首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To determine the relative contributions of DC subsets in the development of protective immunity to Listeria monocytogenes we examined the relationship between maturation, bacterial burden, and T cell priming capacity of four well characterized subsets of splenic DC following infection with Lm. CD8α+, CD4+, and CD8αCD4 DC and the B220+ plasmacytoid DC (pDC) were compared for abundance and costimulatory molecule expression at 24, 48, and 72 h post i.v. infection. We further determined the bacterial burden associated with each DC subset and their relative capacities to prime CD8+ T cells at 24 hpi. The CD8α+ DC displayed the highest level of maturation, association with live bacteria, and T cell activation potential. Second, the CD4+ DC were also mature, yet were associated with fewer bacteria, and stimulated T cell proliferation, but not IFN-γ production. The CD8αCD4 DC showed a modest maturation response and were associated with a high number of bacteria, but failed to induce T cell proliferation ex vivo. pDC displayed a strong maturation response, but were not associated with detectable bacteria and also failed to stimulate T cell activation. Finally, we measured the cytokine responses in these subsets and determined that IL-12 was produced predominantly by the CD8+ DC, correlating with the ability of this subset DC to induce IFN-γ production in T cells. We conclude that Listeria-specific CD8+ T cell activation in the spleen is most effectively achieved by infection-induced maturation of the CD8α+ DC subset.  相似文献   

3.
Summary Bacteriophage T12 is the prototype phage carrying the streptococcal erythrogenic toxin A (speA) gene. To examine more closely the phages involved in lysogenic conversion, we examined 300 group A streptococcal strains, and identified and isolated two new phages that carry the speA gene. The molecular sizes of these phage genomes were between 32 and 40 kb, similar to that of phage T12 (35 kb). However, as ascertained by restriction analysis, the physical maps of the new phage genomes were different from phage T12 and from each other. Hybridization analysis also showed that all of these phages were only partially related to one another and the speA gene was always located close to the phage attachment site. Additionally, colony hybridization showed that whereas phage T12 or one of its close relatives is the most common phage associated with the group A streptococci, phage 49 has a much stronger association with the speA gene. A defective phage was also found following pulsed field gel electrophoresis of total phage DNA. This phage appears to be a resident of strain T253c and is found only following induction of a T253c lysogen. Restriction enzyme analysis of the isolated defective phage DNA suggests that it is the source of the submolar amounts of DNA previously found in association with phage T12 digestion patterns. Additionally, the defective phage may serve as the site of integration of the speA gene-carrying phages described above.  相似文献   

4.
Growth of Streptococcus zooepidemicus in a 10 l bioreactor with 50 g sucrose/l and 10 g casein hydrolysate/l gave 5–6 g hyaluronic acid/l after 24–28 h. Purification of hyaluronic acid gave a recovery of 65% with the final material having an Mr of ∼4 × 106 Da with less than 0.1% protein.  相似文献   

5.
Innate immunity is based in pre-existing elements of the immune system that directly interact with all types of microbes leading to their destruction or growth inhibition. Several elements of this early defense mechanism act in concert to control initial pathogen growth and have profound effect on the adaptative immune response that further develops. Although most studies in paracoccidioidomycosis have been dedicated to understand cellular and humoral immune responses, innate immunity remains poorly defined. Hence, the main purpose of this review is to present and discuss some mechanisms of innate immunity developed by resistant and susceptible mice to Paracoccidioides brasiliensis infection, trying to understand how this initial host-pathogen interface interferes with the protective or deleterious adaptative immune response that will dictate disease outcome. An analysis of some mechanisms and mediators of innate immunity such as the activation of complement proteins, the microbicidal activity of natural killer cells and phagocytes, the production of inflammatory eicosanoids, cytokines, and chemokines among others, is presented trying to show the important role played by innate immunity in the host response to P. brasiliensis infection.  相似文献   

6.
Crude capsule polysaccharides (CCP) were prepared from the culture of Streptococcus equi subsp. zooepidemicus C55129 and were partially purified through an anion-exchange column chromatography to afford partially purified capsule polysaccharides (PCP). The main component of CCP and PCP was hyaluronic acid. In vitro antioxidant assay, the capsule polysaccharides showed strong inhibition of lipid peroxidation and hydroxyl radical scavenging activity and moderate 1,1-diphenyl-2-picryldydrazyl radical scavenging activity. In addition, CCP exhibited much stronger reductive power than PCP. For antioxidant testing in vivo, CCP and PCP were orally administrated over a period of 15 days in a d-galactose induced aged mice model. As results, administration of capsule polysaccharides inhibited significantly the formation of malondialdehyde in mice livers and serums and raised the activities of antioxidant enzymes and total antioxidant capacity in a dose-dependent manner. However, the antioxidant activity of CCP was lower than that of PCP. The results suggest that the capsule polysaccharides from Streptococcus equi subsp. zooepidemicus C55129 have direct and potent antioxidant activities.  相似文献   

