首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions of human 8-oxoguanine-DNA glycosylase (hOGG1) with single- and double-stranded oligodeoxyribonucleotides (ODN) have been studied by the method of stepwise increase in ligand complexity. The ODNs have been found to inhibit the glycosylase-catalyzed reaction competitively. The K1 values have been determined for a set of ODNs. All units of non-specific DNA within the enzyme footprint have been shown to interact with the protein globule in an additive manner. An increase in the d(pN)n length (n) by one unit caused a monotonous 1.4-1.5-fold increase in their affinity for the glycosylase ODN until n = 10, mostly due to weak nonspecific contacts of the enzyme and the sugar-phosphate backbone. The weak nonspecific additive interactions contributed about five orders of magnitude in the affinity of hOGG1 for specific DNA (Kd approximately 10(-5) M), whereas introduction of a 8-oxoguanine residue added about three orders of magnitude to this affinity (Kd approximately 10(-8) M). Quantitative features of recognition of specific DNA by the enzyme are analyzed.  相似文献   

2.
Rad9–Rad1–Hus1 (9–1–1) is a checkpoint protein complex playing roles in DNA damage sensing, cell cycle arrest, DNA repair or apoptosis. Human 8-oxoguanine DNA glycosylase (hOGG1) is the major DNA glycosylase responsible for repairing a specific aberrantly oxidized nucleotide, 7,8-dihydro-8-oxoguanine (8-oxoG). In this study, we identified a novel interaction between hOGG1 and human 9–1–1, and investigated the functional consequences of this interaction. Co-immunoprecipitation assays using transiently transfected HEK293 cells demonstrated an interaction between hOGG1 and the 9–1–1 proteins. Subsequently, GST pull-down assays using bacterially expressed and purified hOGG1-His and GST-fused 9–1–1 subunits (GST-hRad9, GST-hRad1, and GST-hHus1) demonstrated that hOGG1 interacted directly with the individual subunits of the human 9–1–1 complex. In vitro excision assay, which employed a DNA duplex containing an 8-oxoG/C mismatch, showed that hRad9, hRad1, and hHus1 enhanced the 8-oxoG excision and β-elimination activities of hOGG1. In addition, the presence of hRad9, hRad1, and hHus1 enhanced the formation of covalently cross-linked hOGG1–8-oxoG/C duplex complexes, as determined by a trapping assay using NaBH4. A trimeric human 9–1–1 complex was purified from Escherichia coli cell transformed with hRad9, His-fused hRad1, or His-fused hHus1 expressing vectors. It also showed the similar activity to enhance in vitro hOGG1 glycosylase activity, compared with individual human 9–1–1 subunits. Detection of 8-oxoG in HEK293 cells using flow cytometric and spectrofluorometric analysis revealed that over-expression of hOGG1 or human 9–1–1 reduced the formation of 8-oxoG residues following the H2O2 treatment. The highest 8-oxoG reduction was observed in HEK293 cells over-expressing hOGG1 and all the three subunits of human 9–1–1. These indicate that individual human 9–1–1 subunits and human 9–1–1 complex showed almost the same abilities to enhance the in vitro 8-oxoG excision activity of hOGG1, but that the greatest effect to remove 8-oxoG residues in H2O2-treated cells was derived from the 9–1–1 complex as a whole.  相似文献   

