首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine herpesvirus 1 (BHV-1) induces immune suppression, but the mechanisms for suppression are not well identified. We examined the induction and activity of BHV-1-specific cytolytic CD4+ T lymphocytes (CTL) by stimulating peripheral blood mononuclear cells (PBMC) of cattle immunized with attenuated live BHV-1. Cytolytic effector cells were primarily CD4+ T lymphocytes and lysed autologous, but not allogeneic, macrophages infected with BHV-1 or pulsed with BHV-1 polypeptides. Apoptosis of BHV-1-expressing target cells was observed in CD4+ CTL assays by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) analysis. To determine if apoptosis was mediated by a perforin- or Fas-mediated pathway, EGTA, a known selective inhibitor of the perforin pathway, was used. EGTA did not inhibit CD4+-T-cell-mediated cytotoxic activity, but it did limit the NK cell cytotoxicity of virus infected cells. These findings support the concept that CD4+ CTL lyse macrophages pulsed with BHV-1 polypeptides through a Fas-mediated lytic pathway by inducing apoptosis in the target cells. The prominent cytotoxicity mediated by CD4+ CTL suggests a mechanism of selective removal of viral antigen-associated antigen-presenting cells.  相似文献   

2.
3.
Hantaan virus, the prototypic member of the Hantavirus genus, causes hemorrhagic fever with renal syndrome in humans. We examined the human memory T-lymphocyte responses of three donors who had previous laboratory-acquired infections with Hantaan virus. We demonstrated virus-specific responses in bulk cultures of peripheral blood mononuclear cells (PBMC) from all donors. Bulk T-cell responses were directed against either Hantaan virus nucleocapsid (N) or G1 protein, and these responses varied between donors. We established both CD4(+) and CD8(+) N-specific cell lines from two donors and CD4(+) G1-specific cell lines from a third donor. All CD8(+) cytotoxic T-lymphocyte (CTL) lines recognized one of two epitopes on the nucleocapsid protein: one epitope spanning amino acids 12 to 20 and the other spanning amino acids 421 to 429. The CTL lines specific for amino acids 12 to 20 were restricted by HLA B51, and those specific for amino acids 421 to 429 were restricted by HLA A1. The N-specific CTL lines isolated from these two donors included both Hantaan virus-specific CTLs and hantavirus cross-reactive CTLs. Responses to both epitopes are detectable in short-term bulk cultures of PBMC from one donor, and precursor frequency analysis confirms that CTLs specific for these epitopes are present at relatively high precursor frequencies in the peripheral T-cell pool. These data suggest that infection with Hantaan virus results in the generation of CTL to limited epitopes on the nucleocapsid protein and that infection also results in the generation of cross-reactive T-cell responses to distantly related hantaviruses which cause the distinct hantavirus pulmonary syndrome. This is the first demonstration of human T-lymphocyte responses to Hantaan virus.  相似文献   

4.
Respiratory virus infections are a serious health challenge. A number of models that examine the nature of the respiratory immune response to particular pathogens exist. However, many pathogens that stimulate specific immunity in the lung are frequently not effective immunogens at other mucosal sites. A pathogen that is an effective respiratory as well as gastrointestinal immunogen would allow studies of the interaction between the mucosal sites. Reovirus (respiratory enteric orphan virus) serotype 1 is known to be an effective gut mucosal immunogen and provides a potential model for the relationship between the respiratory and the gut mucosal immune systems. In this study, we demonstrate that intratracheal immunization with reovirus 1/Lang (1/L) in C3H mice resulted in high titers of virus in the respiratory tract-associated lymphoid tissue (RALT). High levels of reovirus-specific immunoglobulin A were determined in the RALT fragment cultures. The major responding components of the bronchus-associated lymphoid tissue were the CD8(+) T lymphocytes. Cells from draining lymph nodes also exhibited lysis of reovirus-infected target cells after an in vitro culture. The present study also describes the distribution of transiently present CD4(+)/CD8(+) double-positive (DP) T cells in the mediastinal and tracheobronchial lymph nodes of RALT. CD4(+)/CD8(+) DP lymphocytes were able to proliferate in response to stimulation with viral antigen in culture. Furthermore, these cells exhibited lysis of reovirus-infected target cells after in vitro culture. These results establish reovirus 1/L as a viable model for future investigation of the mucosal immune response in the RALT and its relationship to the common mucosal immune system.  相似文献   

