首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of DNA polymerase iota (Pol iota) enzymic activity in different classes of eukaryotes has shown that error-prone activity of this enzyme can be found only in mammals, and that it is completely absent from organisms that are at lower stages of development. It was supposed that the emergence of the error-prone Pol iota activity in mammals is caused by structural alteration of the active center. Possible functions of error-prone Pol iota in higher eukaryotes are discussed.  相似文献   

2.
Longerich S  Meira L  Shah D  Samson LD  Storb U 《DNA Repair》2007,6(12):1764-1773
Somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes require the cytosine deaminase AID, which deaminates cytosine to uracil in Ig gene DNA. Paradoxically, proteins involved normally in error-free base excision repair and mismatch repair, seem to be co-opted to facilitate SHM and CSR, by recruiting error-prone translesion polymerases to DNA sequences containing deoxy-uracils created by AID. Major evidence supports at least one mechanism whereby the uracil glycosylase Ung removes AID-generated uracils creating abasic sites which may be used either as uninformative templates for DNA synthesis, or processed to nicks and gaps that prime error-prone DNA synthesis. We investigated the possibility that deamination at adenines also initiates SHM. Adenosine deamination would generate hypoxanthine (Hx), a substrate for the alkyladenine DNA glycosylase (Aag). Aag would generate abasic sites which then are subject to error-prone repair as above for AID-deaminated cytosine processed by Ung. If the action of an adenosine deaminase followed by Aag were responsible for significant numbers of mutations at A, we would find a preponderance of A:T>G:C transition mutations during SHM in an Aag deleted background. However, this was not observed and we found that the frequencies of SHM and CSR were not significantly altered in Aag-/- mice. Paradoxically, we found that Aag is expressed in B lymphocytes undergoing SHM and CSR and that its activity is upregulated in activated B cells. Moreover, we did find a statistically significant, albeit low increase of T:A>C:G transition mutations in Aag-/- animals, suggesting that Aag may be involved in creating the SHM A>T bias seen in wild type mice.  相似文献   

3.
4.
Analysis of incorrect activity of error-prone DNA polymerase iota in M. musculus ontogeny demonstrated considerable changes in its activity, which peaks in most organs during prenatal development and decreases in the adult body. We propose that the capacity of error-prone DNA polymerases to synthesize on damaged DNA regions is critical for the realization of rapidly changing genetic program in mammalian embryogenesis, which relieves the replication block and prevents cell death.  相似文献   

5.
Shen X  Woodgate R  Goodman MF 《DNA Repair》2005,4(12):665-1373
Escherichia coli DNA polymerase IV and V (pol IV and pol V) are error-prone DNA polymerases that are induced as part of the SOS regulon in response to DNA damage. Both are members of the Y-family of DNA polymerases. Their principal biological roles appear to involve translesion synthesis (TLS) and the generation of mutational diversity to cope with stress. Although neither enzyme is known to be involved in base excision repair (BER), we have nevertheless observed apurinic/apyrimidinic 5'-deoxyribose phosphate (AP/5'-dRP) lyase activities intrinsic to each polymerase. Pols IV and V catalyze cleavage of the phosphodiester backbone at the 3'-side of an apurinic/apyrimidinic (AP) site as well as the removal of a 5'-deoxyribose phosphate (dRP) at a preincised AP site. The specific activities of the two error-prone polymerase-associated lyases are approximately 80-fold less than the associated lyase activity of human DNA polymerase beta, which is a key enzyme used in short patch BER. Pol IV forms a covalent Schiff's base intermediate with substrate DNA that is trapped by sodium borohydride, as proscribed by a beta-elimination mechanism. In contrast, a NaBH(4) trapped intermediate is not observed for pol V, even though the lyase specific activity of pol V is slightly higher than that of pol IV. Incubation of pol V (UmuD'(2)C) with a molar excess of UmuD drives an exchange of subunits to form UmuD'D+insoluble UmuC causing inactivation of polymerase and lyase activities. The concomitant loss of both activities is strong evidence that pol V contains a bona fide lyase activity.  相似文献   

6.
An Y  Ji J  Wu W  Huang R  Wei Y  Xiu Z 《Biotechnology letters》2008,30(7):1227-1232
An efficient method for creating a DNA library is presented in which gene mutagenesis and recombination can be introduced by integrating error-prone PCR with a staggered extension process in one test tube. In this process, less than 15 cycles of error-prone PCR are used to introduce random mutations. After precipitated and washed with ethanol solution, the error-prone PCR product is directly used both as template and primers in the following staggered extension process to introduce DNA recombination. The method was validated by using adenosyl-methionine (AdoMet) synthetase gene, sam1, as a model. The full-length target DNA fragment was available after a single round. After being selected with a competitive inhibitor, ethionine, a mutated gene was obtained that increased AdoMet accumulation in vivo by 56%.  相似文献   

7.
Genetic studies have suggested that Y-family translesion DNA polymerase IV (DinB) performs error-prone recombination-directed replication (RDR) under conditions of stress due to its ability to promote mutations during double-strand break (DSB) repair in growth-limited E. coli cells. In recent studies we have demonstrated that pol IV is preferentially recruited to D-loop recombination intermediates at stress-induced concentrations and is highly mutagenic during RDR in vitro. These findings verify longstanding genetic data that have implicated pol IV in promoting stress-induced mutagenesis at D-loops. In this Extra View, we demonstrate the surprising finding that A-family pol I, which normally exhibits high-fidelity DNA synthesis, is highly error-prone at D-loops like pol IV. These findings indicate that DNA polymerases are intrinsically error-prone at RecA-mediated D-loops and suggest that auxiliary factors are necessary for suppressing mutations during RDR in non-stressed proliferating cells.  相似文献   