3.
The general principles of recognition of nucleic acids by proteins are among the most exciting problems of molecular biology. Human lactoferrin (LF) is a remarkable protein possessing many independent biological functions, including interaction with DNA. In human milk, LF is a major DNase featuring two DNA‐binding sites with different affinities for DNA. The mechanism of DNA recognition by LF was studied here for the first time. Electrophoretic mobility shift assay and fluorescence measurements were used to probe for interactions of the high‐affinity DNA‐binding site of LF with a series of model‐specific and nonspecific DNA ligands, and the structural determinants of DNA recognition by LF were characterized quantitatively. The minimal ligands for this binding site were orthophosphate (Ki = 5 mM), deoxyribose 5'‐phosphate (Ki = 3 mM), and different dNMPs (Ki = 0.56–1.6 mM). LF interacted additionally with 9–12 nucleotides or nucleotide pairs of single‐ and double‐stranded ribo‐ and deoxyribooligonucleotides of different lengths and sequences, mainly through weak additive contacts with internucleoside phosphate groups. Such nonspecific interactions of LF with noncognate single‐ and double‐stranded d(pN)10 provided ~6 to ~7.5 orders of magnitude of the enzyme affinity for any DNA. This corresponds to the Gibbs free energy of binding (ΔG0) of ?8.5 to ?10.0 kcal/mol. Formation of specific contacts between the LF and its cognate DNA results in an increase of the DNA affinity for the enzyme by approximately 1 order of magnitude (Kd = 10 nM; ΔG0 ≈ ?11.1 kcal/mol). A general function for the LF affinity for nonspecific d(pN)n of different sequences and lengths was obtained, giving the Kd values comparable with the experimentally measured ones. A thermodynamic model was constructed to describe the interactions of LF with DNA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
8-Oxoguanine-DNA glycosylase 1 (OGG1), with intrinsic AP lyase activity, is the major enzyme for repairing 7,8-dihydro-8-oxoguanine (8-oxoG), a critical mutagenic DNA lesion induced by reactive oxygen species. Human OGG1 excised the damaged base from an 8-oxoG·C-containing duplex oligo with a very low apparent kcat of 0.1 min–1 at 37°C and cleaved abasic (AP) sites at half the rate, thus leaving abasic sites as the major product. Excision of 8-oxoG by OGG1 alone did not follow Michaelis–Menten kinetics. However, in the presence of a comparable amount of human AP endonuclease (APE1) the specific activity of OGG1 was increased ~5-fold and MichaelisMenten kinetics were observed. Inactive APE1, at a higher molar ratio, and a bacterial APE (Nfo) similarly enhanced OGG1 activity. The affinity of OGG1 for its product AP·C pair (Kd ~ 2.8 nM) was substantially higher than for its substrate 8-oxoG·C pair (Kd ~ 23.4 nM) and the affinity for its final β-elimination product was much lower (Kd ~ 233 nM). These data, as well as single burst kinetics studies, indicate that the enzyme remains tightly bound to its AP product following base excision and that APE1 prevents its reassociation with its product, thus enhancing OGG1 turnover. These results suggest coordinated functions of OGG1 and APE1, and possibly other enzymes, in the DNA base excision repair pathway.  相似文献   

5.
Hegde V  Wang M  Deutsch WA 《DNA Repair》2004,3(2):121-126
The human ribosomal protein S3 (hS3) possesses multifunctional activities that are involved in both protein translation, as well as the ability of cleaving apurinic/apyrimidinic (AP) DNA via a beta-elimination reaction. We recently showed that hS3 also has a surprising binding affinity for an 7,8-dihydro-8-oxoguanine (8-oxoG) residue embedded in a 5' end labeled 37mer DNA oligonucleotide. To understand the interaction of hS3 and DNA templates containing 8-oxoG, we carried out real-time analysis using surface plasmon resonance (SPR). Notably, hS3 was found to have an apparent three orders of magnitude higher binding affinity (KD) for 8-oxoG than the human N-glycosylase/AP lyase base excision repair (BER) enzyme OGG1. An even more dramatic five orders of magnitude higher binding affinity for AP DNA was found for hS3 as opposed to hOGG1. These results suggest that ribosomal protein hS3 may have a multifunctional role that may also affect functions associated with DNA base excision repair transactions.  相似文献   