5.
We analyzed the CD4+ T-lymphocyte responses of two donors who had received Japanese encephalitis virus (JEV) vaccine 6 or 12 months earlier. Bulk culture proliferation assays showed that peripheral blood mononuclear cells (PBMC) responded to JEV antigens (Ag) but also responded at lower levels to West Nile virus (WNV) and dengue virus type 1, 2, and 4 (D1V, D2V, and D4V, respectively) Ag. Five JEV-specific CD4+ human T-cell clones and one subclone were established from PBMC of these two donors. Two clones responded to WNV Ag as well as to JEV Ag, whereas the others responded only to JEV Ag. Three of five CD4+ T-cell clones had JEV-specific cytotoxic activity and recognized E protein. The HLA restriction of the JEV-specific T-cell clones was examined. Three clones were HLA-DR4 restricted, one was HLA-DQ3 restricted, and the HLA restriction of one clone was not determined. T-cell receptor analysis showed that these clones expressed different T-cell receptors, suggesting that they originated from different T lymphocytes. These results indicate that JEV vaccine induces JEV-specific and flavivirus-cross-reactive CD4+ T lymphocytes and that these T lymphocytes recognize E protein. The functions and HLA restriction patterns of these T lymphocytes are, however, heterogeneous.  相似文献   

6.
The photosynthetic bacterium Rhodobacter capsulatus has been shown to carry out nitrogenase “switch-off,” a rapid, reversible inhibition of in vivo activity. Here, we demonstrate that highly nitrogen-limited cultures of both the wild-type strain and a draT draG mutant are capable of nitrogenase switch-off while moderately nitrogen-limited cultures show instead a “magnitude” response, with a decrease in in vivo nitrogenase activity that is proportional to the amount of added NH4+.  相似文献   

7.
We tested infectious human immunodeficiency virus type 1 (HIV-1), noninfectious but conformationally authentic inactivated whole HIV-1 virions, and purified gp120 for the ability to induce depletion of CD4+ T cells in human lymphoid tissues ex vivo. Infectious CXCR4-tropic HIV-1, but not matched inactivated virions or gp120, mediated CD4+ T-cell depletion, consistent with mechanisms requiring productive infection.  相似文献   

8.
We have investigated the mechanisms involved in the clearance of viral infection at the epithelium level by analyzing the activity of influenza virus-specific cytotoxic T lymphocytes (CTL) against virus-infected CMT-93 intestinal epithelial cells. Epithelial cells infected with live influenza virus effectively present viral antigens and were lysed by both homotypic and heterotypic influenza virus-specific CD8+ T cells. These results shed new light on the control of viral infection through the elimination of virus-infected epithelial cells by virus-specific CTL and demonstrate that CMT-93 cells furnish an appropriate model for in vitro evaluation of CTL activity against virus-infected epithelial cells.  相似文献   

9.
This work aims at identifying the thymocyte subpopulation able to support human immunodeficiency virus (HIV) replication under the biological stimuli of the thymic microenvironment. In this report we demonstrate that interaction with thymic epithelial cells (TEC) induces a high-level replication of the T-tropic primary isolate HIV-1(B-LAIp) exclusively in the mature CD4(+) CD8(-) CD3(+) thymocytes. Tumor necrosis factor (TNF) and interleukin-7 (IL-7), secreted during this interaction, are critical cytokines for HIV long terminal repeat transactivation through NF-kappaB-dependent activation. TNF is the major inducer of NF-kappaB and particularly of the p50-p65 complex, whereas IL-7 acts as a cofactor by sustaining the expression of the p75 TNF receptor. The requirement for TNF is further confirmed by the observation that the inability of the intermediate CD4(+) CD8(-) CD3(-) thymocytes to replicate the virus is associated with a defect in TNF production during their interaction with TEC and correlates with the absence of nuclear NF-kappaB activity in these freshly isolated thymocytes. Addition of exogenous TNF to the intermediate thymocyte cultures induces NF-kappaB activity and is sufficient to promote HIV replication in the cocultures with TEC. The other major subpopulation expressing the CD4 receptor, namely, the double-positive (DP) CD4(+) CD8(+) CD3(+/-) thymocytes, despite the entry of the virus, do not produce a significant level of virus, presumably because they are unresponsive to TNF and IL-7. Together, these data suggest that in vivo, despite an efficient entry of the virus in all the CD4(+) subpopulations, a high viral load may be generated exclusively within the mature CD4(+) CD8(-) CD3(+) subset of thymocytes. However, under conditions of inflammatory response after infection, TNF might also be present in the intermediate thymocyte compartment, leading to efficient HIV replication in these cells.  相似文献   

