首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The bean pod weevil (Apion godmani Wagner) is a serious insect pest of common beans (Phaseolus vulgaris L.) grown in Mexico and Central America that is best controlled by host-plant resistance available in Durango or Jalisco genotypes such as J-117. Given unreliable infestation by the insect, the use of marker-assisted selection is desirable. In the present study, we developed a set of nine molecular markers for Apion resistance and mapped them to loci on chromosomes 2, 3, 4 and 6 (linkage groups b01, b08, b07and b11, respectively) based on genetic analysis of an F 5:10 susceptible × resistant recombinant inbred line population (Jamapa × J-117) and two reference mapping populations (DOR364 × G19833 and BAT93 × JaloEEP558) for which chromosome and linkage group designations are known. All the markers were derived from randomly amplified polymorphic DNA (RAPD) bands that were identified through bulked segregant analysis and cloned for conversion to sequence tagged site (STS) markers. One of the markers was dominant while four detected polymorphism upon digestion with restriction enzymes. The other markers were mapped as RAPD fragments. Phenotypic data for the population was based on the evaluation of percentage seed damage in replicated trials conducted over four seasons in Mexico. In single point regression analysis, individual markers explained from 3.5 to 22.5% of the variance for the resistance trait with the most significant markers overall being F10-500S, U1-1400R, R20-1200S, W9-1300S and Z4-800S, all markers that mapped to chromosome 2 (b01). Two additional significant markers, B1-1400R and W6-800R, were mapped to chromosome 6 (b11) and explained from 4.3 to 10.2% of variance depending on the season. The latter of these markers was a dominant STS marker that may find immediate utility in marker-assisted selection. The association of these two loci with the Agr and Agm genes is discussed as well as the possibility of additional resistance genes on chromosome 4 (b07) and chromosome 3 (b08). These are among the first specific markers developed for tagging insect resistance in common bean and are expected to be useful for evaluating the mechanism of resistance to A. godmani.  相似文献   

2.
SCAR markers linked to the common bean rust resistance gene Ur-13   总被引:1,自引:0,他引:1  
Rust in common bean (Phaseolus vulgaris L.) is caused by Uromyces appendiculatus Pers.:Pers. (Unger) which exhibits a high level of pathogenic diversity. Resistance to this disease is conditioned by a considerable number of genes. Pyramiding resistance genes is desirable and could be simplified by the use of molecular markers closely linked to the genes. The resistance gene Ur-13, present in the South African large seeded cultivar Kranskop, has been used extensively in the local breeding program. The purpose of this study was the development of a molecular marker linked to Ur-13. An F2 population derived from a cross between Kranskop and a susceptible (South African) cultivar Bonus was used in combination with bulked segregant analysis utilizing the amplified fragment length polymorphism (AFLP) technique. Seven AFLP fragments linked significantly to the rust resistance and five were successfully converted to sequence characterized amplified region (SCAR) markers. The co-dominant SCAR markers derived from a 405 bp EAACMACC fragment, KB126, was located 1.6 cM from the gene. Two additional SCAR markers and one cleaved amplified polymorphic sequence marker were located further from the gene. The gene was mapped to linkage group B8 on the BAT 93/Jalo EEP 558 core map (chromosome 3).  相似文献   

3.
Micronutrients are essential elements needed in small amounts for adequate human nutrition and include the elements iron and zinc. Both of these minerals are essential to human well-being and an adequate supply of iron and zinc help to prevent iron deficiency anemia and zinc deficiency, two prevalent health concerns of the developing world. The objective of this study was to determine the inheritance of seed iron and zinc accumulation in a recombinant inbred line (RIL) population of common beans from a cross of low × high mineral genotypes (DOR364 × G19833) using a quantitative trait locus (QTL) mapping approach. The population was grown over two trial sites and two analytical methods (Inductively Coupled Plasma Spectrometry and Atomic Absorption Spectroscopy) were used to determine iron and zinc concentration in the seed harvested from these trials. The variability in seed mineral concentration among the lines was larger for iron (40.0–84.6 ppm) than for zinc (17.7–42.4 ppm) with significant correlations between trials, between methods and between minerals (up to r = 0.715). A total of 26 QTL were identified for the mineral × trial × method combinations of which half were for iron concentration and half for zinc concentration. Many of the QTL (11) for both iron (5) and zinc (6) clustered on the upper half of linkage group B11, explaining up to 47.9% of phenotypic variance, suggesting an important locus useful for marker assisted selection. Other QTL were identified on linkage groups B3, B6, B7, and B9 for zinc and B4, B6, B7, and B8 for iron. The relevance of these results for breeding common beans is discussed especially in light of crop improvement for micronutrient concentration as part of a biofortification program.  相似文献   