6.
The generation of reactive oxygen species in the cell provokes, among other lesions, the formation of 8-oxo-7,8-dihydroguanine (8-oxoG) in DNA. Due to mispairing with adenine during replication, 8-oxoG is highly mutagenic. To minimise the mutagenic potential of this oxidised purine, human cells have a specific 8-oxoG DNA glycosylase/AP lyase (hOGG1) that initiates the base excision repair (BER) of 8-oxoG. We show here that in vitro this first enzyme of the BER pathway is relatively inefficient because of a high affinity for the product of the reaction it catalyses (half-life of the complex is >2 h), leading to a lack of hOGG1 turnover. However, the glycosylase activity of hOGG1 is stimulated by the major human AP endonuclease, HAP1 (APE1), the enzyme that performs the subsequent step in BER, as well as by a catalytically inactive mutant (HAP1-D210N). In the presence of HAP1, the AP sites generated by the hOGG1 DNA glycosylase can be occupied by the endonuclease, avoiding the re-association of hOGG1. Moreover, the glycosylase has a higher affinity for a non-cleaved AP site than for the cleaved DNA product generated by HAP1. This would shift the equilibrium towards the free glycosylase, making it available to initiate new catalytic cycles. In contrast, HAP1 does not affect the AP lyase activity of hOGG1. This stimulation of only the hOGG1 glycosylase reaction accentuates the uncoupling of its glycosylase and AP lyase activities. These data indicate that, in the presence of HAP1, the BER of 8-oxoG residues can be highly efficient by bypassing the AP lyase activity of hOGG1 and thus excluding a potentially rate limiting step.  相似文献   

7.
《Free radical research》2013,47(10):1239-1248
Abstract

Ionizing radiations such as X-ray and γ-ray can directly or indirectly produce clustered or multiple damages in DNA. Previous studies have reported that overexpression of DNA glycosylases in Escherichia coli (E. coli) and human lymphoblast cells caused increased sensitivity to γ-ray and X-ray irradiation. However, the effects and the mechanisms of other radiation, such as low dose rate radiation, heavy-ion beams, or hydrogen peroxide (H2O2), are still poorly understood. In the present study, we constructed a stable HeLaS3 cell line overexpressing human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) protein. We determined the survival of HeLaS3 and HeLaS3/hOGG1 cells exposed to UV, heavy-ion beams, γ-rays, and H2O2. The results showed that HeLaS3 cells overexpressing hOGG1 were more sensitive to γ-rays, OH?, and H2O2, but not to UV or heavy-ion beams, than control HeLaS3. We further determined the levels of 8-oxoG foci and of chromosomal double-strand breaks (DSBs) by detecting γ-H2AX foci formation in DNA. The results demonstrated that both γ-rays and H2O2 induced 8-oxoguanine (8-oxoG) foci formation in HeLaS3 cells. hOGG1-overexpressing cells had increased amounts of γ-H2AX foci and decreased amounts of 8-oxoG foci compared with HeLaS3 control cells. These results suggest that excess hOGG1 removes the oxidatively damaged 8-oxoG in DNA more efficiently and therefore generates more DSBs. Micronucleus formation also supported this conclusion. Low dose-rate γ-ray effects were also investigated. We first found that overexpression of hOGG1 also caused increased sensitivity to low dose rate γ-ray irradiation. The rate of micronucleus formation supported the notion that low dose rate irradiation increased genome instability.  相似文献   