10.
In this article, we show that passage in SCID mice rendered a human CD4+ T-cell line (CEM cells) highly susceptible to infection by macrophage-tropic (M-tropic) strains and primary clinical isolates of human immunodeficiency virus type 1 (HIV-1). This in vivo-acquired permissiveness of CEM cells was associated with the induction of a CD45RO+ phenotype as well as of some β-chemokine receptors. Regulated upon activation, normal T-cell expressed and secreted chemokine entirely inhibited the ability of M-tropic HIV-1 strains to infect these cells. These findings may lead to new approaches in investigating in vivo the capacity of different HIV strains to exploit chemokine receptors in relation to the dynamics of the activation and/or differentiation state of human CD4+ T cells.  相似文献   

11.
Simian-human immunodeficiency virus 89.6PD (SHIV89.6PD) was pathogenic after intrarectal inoculation of rhesus macaques. Infection was achieved with a minimum of 2,500 tissue culture infectious doses of cell-free virus stock, and there was no evidence for transient viremia in animals receiving subinfectious doses by the intrarectal route. Some animals experienced rapid progression of disease characterized by loss of greater than 90% of circulating CD4+ T cells, sustained decreases in CD20+ B cells, failure to elicit virus-binding antibodies in plasma, and high levels of antigenemia. Slower-progressing animals had moderate but varying losses of CD4+ T cells; showed increases in circulating CD20+ B cells; mounted vigorous responses to antibodies in plasma, including neutralizing antibodies; and had low or undetectable levels of antigenemia. Rapid progression led to death within 30 weeks after intrarectal inoculation. Plasma antigenemia at 2 weeks after inoculation (P ≤ 0.002), B- and T-cell losses (P ≤ 0.013), and failure to seroconvert (P ≤ 0.005) were correlated statistically with rapid progression. Correlations were evident by 2 to 4 weeks after intrarectal SHIV inoculation, indicating that early events in the host-pathogen interaction determined the clinical outcome.  相似文献   

12.
Cellular activation is critical for the propagation of human immunodeficiency virus type 1 (HIV-1) infection. It has been suggested that truly naive CD4(+) T cells are resistant to productive HIV-1 infection because of their constitutive resting state. Memory and naive CD4(+) T-cell subsets from 11 HIV-1-infected individuals were isolated ex vivo by a combination of magnetic bead depletion and fluorescence-activated cell sorting techniques with stringent criteria of combined expression of CD45RA and CD62L to identify naive CD4(+) T-cell subsets. In all patients HIV-1 provirus could be detected within naive CD45RA+/CD62L+ CD4(+) T cells; in addition, replication-competent HIV-1 was isolated from these cells upon CD4(+) T-cell stimulation in tissue cultures. Memory CD4(+) T cells had a median of fourfold more replication-competent virus and a median of sixfold more provirus than naive CD4(+) T cells. Overall, there was a median of 16-fold more integrated provirus identified in memory CD4(+) T cells than in naive CD4(+) T cells within a given patient. Interestingly, there was a trend toward equalization of viral loads in memory and naive CD4(+) T-cell subsets in those patients who harbored CXCR4-using (syncytium-inducing) viruses. Within any given patient, there was no selective usage of a particular coreceptor by virus isolated from memory versus naive CD4(+) T cells. Our findings suggest that naive CD4(+) T cells may be a significant viral reservoir for HIV, particularly in those patients harboring CXCR4-using viruses.  相似文献   

13.
The CD8(+)-T-cell response to Moloney murine leukemia virus (M-MuLV)-associated antigens in C57BL/6 mice is directed against an immunodominant gag-encoded epitope (CCLCLTVFL) presented in the context of H-2D(b) and is restricted primarily to cytotoxic T lymphocytes (CTL) expressing the Valpha3.2 and Vbeta5.2 gene segments. We decided to examine the M-MuLV response in congenic C57BL/6 Vbeta(a) mice which are unable to express the dominant Valpha3.2(+) Vbeta5.2(+) T-cell receptor (TCR) due to a large deletion at the TCR locus that includes the Vbeta5.2 gene segment. Interestingly, M-MuLV-immune C57BL/6 Vbeta(a) mice were still able to reject M-MuLV-infected tumor cells and direct ex vivo analysis of peripheral blood lymphocytes from these immune mice revealed a dramatic increase in CD8(+) cells utilizing the same Valpha3.2 gene segment in association with two different Vbeta segments (Vbeta3 and Vbeta17). Surprisingly, all these CTL recognized the same immunodominant M-MuLV gag epitope. Analysis of the TCR repertoire of individual M-MuLV-immune (C57BL/6 x C57BL/6 Vbeta(a))F(1) mice revealed a clear hierarchy in Vbeta utilization, with a preferential usage of the Vbeta17 gene segment, whereas Vbeta3 and especially Vbeta5.2 were used to much lesser extents. Sequencing of TCRalpha- and -beta-chain junctional regions of CTL clones specific for the M-MuLV gag epitope revealed a diverse repertoire of TCRbeta chains in Vbeta(a) mice and a highly restricted TCRbeta-chain repertoire in Vbeta(b) mice, whereas TCRalpha-chain sequences were highly conserved in both cases. Collectively, our data indicate that the H-2D(b)-restricted M-MuLV gag epitope can be recognized in a hierarchal fashion by different Vbeta domains and that the degree of beta-chain diversity varies according to Vbeta utilization.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) infection requires cell surface expression of CD4. Costimulation of CD8+/CD4 T lymphocytes by anti-CD3 and anti-CD28 antibodies or by allogeneic dendritic cells induced expression of CD4 and rendered these CD8 cells susceptible to HIV-1 infection. Naive CD45RA+ cells responded with greater expression of CD4 than did CD45RO+ cells. CD8+ lymphocytes derived from fetal or newborn sources exhibited a greater tendency to express CD4, consistent with their naive states. This mechanism of infection suggests HIV-induced perturbation of the CD8 arm of the immune response and could explain the generally rapid disease progression seen in HIV-infected children.  相似文献   