4.
Highly polymorphic markers such as simple sequence repeats (SSRs) or microsatellites are very useful for genetic mapping. In this study novel SSRs were identified in BAC-end sequences (BES) from non-contigged, non-overlapping bacterial artificial clones (BACs) in common bean (Phaseolus vulgaris L.). These so called “singleton” BACs were from the G19833 Andean gene pool physical map and the new BES-SSR markers were used for the saturation of the inter-gene pool, DOR364×G19833 genetic map. A total of 899 SSR loci were found among the singleton BES, but only 346 loci corresponded to the single di- or tri-nucleotide motifs that were likely to be polymorphic (ATT or AG motifs, principally) and useful for primer design and individual marker mapping. When these novel SSR markers were evaluated in the DOR364×G19833 population parents, 136 markers revealed polymorphism and 106 were mapped. Genetic mapping resulted in a map length of 2291 cM with an average distance between markers of 5.2 cM. The new genetic map was compared to the most recent cytogenetic analysis of common bean chromosomes. We found that the new singleton BES-SSR were helpful in filling peri-centromeric spaces on the cytogenetic map. Short genetic distances between some new singleton-derived BES-SSR markers was common showing suppressed recombination in these regions compared to other parts of the genome. The correlation of singleton-derived SSR marker distribution with other cytogenetic features of the bean genome is discussed.  相似文献   

5.

Background  

Sequencing of cDNA libraries for the development of expressed sequence tags (ESTs) as well as for the discovery of simple sequence repeats (SSRs) has been a common method of developing microsatellites or SSR-based markers. In this research, our objective was to further sequence and develop common bean microsatellites from leaf and root cDNA libraries derived from the Andean gene pool accession G19833 and the Mesoamerican gene pool accession DOR364, mapping parents of a commonly used reference map. The root libraries were made from high and low phosphorus treated plants.  相似文献   

6.
The relationship between root-hair growth, acid exudation and phosphorus (P) uptake as well as the quantitative trait loci (QTLs) associated with these traits were determined for a recombinant inbred line (RIL) population derived from the cross of two contrasting common bean (Phaseolus vulgaris L.) genotypes, DOR364 and G19833, which were grown in solution culture and under field conditions with low-P availability. In the solution-culture study, root-hair density, root-hair length, H+ exudation and total acid exudation were measured. Substantial genotypic variability was observed for these traits and their response to P availability. The P-efficient parent G19833 had greater root-hair density, longer root-hair length, and greater exudation of H+ and total acid than the P-inefficient genotype DOR364. These traits segregated continuously in the RIL population, with obvious tendency of trait transgression. Genetic analysis revealed that the root traits measured had various heritabilities, with h b 2 ranging from 43.24 to 86.70%. Using an integrated genetic map developed for the population, a total of 19 QTLs associated with root hair, acid exudation and P-uptake traits were detected on 8 linkage groups. P uptake in the field was positively correlated with total acid exudation, basal root-hair length, and basal root-hair density. Acid-exudation traits were intercorrelated, as were root-hair traits. Total acid exudation was positively correlated with basal root-hair density and length. Linkage analysis revealed that some of the root-trait QTLs were closely linked with QTLs for P uptake in the field. We propose that marker-assisted selection (MAS) might be a feasible alternative to conventional screening of phenotypic root traits.  相似文献   

7.