8.
7,8-dihydro-8-oxoguanine (8-oxoG) and 2,6-diamino-4-hydroxyformamidopyrimidine (Fapy) are major DNA lesions formed by reactive oxygen species and are involved in mutagenic and/or lethal events in cells. Both lesions are repaired by human 7, 8-dihydro-8-oxoguanine DNA glycosylase (hOGG1) and formamidopyrimidine DNA glycosylase (Fpg) in human and Escherichia coli cells, respectively. In the present study, the repair activities of hOGG1 and Fpg were compared using defined oligonucleotides containing 8-oxoG and a methylated analog of Fapy (me-Fapy) at the same site. The k(cat)/K(m) values of hOGG1 for 8-oxoG and me-Fapy were comparable, and this was also the case for Fpg. However, the k(cat)/K(m) values of hOGG1 for both lesions were approximately 80-fold lower than those of Fpg. Analysis of the Schiff base intermediate by NaBH(4) trapping implied that lower substrate affinity and slower hydrolysis of the intermediate for hOGG1 than Fpg accounted for the difference. hOGG1 and Fpg showed distinct preferences of the base opposite 8-oxoG, with the activity differences being 19.8- (hOGG1) and 12-fold (Fpg) between the most and least preferred bases. Surprisingly, such preferences were almost abolished and less than 2-fold for both enzymes when me-Fapy was a substrate, suggesting that, unlike 8-oxoG, me-Fapy is not subjected to paired base-dependent repair. The repair efficiency of me-Fapy randomly incorporated in M13 DNA varied at the sequence level, but orders of preferred and unpreferred repair sites were quite different for hOGG1 and Fpg. The distinctive activities of hOGG1 and Fpg including enzymatic parameters (k(cat)/K(m)), paired base, and sequence context effects may originate from the differences in the inherent architecture of the DNA binding domain and catalytic mechanism of the enzymes.  相似文献   

9.
In mammalian cells, repair of the most abundant endogenous premutagenic lesion in DNA, 7,8-dihydro-8-oxoguanine (8-oxoG), is initiated by the bifunctional DNA glycosylase OGG1. By using purified human proteins, we have reconstituted repair of 8-oxoG lesions in DNA in vitro on a plasmid DNA substrate containing a single 8-oxoG residue. It is shown that efficient and complete repair requires only hOGG1, the AP endonuclease HAP1, DNA polymerase (Pol) β and DNA ligase I. After glycosylase base removal, repair occurred through the AP lyase step of hOGG1 followed by removal of the 3′-terminal sugar phosphate by the 3′-diesterase activity of HAP1. Addition of PCNA had a slight stimulatory effect on repair. Fen1 or high concentrations of Pol β were required to induce strand displacement DNA synthesis at incised 8-oxoG in the absence of DNA ligase. Fen1 induced Pol β strand displacement DNA synthesis at HAP1-cleaved AP sites differently from that at gaps introduced by hOGG1/HAP1 at 8-oxoG sites. In the presence of DNA ligase I, the repair reaction at 8-oxoG was confined to 1 nt replacement, even in the presence of high levels of Pol β and Fen1. Thus, the assembly of all the core proteins for 8-oxoG repair catalyses one major pathway that involves single nucleotide repair patches.  相似文献   

10.
Specific and nonspecific DNA complex formation with human uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and apurine/apyrimidine endonuclease, as well as with E. coli 8-oxoguanine-DNA glycosylase and RecA protein was analyzed using the method of stepwise increase in DNA-ligand complexity. It is shown that high affinity of these enzymes to any DNA (10−4–10−8 M) is provided by a large number of weak additive contacts mainly with DNA internucleoside phosphate groups and in a less degree with bases of nucleotide links “covered” by protein globules. Enzyme interactions with specific DNA links are comparable in efficiency with weak unspecific contacts and provide only for one-two orders of affinity (10−1–10−2 M), but these contacts are extremely important at stages of DNA and enzyme structural adaptation and catalysis proper. Only in the case of specific DNA individual for each enzyme alterations in DNA structure provide for efficient adjustment of reacting enzyme atoms and DNA orbitals with accuracy up to 10–15° and, as a result, for high reaction rate. Upon transition from nonspecific to specific DNA, reaction rate (k cat) increases by 4–8 orders of magnitude. Thus, stages of DNA and enzyme structural adaptation as well as catalysis proper are the basis of specificity of repair enzymes.  相似文献   