15.
A derivative of thiosemicarbazone, γ-thiochromanone-l-thiosemicarbazone (SN-13), which differed from N-methylisatin-β-thiosemicarbazone (marboran) in that the carbonyl group in the C2 position of N-methylisatin was lacking, has been found to possess an anti-vaccinia effect as determined by the pulp disc method of plaque inhibition and by inhibition of cytopathic effect in tube cultures of chick embryo cells as well as by prevention of mouse tail lesions by the vaccinia virus. In tube cultures, SN-13 was shown to be effective even when the treatment was started as late as 8 hr after virus infection, whereas no activity was observed with marboran when started from the 8th hr. SN-13 was as effective as marboran on cross treatments of vaccinia virus with the two compounds in tube cultures, either by treatment at an early or a late stage of the virus growth. Moreover, the inhibitory effect of SN-13 on vaccinia virus growth was completely reversed by actinomycin D similar to that observed with marboran in tube cultures. No additive effect of the two compounds was observed in animal tests.  相似文献   

16.
Deletion of the nef gene from simian immunodeficiency virus (SIV) strain SIVmac239 yields a virus that undergoes attenuated growth in rhesus macaques and offers substantial protection against a subsequent challenge with some SIV wild-type viruses. We used a recently described model to identify sites in which the SIVDeltanef vaccine strain replicates and elicits immunity in vivo. A high dose of SIVDeltanef was applied to the palatine and lingual tonsils, where it replicated vigorously in this portal of entry at 7 days. Within 2 weeks, the virus had spread and was replicating actively in axillary lymph nodes, primarily in extrafollicular T-cell-rich regions but also in germinal centers. At this time, large numbers of perforin-positive cells, both CD8(+) T cells and CD3-negative presumptive natural killer cells, were found in the tonsil and axillary lymph nodes. The number of infected cells and perforin-positive cells then fell. When autopsy studies were carried out at 26 weeks, only 1 to 3 cells hybridized for viral RNA per section of lymphoid tissue. Nevertheless, infected cells were detected chronically in most lymphoid organs, where the titers of infectious virus could exceed by a log or more the titers in blood. Immunocytochemical labeling at the early active stages of infection showed that cells expressing SIVDeltanef RNA were CD4(+) T lymphocytes. A majority of infected cells were not in the active cell cycle, since 60 to 70% of the RNA-positive cells in tissue sections lacked the Ki-67 cell cycle antigen, and both Ki-67-positive and -negative cells had similar grain counts for viral RNA. Macrophages and dendritic cells, identified with a panel of monoclonal antibodies to these cells, were rarely infected. We conclude that the attenuated growth and protection observed with the SIVDeltanef vaccine strain does not require that the virus shift its characteristic site of replication, the CD4(+) T lymphocyte. In fact, this immunodeficiency virus can replicate actively in CD4(+) T cells prior to being contained by the host, at least in part by a strong killer cell response that is generated acutely in the infected lymph nodes.  相似文献   