7.
Genetic basis of murine responses to hyperoxia-induced lung injury   总被引:1,自引:0,他引:1  
To evaluate the effect of genetic background on oxygen (O2) toxicity, nine genetically diverse mouse strains (129/SvIm, A/J, BALB/cJ, BTBR+(T)/tf/tf, CAST/Ei, C3H/HeJ, C57BL/6J, DBA/2J, and FVB/NJ) were exposed to more than 99% O2 for 72 h. Immediately following the hyperoxic challenge, the mouse strains demonstrated distinct pathophysiologic responses. The BALB/cJ and CAST/Ei strains, which were the only strains to demonstrate mortality from the hyperoxic challenges, were also the only strains to display significant neutrophil infiltration into their lower respiratory tract. In addition, the O2-challenged BALB/cJ and CAST/Ei mice were among six strains (A/J, BALB/cJ, CAST/Ei, BTBR+(T)/tf/tf, DBA/2J, and C3H/HeJ) that had significantly increased interleukin 6 concentrations in the whole lung lavage fluid and were among all but one strain that had large increases in lung permeability compared with air-exposed controls. In contrast, the DBA/2J strain was the only strain not to have any significant alterations in lung permeability following hyperoxic challenge. The expression of the extracellular matrix proteins, including collagens I, III, and IV, fibronectin I, and tenascin C, also varied markedly among the mouse strains, as did the activities of total superoxide dismutase (SOD) and manganese-SOD (Mn-SOD or SOD2). These data suggest that the response to O2 depends, in part, on the genetic background and that some of the strains analyzed can be used to identify specific loci and genes underlying the response to O2.  相似文献   

8.
The immune functions of G protein-coupled receptor (GPCR) were widely investigated in mammals. However, limited researches on immune function of GPCRs were reported in invertebrates. In the present study, the immune functions of HP1R gene, a putative GPCR identified from red swamp crayfish Procambarus clarkii were reported. Expression of HP1R gene was significant up-regulated in response to heat-killed Aeromonas hydrophila challenge. HP1R gene silencing mediated by RNA interference significantly enhanced the susceptibility of red swamp crayfish to A. hydrophila and Vibrio alginolyticus, indicating that HP1R was required for red swamp crayfish to defend against bacterial challenge. In HP1R-silenced crayfish, increased bacterial burden and decreased THC in response to bacterial challenge were observed when compared with control crayfish. No significant difference of proPO gene expression was observed between HP1R-silenced and control crayfish after challenge with heat-killed A. hydrophila. However, PO activity in response to bacterial challenge was significantly reduced in HP1R-silenced crayfish. The results collectively indicated that HP1R was an important immune molecule which was required for red swamp crayfish to defend against bacterial infection.  相似文献   

9.
10.
Group A streptococcus (GAS) is the most common pathogen causing bacterial pharyngitis. We isolated streptococcal strains from tonsils removed from patients with tonsillar disease (n=202) and studied their ability to bind the complement regulators factor H (FH) and C4b binding protein (C4BP) using 125 I-labeled proteins. Blood isolates of GAS (n=10) were obtained from patients with bacteraemia. Streptococci were isolated from 21% of the tonsillitis patients. The emm and T types of the GAS strains were determined. Of the 26 GAS strains studied, only six could bind FH and/or C4BP above the threshold levels. The fraction of the offered radioactive protein bound ranged between 6-12% for FH and 19-56% for C4BP. The clinical course of the tonsillar disease was not related to the binding of FH or C4BP by GAS. The binding strains were mostly of the T4M4 or T28M28 type. From the invasive strains (n=10), three bound FH (binding level: 8-11%) and two C4BP (36-39%). The binding correlated only partially to M-protein (emm) type suggesting that the binding was not exclusively due to M-protein. The results indicate that complement regulator binding by GAS is only partially related to pathogenicity and not a universal property of all group A streptococci.  相似文献   