11.
OGG1 is the major DNA glycosylase in human cells for removal of 7,8 dihydro-8-oxoguanine (8-oxoG), one of the most frequent endogenous base lesions formed in the DNA of aerobic organisms. During replication, 8-oxoG will frequently mispair with adenine, thus forming G:C → T:A transversions, a common somatic mutation associated with human cancers. In the present study, we have constructed a stable transfectant cell line expressing hOGG1 fused at the C-terminal end to green fluorescent protein (GFP) and investigated the cellular distribution of the fusion protein by fluorescence analysis. It is shown that hOGG1 is preferentially associated with chromatin and the nuclear matrix during interphase and becomes associated with the condensed chromatin during mitosis. Chromatin-bound hOGG1 was found to be phosphorylated on a serine residue in vivo as revealed by staining with an anti-phosphoserine-specific antibody. Chromatin-associated hOGG1 was co-precipitated with an antibody against protein kinase C (PKC), suggesting that PKC is responsible for the phosphorylation event. Both purified and nuclear matrix-associated hOGG1 were shown to be substrates for PKC-mediated phosphorylation in vitro. This appears to be the first demonstration of a post-translational modification of hOGG1 in vivo.  相似文献   

12.
We have used a stepwise increase in ligand complexity approach to estimate the relative contributions of the nucleotide units of DNA containing 7,8-dihydro-8-oxoguanine (oxoG) to its total affinity for human 8-oxoguanine DNA glycosylase (OGG1) and construct thermodynamic models of the enzyme interaction with cognate and non-cognate DNA. Non-specific OGG1 interactions with 10–13 nt pairs within its DNA-binding cleft provides approximately 5 orders of magnitude of its affinity for DNA (ΔG° approximately −6.7 kcal/mol). The relative contribution of the oxoG unit of DNA (ΔG° approximately −3.3 kcal/mol) together with other specific interactions (ΔG° approximately −0.7 kcal/mol) provide approximately 3 orders of magnitude of the affinity. Formation of the Michaelis complex of OGG1 with the cognate DNA cannot account for the major part of the enzyme specificity, which lies in the kcat term instead; the rate increases by 6–7 orders of magnitude for cognate DNA as compared with non-cognate one. The kcat values for substrates of different sequences correlate with the DNA twist, while the KM values correlate with ΔG° of the DNA fragments surrounding the lesion (position from −6 to +6). The functions for predicting the KM and kcat values for different sequences containing oxoG were found.  相似文献   

13.
Two base excision repair glycosylase (BER) transition state (TS) mimics, (3R,4R)-1-benzyl (hydroxymethyl) pyrrolidin-3-ol (1NBn) and (3R,4R)-(hydroxymethyl) pyrrolidin-3-ol (1N), were synthesized using an improved method. Several BER glycosylases that repair oxidized DNA bases, bacterial formamidopyrimdine glycosylase (Fpg), human OG glycosylase (hOGG1) and human Nei-like glycosylase 1 (hNEIL1) exhibit exceptionally high affinity (Kd∼pM) with DNA duplexes containing the 1NBn and 1N nucleotide. Notably, comparison of the Kd values of both TS mimics relative to an abasic analog (THF) in duplex contexts paired opposite C or A suggest that these DNA repair enzymes use distinctly different mechanisms for damaged base recognition and catalysis despite having overlapping substrate specificities.  相似文献   

14.
MutY homolog (MUTYH) excises adenine opposite 8-oxoguanine (8-oxoG) in DNA, thus preventing occurrence of G:C to T:A transversion. In cell-free extract prepared from the thymocytes of wild type but not MUTYH-null mice, adenine opposite 8-oxoG in DNA was excised by MUTYH, however, the generated apurinic (AP) site opposite 8-oxoG mostly remained unincised. Recombinant mouse MUTYH (mMUTYH) efficiently excised adenine opposite 8-oxoG and prevented mouse AP endonuclease (mAPEX1) from incising the generated AP site. In contrast, an AP site opposite 8-oxoG created by uracil DNA glycosylase or tetrahydrofuran opposite 8-oxoG was efficiently incised by mAPEX1 in the presence of an excess amount of mMUTYH. Mutant mMUTYH with R361A or G365D substitution, excised adenine opposite 8-oxoG as efficiently as did wild-type mMUTYH, but failed to prevent mAPEX1 from incising the generated AP site. Wild-type mMUTYH bound duplex oligonucleotides containing A:8-oxoG pair with a lower apparent Kd than that of the mutants, and prevented OGG1 from excising 8-oxoG opposite adenine or the generated AP site. The G365D mutant failed to prevent OGG1 from excising 8-oxoG opposite the generated AP site, thus indicating that the protection of its own product by mMUTYH is an intrinsic function which depends on the C-terminal domain of mMUTYH.  相似文献   