Background  

Iron deficiency anemia is a global problem which often affects women and children of developing countries. Strategy I plants, such as common bean (Phaseolus vulgaris L.) take up iron through a process that involves an iron reduction mechanism in their roots; this reduction is required to convert ferric iron to ferrous iron. Root absorbed iron is critical for the iron nutrition of the plant, and for the delivery of iron to the shoot and ultimately the seeds. The objectives of this study were to determine the variability and inheritance for iron reductase activity in a range of genotypes and in a low × high seed iron cross (DOR364 × G19833), to identify quantitative trait loci (QTL) for this trait, and to assess possible associations with seed iron levels.  相似文献   

8.
White pine blister rust (WPBR), caused by Cronartium ribicola, is a devastating disease in Pinus monticola and other five-needle pines. Pyramiding a major resistance gene (Cr2) with other resistance genes is an important component of integrated strategies to control WPBR in P. monticola. To facilitate this strategy, the objective of the present study was to identify leucine-rich repeat (LRR) polymorphisms, amplified fragment length polymorphisms (AFLPs), and sequence characterized amplified region (SCAR) markers linked to the western white pine Cr2 (BSA) gene for precise gene mapping. Bulked segregant analysis and haploid segregation analysis allowed the identification of 11 LRR polymorphisms and five AFLP markers in the Cr2 linkage. The closest LRR markers were 0.53 Kosambi cM from Cr2 at either end. After marker cloning and sequencing, AFLP marker EacccMccgat-365 and random polymorphic DNA marker U570–843 were converted successfully into SCAR markers. For a potential application in marker-assisted selection (MAS), these two SCAR markers were verified in two western white pine families. This study represents the first report of LRR-related DNA markers linked to C. ribicola resistance in five-needle pines. These findings may help further candidate gene identification for disease resistance in a conifer species.  相似文献   

9.
10.
A consensus molecular linkage map of 61.9 cM containing the Or5 gene, which confers resistance to race E of broomrape orobanche cumana, five SCAR markers (three dominant, two codominant) and one RAPD marker were identified based on segregation data scored from two F2 populations of susceptible×resistant sunflower line crosses. Bulked segregant analysis was carried out to generate the five SCAR markers, while the single RAPD marker in the group was identified from 61 segregating RAPD markers that were directly screened on one of the two F2 populations. The five SCAR markers, RTS05, RTS28, RTS40, RTS29 and RTS41, were significantly (LOD≥4.0) linked to the Or5 gene and mapped separately at 5.6, 13.6, 14.1, 21.4 and 39.4 cM from the Or5 locus on one side, while the RAPD marker, UBC120_660, was found at 22.5 cM (LOD=1.4) on the opposite side. These markers should facilitate the efficient transfer of the resistance gene among sunflower breeding lines. As the first report on molecular markers linked to a broomrape resistance gene, the present work provides a starting point to study other genes and to examine the hypothesis of the clustering of broomrape resistance genes in sunflower. Received: 16 September 1998 / Accepted: 22 June 1999  相似文献   

11.
Yan X  Liao H  Trull MC  Beebe SE  Lynch JP 《Plant physiology》2001,125(4):1901-1911
Acid phosphatase is believed to be important for phosphorus scavenging and remobilization in plants, but its role in plant adaptation to low phosphorus availability has not been critically evaluated. To address this issue, we compared acid phosphatase activity (APA) in leaves of common bean (Phaseolus vulgaris) in a phosphorus-inefficient genotype (DOR364), a phosphorus-efficient genotype (G19833), and their F(5.10) recombinant inbred lines (RILs). Phosphorus deficiency substantially increased leaf APA, but APA was much higher and more responsive to phosphorus availability in DOR364 than in G19833. Leaf APA segregated in the RILs, with two discrete groups having either high (mean = 1.71 micromol/mg protein/min) or low (0.36 micromol/mg protein/min) activity. A chi-square test indicated that the observed difference might be controlled by a single gene. Non-denaturing protein electrophoresis revealed that there are four visible isoforms responsible for total APA in common bean, and that the difference in APA between contrasting genotypes could be attributed to the existence of a single major isoform. Qualitative mapping of the APA trait and quantitative trait loci analysis with molecular markers indicated that a major gene contributing to APA is located on linkage group B03 of the unified common bean map. This locus was not associated with loci conferring phosphorus acquisition efficiency or phosphorus use efficiency. RILs contrasting for APA had similar phosphorus pools in old and young leaves under phosphorus stress, arguing against a role for APA in phosphorus remobilization. Our results do not support a major role for leaf APA induction in regulating plant adaptation to phosphorus deficiency.  相似文献   