11.
The principal objective of this study was to assess the effects of culture modes including batch culture, pulse fed-batch culture, constant feeding rate fed-batch culture, and exponential fed-batch culture on the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Batch cultures had the highest levels of HA productivity, whereas fed-batch cultures were more favorable with regard to cell growth, and exponential fed-batch cultures evidenced the highest cell concentrations. A two-step culture model was proposed to enhance HA production: an exponential fed-batch culture was conducted prior to 8 h and then sucrose supplementation was applied for 8 h to start the batch fermentation of S. zooepidemicus. HA production and productivity were increased by 36 and 37% in the proposed two-step culture process as compared with that observed in the batch culture, respectively. The proposed two-step culture model can be applied in the production of secondary metabolites, and particularly of the exopolysaccharides.  相似文献   

12.
Despite the development of new treatments, the mortality due to invasive pulmonary aspergillosis remains above 50%, reaching 95% in certain situations. The battle against Aspergillus fumigatus involves several components of the pulmonary innate immune system: cells, mediators, and natural antifungal molecules involved in the recognition and elimination of the fungus, thereby preventing colonization of the respiratory system.With the 10,000–15,000 l of air we inhale each day, the lungs are constantly exposed to a wide range of microorganisms, such as A. fumigatus. This fungus is ubiquitous in the environment and can release large numbers of spores able, due to their small size, to penetrate the respiratory tract. The spores of A. fumigatus, like any other pathogen, are then confronted with the innate immune system, a constitutive defense system that is permanently active and tightly regulated. The various elements of the pulmonary innate immune system—physical and cellular barriers and soluble mediators—are involved in the recognition and elimination of pathogens, thereby preventing colonization of the respiratory system. Consequently, the presence of spores in immunocompetent hosts is completely innocuous, because these spores are normally eliminated. However, changes in one of the components of the defense system may lead to the development of pulmonary infections. Thus, in immunocompromised individuals, the spores are able to develop and cause pulmonary mycoses. These mycoses, known as aspergillosis, are highly variable, with the range of presentations extending from an allergy-type illness, allergic bronchopulmonary aspergilloses, to a very serious generalized and frequently fatal infection: invasive pulmonary aspergillosis (IPA).  相似文献   

13.
Bert  V.  Meerts  P.  Saumitou-Laprade  P.  Salis  P.  Gruber  W.  Verbruggen  N. 《Plant and Soil》2003,249(1):9-18
The genetic basis of Cd tolerance and hyperaccumulation was investigated in Arabidopsis halleri. The study was conducted in hydroponic culture with a backcross progeny, derived from a cross between A. halleri and a non-tolerant and non-accumulating related species Arabidopsis lyrata ssp. petraea, as well as with the parents of the backcross. The backcross progeny segregates for both cadmium (Cd) tolerance and accumulation. The results support that (i) Cd tolerance may be governed by more than one major gene, (ii) Cd tolerance and Cd accumulation are independent characters, (iii) Cd and Zn tolerances co-segregate suggesting that they are under pleiotropic genetic control, at least to a certain degree, (iv) the same result was obtained for Cd and Zn accumulation.  相似文献   

14.
Three different dissolved oxygen (DO) control approaches were proposed to improve hyaluronic acid (HA) production: a three-stage agitation speed control approach, a two-stage DO control approach, and an oxygen vector perfluorodecalin (PFC) applied approach. In the three-stage agitation speed control approach, agitation speed was 200 rpm during 0–8 h, 400 rpm during 8–12 h, and 600 rpm during 12–20 h. In the two-stage DO control strategy, DO was controlled at above 10% during 0–8 h and at 5% during 8–20 h. In the PFC applied approach, PFC (3% v/v) was added at 8 h. HA production reached 5.5 g/L in the three-stage agitation speed control culture model, and 6.3 g/L in two-stage DO control culture model, and 6.6 g/L in the PFC applied culture model. Compared with the other two DO control approaches, the PFC applied approach had a lower shear stress and thus a higher HA production was achieved.  相似文献   

15.
To investigate the role of Toll-like receptor 2 (TLR2)-mediated signaling in host innate defense and development of Lyme disease, the pathogenicity of Borrelia burgdorferi sensu stricto clinical isolates representing two distinct genotypes (RST1 and RST3A) was assessed in TLR2(-/-) C3H/HeJ mice. All TLR2(-/-) mice infected with a B. burgdorferi RST1 isolate developed severe arthritis. The numbers of spirochetes in heart, joint and ear biopsy specimens were significantly higher in TLR2(-/-) mice than in wild-type mice similarly infected as determined by real-time quantitative polymerase chain reaction. Interestingly, despite the higher spirochete levels in heart tissues, milder carditis was observed in TLR2(-/-) than in wild-type mice infected with this RST1 isolate (P=0.02). By contrast, no positive cultures were obtained from any of the blood and tissue specimens from TLR2(-/-) mice inoculated with two RST3A clinical isolates. The data suggest that there is impaired host innate defense against infection and TLR2-independent killing of B. burgdorferi clinical isolates in TLR2-deficient C3H/HeJ mice.  相似文献   