15.
Factor (F) VIIIa forms a number of contacts with FIXa in assembling the FXase enzyme complex. Surface plasmon resonance was used to examine the interaction between immobilized biotinylated active site-modified FIXa, and FVIII and FVIIIa subunits. The FVIIIa A2 subunit bound FIXa with high affinity (Kd = 3.9 ± 1.6 nm) that was similar to the A3C1C2 subunit (Kd = 3.6 ± 0.6 nm). This approach was used to evaluate a series of baculovirus-expressed, isolated A2 domain (bA2) variants where alanine substitutions were made for individual residues within the sequence 707-714, the C-terminal region of A2 thought to be FIXa interactive. Three of six bA2 variants examined displayed 2- to 4-fold decreased affinity for FIXa as compared with WT bA2. The variant bA2 proteins were also tested in two reconstitution systems to determine activity and affinity parameters in forming FXase and FVIIIa. Vmax values for all variants were similar to the WT values, indicating that these residues do not affect cofactor function. All variants showed substantially greater increases in apparent Kd relative to WT in reconstituting the FXase complex (8- to 26-fold) compared with reconstituting FVIIIa (1.3- to 6-fold) suggesting that the mutations altered interaction with FIXa. bA2 domain variants with Ala replacing Lys707, Asp712, and Lys713 demonstrated the greatest increases in apparent Kd (17- to 26-fold). These results indicate a high affinity interaction between the FVIIIa A2 subunit and FIXa and show a contribution of several residues within the 707-714 sequence to this binding.  相似文献   

16.
We have characterized the thromboxane (TX) A2/prostaglandin (PG) H2 receptor in glomeruli isolated from the rat using the agonist radioligand [125I]-BPO. Binding of [125]-BOP was highly specific, stereoselective, and to a single class of high affinity binding sites (Kd = 1/16 ± 0.22 nM and Bmax = 348 ± 32 fol/mg protein; n = 6). Binding of [125I]-BOP was competed for by the agonist ONO11113 (Kd = 50.8 ± 8.0 nM; n = 4) and the antagonists SQ29548 (Kd = 15.8 ± 1.0 nM; n = 3), L657925 (Kd = 12.1 ± 2.2 nM; n = 3) and L65796 (Kd = 1642 ± 135 nM; n = 3). I-BOP also produced a TXA2/PGH2 receptor-mediated rise in [CA2+]i in isolated glomeruli In adriamycin-induced nephrotic syndrome in the rat, the development of proteinuria is reported to be dependent on increased renal TXA2 production. We therefore examined whether or not changes in glomerular TXA2/PGH2 receptors occur between control and nephrotic rats. No changes in expression of affinity of either glomerular or platelet TXA2/PGH2 receptors were observed. Kd and Bmax values for isolated isolated glomeruli were 1.45 ± 0.24 nM and 406 ± 72 fmol/gm for controls and 1.22 ± 0.25 nM and 321 ± 62 fmol/gm for nephrotic rats (n = 6).  相似文献   