12.
Aluminum (Al) toxicity is a major limiting factor of crop production in acid soils, which are found mostly in developing countries of the tropics and sub-tropics. Common bean (Phaseolus vulgaris L.) is particularly sensitive to Al toxicity; and development of genotypes with better root growth in Al-toxic soils is a priority. The objectives of the present study were to physiologically assess root architectural traits in a recombinant inbred line (RIL) population of common bean that contrasts for Al resistance (DOR364 × G19833) and to identify quantitative trait loci (QTL) controlling root growth under two nutrient solutions, one with 20 μM Al concentration and the other without Al, both at pH 4.5. A total of 24 QTL were found through composite interval mapping analysis, 9 for traits under Al treatment, 8 for traits under control treatment, and 7 for relative traits. Root characteristics expressed under Al treatment were found to be under polygenic control, and some QTL were identified at the same location as QTL for tolerance to low phosphorous stress, thus, suggesting cross-links in genetic control of adaptation of common bean to different abiotic stresses.  相似文献   

13.
Different viral diseases infect common bean crops in Iran. A total of 248 symptomatic samples were collected from common bean fields throughout main growing fields of Guilan province in Iran during the summer of 2006. Eight viruses were detected using double antibody-sandwich – enzyme-linked immunosorbent assay (DAS-ELISA). Bean common mosaic virus – BCMV (1%), Bean leaf roll virus – BLRV (9%), Cowpea mild mottle virus – CpMMV (6%), Southern bean mosaic virus – SBMV (3%), Cucumber mosaic virus – CMV (15%), Bean golden mosaic virus – BGMV (2%), Bean common mosaic necrosis virus – BCMNV (1%) and Bean yellow mosaic virus – BYMV (1%) were detected. Comparatively CMV (15%) was found to be more prevalent in Guilan province. Multiple infections of viruses were recorded in many samples. Weed species belonging to Chenopodiaceae, Solanaceae, Malvaceae and Amaranthaceae families were also found to be infected with the viruses.  相似文献   

14.
We have previously demonstrated that in the diploid rose population 97/9 resistance to the powdery mildew race 9 is controlled by a major dominant resistance gene, Rpp1. In the study reported here, we isolated several molecular markers closely linked to Rpp1 via bulked segregant analysis, with the gene being tagged in an interval of 5 cM between the two most adjacent markers. It was possible to convert the most closely linked amplified fragment length polymorphic (AFLP) marker into a sequence-characterised amplified region (SCAR) segregating in the same manner. Indirect mapping of Rpp1 in relation to the black spot resistance gene Rdr1 revealed no linkage between the two R genes. Furthermore, the genetic model based on a single dominant resistance gene was supported by the marker data.  相似文献   

15.
Polymorphism of microsatellite markers is often associated with the simple sequence repeat motif targeted. AT-rich microsatellites tend to be highly variable and this appears to be notable, especially in legume genomes. To analyze the value of AT-rich microsatellites for common bean (Phaseolus vulgaris L.), we developed a total of 85 new microsatellite markers, 74 of which targeted ATA or other AT-rich motif loci and 11 of which were made for GA, CA or CAC motif loci. We evaluated the loci for the level of allelic diversity in comparison to previously characterized microsatellites using a panel of 18 standard genotypes and genetically mapped any loci polymorphic in the DOR364 × G19833 population. The majority of the microsatellites produced single bands and detected single loci, however, 15 of the AT-rich microsatellites produced multiple or double banding patterns; while only one of the GA or CA-rich microsatellites did. The polymorphism information content (PIC) values averaged 0.892 and 0.600 for the AT and ATA motif microsatellites, respectively, but only 0.140 for the CA-rich microsatellites. GA microsatellites, which had a large average number of repeats, had high to intermediate PIC, averaging 0.706. A total of 45 loci could be genetically mapped and distribution of the loci across the genome was skewed towards non-distal locations with a greater prevalence of loci on linkage groups b02, b09 and b11. AT-rich microsatellites were found to be a useful source of polymorphic markers for mapping and diversity assessment in common bean that appears to uncover higher diversity than other types of simple sequence repeat markers.  相似文献   

