy chain (Tong, S. W., and Elzinga, M. (1983) J. Biol. Chem. 21, 13100-13110). These results place Ser-180 at the gamma-phosphate-binding site for ATP and indicate that the glycine-rich loop around the serine provides essential elements of the phosphate-binding site for ATP in all myosin molecules. Such a role was previously suggested based on the common sequence Gly-X-X-X-X-Gly-Lys-Thr/Ser, found in myosin and many other nucleotide-binding enzymes (Walker, J. E., Saraste, M., Runswick, M. H., and Gay, N. J. (1982) EMBO J. 1, 945-951).  相似文献   

17.
The synthetic heptapeptide, Ile-Arg-Ile-Cys-Arg-Lsy-Gly-ethoxy, an analog of one of the actin binding sites on myosin head (S-site) (Suzuki, R., Nishi, N., Tokura, S., and Morita, F. (1987) J. Biol. Chem. 262, 11410-11412) was found to completely inhibit the acto-S-1 (myosin subfragment 1) ATPase activity. The effect of the heptapeptide on the binding ability of S-1 for F-actin was determined by an ultracentrifugal separation. Results indicated that the heptapeptide scarcely dissociated the acto-S-1 complex during the ATPase reaction. Consistent results were obtained from the acto-S-1 ATPase activities determined as a function of S-1 concentrations in the absence or presence of the heptapeptide at a fixed F-actin concentration. The heptapeptide reduced the maximum acto-S-1 ATPase activity without affecting the apparent dissociation constant of the acto-S-1 complex. The heptapeptide bound by a site on actin complementary to the S-site probably inhibits the activation of S-1 ATPase by F-actin. These results suggest that S-1 ATPase is necessary to rebind transiently with F-actin at the S-site in order to be activated by F-actin. This is consistent with the activation mechanism proposed assuming the two actin-binding sites on S-1 ATPase (Katoh, T., and Morita F. (1984) J. Biochem. (Tokyo) 96, 1223-1230).  相似文献   

18.
R Takashi  A A Kasprzak 《Biochemistry》1987,26(23):7471-7477
Using enzymatic labeling, we have conjugated the fluorescence probe dansylcadaverine (DNC) to Gln-41 of rabbit skeletal muscle actin with the intention of utilizing the dansyl chromophore as a donor in fluorescence resonance energy transfer (FRET) distance measurements. The fluorescence decay of DNC-actin was found to consist of two decay constants (8.23 and 21.2 ns) that were associated with two different but partially overlapping spectra of the dye. Three different chemical points on myosin subfragment 1 (S1) were labeled with suitable acceptors: reactive thiol 1 (SH1) and Cys-136 on LC3 were modified with tetramethylrhodamine 5- (and 6-) iodoacetamide (ITMR); Lys-83 (RLR) was derivatized with trinitrobenzenesulfonate. In the rigor complex of the two labeled proteins, fluorescence resonance energy transfer took place, the efficiency of which was 10.9, 9.28, and 3.73% for the transfer from Gln-41 to SH1, Cys-136 (LC3), and RLR, respectively. The limits of the F?rster critical distance for each pair were obtained from the analysis of the polarization spectra of the donor and of the acceptors. The kappa 2(2/3) distances from actin Gln-41 to the three points on S1 were 63, 66, and greater than 37 A for SH1, Cys-136 (LC3), and RLR, respectively.  相似文献   

19.
Cyclic conformational changes in the myosin head are considered essential for muscle contraction. We hereby show that the extension of the fluorescence resonance energy transfer method described originally by Taylor et al. (Taylor, D. L., Reidler, J., Spudich, J. A., and Stryer, L. (1981) J. Cell Biol. 89, 362-367) allows determination of the position of a labeled point outside the actin filament in supramolecular complexes and also characterization of the conformational heterogeneity of an actin-binding protein while considering donor-acceptor distance distributions. Using this method we analyzed proximity relationships between two labeled points of S1 and the actin filament in the acto-S1 rigor complex. The donor (N-[[(iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonate) was attached to either the catalytic domain (Cys-707) or the essential light chain (Cys-177) of S1, whereas the acceptor (5-(iodoacetamido)fluorescein) was attached to the actin filament (Cys-374). In contrast to the narrow positional distribution (assumed as being Gaussian) of Cys-707 (5 +/- 3 A), the positional distribution of Cys-177 was found to be broad (102 +/- 4 A). Such a broad positional distribution of the label on the essential light chain of S1 may be important in accommodating the helically arranged acto-myosin binding relative to the filament axis.  相似文献   

20.
T Hiratsuka 《Biochemistry》1987,26(11):3168-3173
When myosin subfragment 1 (S-1) reacts with the bifunctional reagents with cross-linking spans of 3-4.5 A, p-nitrophenyl iodoacetate and p-nitrophenyl bromoacetate, the 20-kilodalton (20-kDa) segment of the heavy chain is cross-linked to the 26-kDa segment via the reactive thiol SH2. The well-defined reactive lysyl residue Lys-83 of the 26-kDa segment was not involved in the cross-linking. The cross-linking was completely abolished by nucleotides. Taking into account the recent report that SH2 is cross-linked to a thiol of the 50-kDa segment of S-1 using a reagent with a cross-linking span of 2 A [Chaussepied, P., Mornet, D., & Kassab, R. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2037-2041], present results suggest that SH2 of S-1 lies close to both the 26- and 50-kDa segments of the heavy chain. The data also encourage us to confirm our previous suggestion that the ATPase site of S-1 residues at or near the region where all three segments of 26, 50, and 20 kDa are contiguous [Hiratsuka, T. (1984) J. Biochem. (Tokyo) 96, 269-272; Hiratsuka, T. (1985) J. Biochem. (Tokyo) 97, 71-78].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号