17.
18.
β-d-Xylosidase catalyzes hydrolysis of xylooligosaccharides to d-xylose residues. The enzyme, SXA from Selenomonas ruminantium, is the most active catalyst known for the reaction; however, its activity is inhibited by d-xylose and d-glucose (K i values of ~10?2?M). Higher K i’s could enhance enzyme performance in lignocellulose saccharification processes for bioethanol production. We report here the development of a two-tier high-throughput screen where the 1° screen selects for activity (active/inactive screen) and the 2° screen selects for a higher K i(d-xylose) and its subsequent use in screening ~5,900 members of an SXA enzyme library prepared using error-prone PCR. In one variant, termed SXA-C3, K i(d-xylose) is threefold and K i(d-glucose) is twofold that of wild-type SXA. C3 contains four amino acid mutations, and one of these, W145G, is responsible for most of the lost affinity for the monosaccharides. Experiments that probe the active site with ligands that bind only to subsite ?1 or subsite +1 indicate that the changed affinity stems from changed affinity for d-xylose in subsite +1 and not in subsite ?1 of the two-subsite active site. Trp145 is 6 Å from the active site, and its side chain contacts three active-site residues, two in subsite +1 and one in subsite ?1.  相似文献   

19.
8-Oxoguanine (8-oxoG), induced by reactive oxygen species and arguably one of the most important mutagenic DNA lesions, is prone to further oxidation. Its one-electron oxidation products include potentially mutagenic guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) because of their mispairing with A or G. All three oxidized base-specific DNA glycosylases of Escherichia coli, namely endonuclease III (Nth), 8-oxoG-DNA glycosylase (MutM) and endonuclease VIII (Nei), excise Gh and Sp, when paired with C or G in DNA, although Nth is less active than the other two. MutM prefers Sp and Gh paired with C (kcat/Km of 0.24–0.26 min–1 nM–1), while Nei prefers G over C as the complementary base (kcat/Km 0.15–0.17 min–1 nM–1). However, only Nei efficiently excises these paired with A. MutY, a 8-oxoG·A(G)-specific A(G)-DNA glycosylase, is inactive with Gh(Sp)·A/G-containing duplex oligonucleotide, in spite of specific affinity. It inhibits excision of lesions by MutM from the Gh·G or Sp·G pair, but not from Gh·C and Sp·C pairs. In contrast, MutY does not significantly inhibit Nei for any Gh(Sp) base pair. These results suggest a protective function for MutY in preventing mutation as a result of A (G) incorporation opposite Gh(Sp) during DNA replication.  相似文献   

20.
X-ray analysis does not provide quantitative estimates of the relative importance of the molecular contacts it reveals or of the relative contributions of specific and nonspecific interactions to the total affinity of specific DNA to enzymes. Stepwise increase of DNA ligand complexity has been used to estimate the relative contributions of virtually every nucleotide unit of 8-oxoguanine-containing DNA to its total affinity for Escherichia coli 8-oxoguanine DNA glycosylase (Fpg protein). Fpg protein can interact with up to 13 nucleotide units or base pairs of single- and double-stranded ribo- and deoxyribo-oligonucleotides of different lengths and sequences through weak additive contacts with their internucleotide phosphate groups. Bindings of both single-stranded and double-stranded oligonucleotides follow similar algorithms, with additive contributions to the free energy of binding of the structural components (phosphate, sugar, and base). Thermodynamic models are provided for both specific and nonspecific DNA sequences with Fpg protein. Fpg protein interacts nonspecifically with virtually all of the base-pair units within its DNA-binding cleft: this provides approximately 7 orders of magnitude of affinity (Delta G degrees approximately equal to -9.8 kcal/mol) for DNA. In contrast, the relative contribution of the 8-oxoguanine unit of the substrate (Delta G degrees approximately equal to -0.90 kcal/mol) together with other specific interactions is <2 orders of magnitude (Delta G degrees approximately equal to -2.8 kcal/mol). Michaelis complex formation of Fpg protein with DNA containing 8-oxoguanine cannot of itself provide the major part of the enzyme specificity, which lies in the k(cat) term; the rate is increased by 6-8 orders of magnitude on going from nonspecific to specific oligodeoxynucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号