16.
17.
The innate immune system senses pathogens largely through signals initiated by a collection of phylogenetically related proteins known as "Toll-like receptors" (TLRs), of which 10 representatives are encoded in the human genome. Our understanding of the sensing role played by the TLRs began with the positional cloning of a spontaneous mutation (Lps(d)) in the gene encoding the mammalian lipopolysaccharide (LPS) receptor. Other key innate immunity proteins have been disclosed by germline mutagenesis, and are discussed in the present review.  相似文献   

18.
Summary The genetic basis of seed setting was evaluated in seven clones of alfalfa selected under predominantly self-pollinating conditions. They were hand crossed in all possible combinations. Their compatibility was studied by the percentage of flowers forming pods and number of seeds per pod during crossing. The variances for GCA, SCA and reciprocal effects were significant for percentage of pod set with a narrow sense héritability of 64 %. This suggested maternal influence of clones on percent pod set, controlled primarily by additive genetic components. GCA was the only significant component for number of seeds per pod with a narrow sense heritability of 71%. There were wide differences between the clones in their relative magnitude of GCA, SCA and reciprocal effects for both traits used as compatibility indexes. Performance of the diallel crosses was judged by studying seed yield and its related characters, namely seeds per pod, dry matter per plant, frost resistance, plant vigor and plant height. Although GCA and SCA variances were significant for all characters, reciprocal differences in general were absent. The SCA values were very high as compared to GCA. Narrow sense heritability values were very low while broad sense heritability were much higher. This suggested that almost none of the variation was due to additive genetic components and all the variability is controlled by interactions of a digenic, trigenic and quadrigenic nature and heterzozygosity. Heterosis was evaluated by comparing the seed yield of single crosses with their mid-parent and high-parent, and very high values were observed. Thus selection of better genes may not be feasible and further improvement in selected clones may have to be brought about by utilization of various interactions and heterosis. An attempt was made to find combinations of characters that may be used for the selection of seed yield but none were found to be satisfactory.  相似文献   

19.
Though lacking adaptive immunity, insects possess a powerful innate immune system, a genome-encoded defence machinery used to confront infections. Studies in the fruit fly Drosophila melanogaster revealed a remarkable capacity of the innate immune system to differentiate between and subsequently respond to different bacteria and fungi. However, hematophagous compared to non-hematophagous insects encounter additional blood-borne infectious agents, such as parasites and viruses, during their lifetime. Anopheles mosquitoes become infected with the malaria parasite Plasmodium during feeding on infected human hosts and may then transmit the parasite to new hosts during subsequent bites. Whether Anopheles has developed mechanisms to confront these infections is the subject of this review. Initially, we review our current understanding of innate immune reactions and give an overview of the Anopheles immune system as revealed through comparative genomic analyses. Then, we examine and discuss the capacity of mosquitoes to recognize and respond to infections, especially to Plasmodium, and finally, we explore approaches to investigate and potentially utilize the vector immune competence to prevent pathogen transmission. Such approaches constitute a new challenge for insect immunity research, a challenge for global health.  相似文献   

20.
Streptococcus pneumoniae is the leading causative agent of community-acquired pneumonia. Induction of apoptosis in pulmonary epithelial cells by bacteria during pneumonia might be harmful to the host. Interleukin-15 (IL-15) has been demonstrated as an effective inhibitor of apoptosis and is expressed in lung epithelium on the mRNA and protein level. Therefore, we characterized the sub-cellular expression pattern of the short and long IL-15 isoforms in lung epithelial cells in vitro as well as its role in pneumococci-related lung epithelial cell apoptosis. We found an expression pattern for both IL-15 signal peptides in the pulmonary epithelial cell lines A549 and Beas-2B. Moreover, a strong co-localization of IL-15 and IL-15Ralpha was detected on cell surfaces. Compared to pro-inflammatory cytokine stimulation, neither IL-15 nor its trimeric receptor complex was up-regulated after pneumococcal infection. However, overexpression of IL-15 isoforms revealed IL-15LSP and IL-15Vkl as inhibitors of pneumococci induced apoptosis in pulmonary epithelial cells. Thus, IL-15 may act as an anti-apoptotic molecule in pneumococci infection, thereby suggesting IL-15 as a benefical cytokine in pulmonary host defense against infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号