16.
A recessive genic male sterility (RGMS) system, S45 AB, has been developed from spontaneous mutation in Brassica napus canola variety Oro, and is being used for hybrid cultivar development in China. The male sterility of S45 was controlled by two duplicated recessive genes, named as Bnms1 and Bnms2. In this study, a NIL (near-isogenic line) population from the sib-mating of S45 AB was developed and used for the fine mapping of the Bnms1 gene, in which the recessive allele was homozygous at the second locus. AFLP technology combined with BSA (bulked segregant analysis) was used. From a survey of 2,560 primer combinations (+3/+3 selective bases), seven AFLP markers linked closely to the target gene were identified, of which four were successfully converted to sequence characterized amplified region (SCAR) markers. For further analysis, a population of 1,974 individuals was used to map the Bnms1 gene. On the fine map, Bnms1 gene was flanked by two SCAR markers, SC1 and SC7, with genetic distance of 0.1 cM and 0.3 cM, respectively. SC1 was subsequently mapped on linkage group N7 using doubled-haploid mapping populations derived from the crosses Tapidor × Ningyou7 and DH 821 × DHBao 604, available at IMSORB, UK, and our laboratory, respectively. Linkage of an SSR marker, Na12A02, with the Bnms1 gene further confirmed its location on linkage group N7. Na12A02, 2.6 cM away from Bnms1, was a co-dominant marker. These molecular markers developed from this research will facilitate the marker-assisted selection of male sterile lines and the fine map lays a solid foundation for map-based cloning of the Bnms1 gene.  相似文献   

17.
Many surveys were conducted during 2003–2005 to study the identity, prevalence and fluctuation of bean infecting viruses in northwestern Iran. In total, 649 bean samples with virus- like symptoms were collected and analysed by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and tissue-print immunoassay to detect infectious viruses. Serological tests revealed the presence of Bean common mosaic virus (BCMV), Bean common mosaic necrosis virus (BCMNV), Bean yellow mosaic virus (BYMV), Cucumber mosaic virus (CMV), Alfalfa mosaic virus (AMV), Bean leaf roll virus (BLRV), Bean pod mottle virus (BPMV) and Southern bean mosaic virus (SBMV), with some co-infection occurred, with prevalence of BCMV, BCMNV and BYMV (17–29% infection rate). The incidence of viruses showed variation in over 3 years of research including more than double increase in CMV from 2004 to 2005 and obvious one-third decrease in AMV from 2003 to 2005. SBMV and BPMV were detected sporadically in the fields and the response of some differential test plants was analysed by mechanical inoculation. Western immunoblotting analysis of SBMV infected bean leaf total proteins using SBMV-specific polyclonal antibody revealed viral CP with molecular mass of 28.5 kDa which confirmed the presence of SBMV as a new threat for bean production.  相似文献   

18.
Common bean (Phaseolus vulgaris L.) is an important, high-quality staple food that provides large amounts of protein and mineral micronutrients to the diets of people in many countries. Phytates are a storage form of organic phosphorus which is used by the plant in various stages of growth and development but can have certain anti-nutrient properties due to chelation of minerals such as iron and zinc. At the same time, phytates provide certain health benefits and therefore are the subject of both mutagenesis and breeding programs for functional foods. The objective of this study was to evaluate the quantitative trait loci (QTL) associated with seed phytate and seed phosphorus concentration and content on a per-seed basis and to develop functional molecular markers for genes from the phytic acid synthesis pathway. We used a well-characterized mapping population, DOR364?×?G19833, in three field experiments with three repetitions each and two levels of soil phosphorus fertilization, as well as a large set of previously and newly developed primer pairs for the genes myo-inositol (3)P1 synthase, myo-inositol kinase and various inositol kinases. We identified an association of phytate concentration QTL with one of two paralogs of the myo-inositol (3)P1 synthase gene family, located on linkage group b01 and expressed in common bean seed rather than in vegetative tissues. We also identified QTL for phytate concentration on linkage group b06 and phytate content on linkage groups b03, b04 and b10. We provide a synteny analysis based on common bean versus soybean genome comparisons of all the phytic acid pathway genes that were genetically mapped and indicate flanking markers that can be used for marker-assisted selection when the genes themselves are not polymorphic as PCR amplicons. We can conclude that natural variability in phytate levels is controlled by the seed-expressed myo-inositol (3)P1 synthase gene (MIPS) as well as other loci in the common bean genome. This means that breeding of phytate levels in common bean must take into account allele variability at certain candidate genes, such as this seed MIPS gene, a recently cloned ABC trasnporter and additional QTL for the trait, which underlie the oligogenic inheritance for phytate concentration in common bean.  相似文献   