17.
We have previously shown that a plasmid (pE) encoding the Japanese encephalitis virus (JEV) envelope (E) protein conferred a high level of protection against a lethal viral challenge. In the present study, we used adoptive transfer experiments and gene knockout mice to demonstrate that the DNA-induced E-specific antibody alone can confer protection in the absence of cytotoxic T-lymphocyte (CTL) functions. Plasmid pE administered by either intramuscular or gene gun injection produced significant E-specific antibodies, helper T (Th)-cell proliferative responses, and CTL activities. Animals receiving suboptimal DNA vaccination produced low titers of anti-E antibodies and were only partially or not protected from viral challenge, indicating a strong correlation between anti-E antibodies and the protective capacity. This observation was confirmed by adoptive transfer experiments. Intravenous transfer of E-specific antisera but not crude or T-cell-enriched immune splenocytes to sublethally irradiated hosts conferred protection against a lethal JEV challenge. Furthermore, experiments with gene knockout mice showed that DNA vaccination did not induce anti-E titers and protective immunity in Igmu(-/-) and I-Abeta(-/-) mice, whereas in CD8alpha(-/-) mice the pE-induced antibody titers and protective rate were comparable to those produced in the wild-type mice. Taken together, these results demonstrate that the anti-E antibody is the most critical protective component in this JEV challenge model and that production of anti-E antibody by pE DNA vaccine is dependent on the presence of CD4(+) T cells but independent of CD8(+) T cells.  相似文献   

18.
Intraepithelial lymphocytes (IEL) are a critical effector component of the gut-associated lymphoid tissue (GALT) and play an important role in mucosal immunity as well as in the maintenance of the epithelial cell integrity and barrier function. The objective of this study was to determine whether simian immunodeficiency virus (SIV) infection of rhesus macaques would cause alterations in the immunophenotypic profiles of IEL and their mitogen-specific cytokine (gamma interferon [IFN-γ] and MIP-1β) responses (by flow cytometry) and virus-specific cytotoxic T-cell (CTL) activity (by the chromium release assay). Virally infected IEL were detected through the entire course of SIV infection by in situ hybridization. Severe depletion of CD4+ single-positive and CD4+CD8+ double-positive T cells occurred early in primary SIV infection, which was coincident with an increased prevalence of CD8+ T cells. This was in contrast to a gradual depletion of CD4+ T cells in peripheral blood. The CD8+ IEL were the primary producers of IFN-γ and MIP-1β and were found to retain their potential to produce both IFN-γ and MIP-1β through the entire course of SIV infection. SIV-specific CTL activity was detected in primary IEL at 1, 2, and 4 weeks post-SIV infection. These results demonstrated that IEL may be involved in generating antiviral immune responses early in SIV infection and in suppressing viral infection thereafter. Alterations in homeostasis in epithelia due to severe CD4+ T-cell depletion accompanied by changes in the cytokine and chemokine production by IEL may play a role in the enteropathogenesis of SIV infection.  相似文献   

19.
Ca(2+)/calmodulin-dependent protein kinase IV-deficient (CaMKIV(-/-)) mice have been used to investigate the role of this enzyme in CD4(+) T cells. We identify a functional defect in a subpopulation of CD4(+) T cells, characterized by a cell surface marker profile usually found on memory phenotype CD4(+) T cells. Upon T-cell receptor engagement, the mutant cells produce diminished levels of interleukin-2 (IL-2), IL-4, and gamma interferon protein and mRNA. The defect is secondary to an inability to phosphorylate CREB and to induce CREB-dependent immediate-early genes, including c-jun, fosB, fra2, and junB, which are required for cytokine gene induction. In contrast, stimulated naive CD4(+) T cells from CaMKIV(-/-) mice show normal CREB phosphorylation, induction of immediate-early genes, and cytokine production. Thus, in addition to defining an important signaling role for CaMKIV in a subpopulation of T cells, we identify differential signaling requirements for cytokine production between naive T cells and T cells that express cell surface markers characteristic of the memory phenotype.  相似文献   

20.
Compelling evidence now suggests that alphabeta CD8 cytotoxic T lymphocytes (CTL) have an important role in preventing human immunodeficiency virus (HIV) infection and/or slowing progression to AIDS. Here, we describe an HIV type 1 CTL polyepitope, or polytope, vaccine comprising seven contiguous minimal HLA A2-restricted CD8 CTL epitopes conjoined in a single artificial construct. Epitope-specific CTL lines derived from HIV-infected individuals were able to recognize every epitope within the construct, and HLA A2-transgenic mice immunized with a recombinant virus vaccine coding for the HIV polytope also generated CTL specific for different epitopes. Each epitope in the polytope construct was therefore processed and presented, illustrating the feasibility of the polytope approach for HIV vaccine design. By simultaneously inducing CTL specific for different epitopes, an HIV polytope vaccine might generate activity against multiple challenge isolates and/or preempt the formation of CTL escape mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号