19.
Δ1-pyrroline-5-carboxylate synthetase (P5CS) is the rate-limiting enzyme involved in the biosynthesis of proline in plants. By the 3′ rapid amplification of cDNA ends (3′-RACE) approach, a 2,246-bp cDNA sequence was obtained from common bean (Phaseolus vulgaris L.), denominated PvP5CS2 differing from another P5CS gene that we cloned previously from common bean (PvP5CS). The predicted amino acid sequence of PvP5CS2 has an overall 93.2% identity GmP5CS (Glycine max L. P5CS). However, PvP5CS2 shows only 83.7% identity in amino acid sequence to PvP5CS, suggesting PvP5CS2 represents a homolog of the soybean P5CS gene. Abundant indel (insertion and deletion events) and SNP (single nucleotide polymorphisms) were found in the cloned PvP5CS2 genome sequence when comparing 24 cultivated and 3 wild common bean accessions and these in turn reflected aspects of common bean evolution. Sequence alignment showed that genotypes from the same gene pool had similar nucleotide variation, while genotypes from different gene pools had distinctly different nucleotide variation for PvP5CS2. Furthermore, diversity along the gene sequence was not evenly distributed, being low in the glutamic-g-semialdehyde dehydrogenase catalyzing region, moderate in the Glu-5-kinase catalyzing region and high in the intervening region. Neutrality tests showed that PvP5CS2 was a conserved gene undergoing negative selection. A new marker (Pv97) was developed for genetic mapping of PvP5CS2 based on an indel between DOR364 and G19833 sequences and the gene was located between markers Bng126 and BMd045 on chromosome b01. The relationship of PvP5CS2 and a previously cloned pyrroline-5-carboxylate synthetase gene as well as the implications of this work on selecting for drought tolerance in common bean are discussed.  相似文献   

20.
Fusarium wilt (Fusarium oxysporum Schlecht. f. sp. melongenae) is a vascular disease of eggplant (Solanum melongena L.). The objectives of this work were (1) to confirm the monogenic inheritance of fusarium wilt resistance in eggplant, (2) to identify molecular markers linked to this resistance, and (3) to develop SCAR markers from most informative markers. We report the tagging of the gene for resistance to fusarium wilt (FOM) in eggplant using SRAP, RGA, SRAP-RGA and RAPD markers. Analysis of segregation data confirmed the monogenic inheritance of resistance. DNA from F2 and BC1 populations of eggplant segregating for fusarium wilt resistance was screened with 2,316 primer combinations to detect polymorphism. Three markers were linked within 2.6 cM of the gene. The codominant SRAP marker Me8/Em5 and dominant SRAP-RGA marker Em12/GLPL2 were tightly linked to each other and mapped 1.2 cM from the resistance gene, whereas RAPD marker H12 mapped 2.6 cM from the gene and on the same side as the other two markers. The SRAP marker was converted into two dominant SCAR markers that were confirmed to be linked to the resistance gene in the F2, BC1 and F2 of BC3 generations of the same cross. These markers provide a starting point for mapping the eggplant FOM resistance gene in eggplant and for exploring the synteny between solanaceous crops for fusarium wilt resistance genes. The SCAR markers will be useful for identifying fusarium wilt-resistant genotypes in marker-assisted selection breeding programs using segregating progenies of the resistant eggplant progenitor used in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号