8.
Polymerase chain reaction (PCR) is a powerful method to produce linear DNA fragments. Here we describe the Tma thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR. In this thermostable DNA ligase-mediated whole-plasmid amplification method, the resultant DNA nick between the 5′ end of the PCR primer and the extended newly synthesized DNA 3′ end of each PCR cycle is ligated by Tma DNA ligase, resulting in circular plasmid DNA product that can be directly transformed. The template plasmid DNA is eliminated by ‘selection marker swapping’ upon transformation. When performed under an error-prone condition with Taq DNA polymerase, PPCP allows one-step construction of mutagenesis libraries based on in situ error-prone PCR so that random mutations are introduced into the target gene without altering the expression vector plasmid. A significant difference between PPCP and previously published methods is that PPCP allows exponential amplification of circular DNA. We used this method to create random mutagenesis libraries of a xylanase gene and two cellulase genes. Screening of these libraries resulted in mutant proteins with desired properties, demonstrating the usefulness of in situ error-prone PPCP for creating random mutagenesis libraries for directed evolution.  相似文献   

9.
Flap endonuclease 1 (FEN1) and Dna2 endonuclease/helicase (Dna2) sequentially coordinate their nuclease activities for efficient resolution of flap structures that are created during the maturation of Okazaki fragments and repair of DNA damage. Acetylation of FEN1 by p300 inhibits its endonuclease activity, impairing flap cleavage, a seemingly undesirable effect. We now show that p300 also acetylates Dna2, stimulating its 5′–3′ endonuclease, the 5′–3′ helicase, and DNA-dependent ATPase activities. Furthermore, acetylated Dna2 binds its DNA substrates with higher affinity. Differential regulation of the activities of the two endonucleases by p300 indicates a mechanism in which the acetylase promotes formation of longer flaps in the cell at the same time as ensuring correct processing. Intentional formation of longer flaps mediated by p300 in an active chromatin environment would increase the resynthesis patch size, providing increased opportunity for incorrect nucleotide removal during DNA replication and damaged nucleotide removal during DNA repair. For example, altering the ratio between short and long flap Okazaki fragment processing would be a mechanism for better correction of the error-prone synthesis catalyzed by DNA polymerase α.  相似文献   

10.
A number of error-prone DNA polymerases have been found in various eukaryotes, ranging from yeasts to mammals, including humans. According to partial homology of the primary structure, they are grouped into families B, X, and Y. These enzymes display a high infidelity on an intact DNA template, but they are accurate on a damaged template. Error-prone DNA polymerases are characterized by probabilities of base substitution or frameshift mutations ranging from 10?3 to 7.5 · 10?1 in an intact DNA, whereas the spontaneous mutagenesis rate per replicated nucleotide varies between 10?10 and 10?12. Low-fidelity polymerases are terminal deoxynucleotidyl transferase (TdT) and DNA polymerases β, ζ, κ, η, ι, λ, μ, and Rev1. The main characteristics of these enzymes are reviewed. None of them exhibits proofreading 3′ → 5′ exonuclease (PE) activity. The specialization of these polymerases consists in their capacity for synthesizing opposite DNA lesions (not eliminated by the numerous repair systems), which is explained by the flexibility of their active centers or a limited ability to express TdT activity. Classic DNA polymerases α, δ, ε, and γ cannot elongate primers with mismatched nucleotides at the 3′-end (which leads to replication block), whereas some specialized polymerases can catalyze this elongation. This is accompanied by overcoming the replication block, often at the expense of an increased mutagenesis rate. How can a cell exist under the conditions of this high infidelity of many DNA polymerase activities? Not all tissues of the body contain a complete set of low-fidelity DNA polymerases, although some of these enzymes are vitally important. In addition, cells “should not allow” error-prone DNA polymerases to work on undamaged DNA. After a lesion on the DNA template is bypassed, the cell should switch over from DNA synthesis catalyzed by specialized polymerases to the synthesis catalyzed by relatively high-fidelity DNA polymerases δ and ? (with an error frequency of 10?5 to 10?6) as soon as possible. This is done by forming complexes of polymerase δ or ? with proliferating cell nuclear antigen (PCNA) and replication factors RP-A and RF-C. These highly processive complexes show a greater affinity to correct primers than specialized DNA polymerases do. The fact that specialized DNA polymerases are distributive or weakly processive favors the switching. The fidelity of these polymerases is increased by the PE function of DNA polymerases δ and ε, as well as autonomous 3′ → 5′ exonucleases, which are widespread over the entire phylogenetic tree of eukaryotes. The exonuclease correction decelerates replication in the presence of lesions in the DNA template but increases its fidelity, which decreases the probability of mutagenesis and carcinogenesis.  相似文献   

11.
[目的]红色亚栖热菌(Meiothermus ruber)海藻糖合酶(Trehalose synthase,M-TreS)将麦芽糖转化生成海藻糖只需一步反应,且具有很好的热稳定性及pH耐受性,是潜在的工业生产海藻糖的酶源.为了提高该酶的性能,有必要对其进行定向进化.[方法]M-TreS基因(M-treS)大小为2 889bp.该蛋白质分子本身具有很大的进化空间,但是却不宜进行全长基因Shuffling.分段DNA shuffling是为大分子蛋白质(基因≥2 000 bp)的进化而设计的一种方法.该方法分为三步:(1)用两对引物分别扩增目的基因的上游片段和下游片段;(2)上下游片段各自进行Shuffling; (3)利用重叠延伸PCR连接上下游突变群,建立完整基因的突变文库.[结果]结合易错PCR,通过该方法经一轮进化获得一株酶活力是野生型1.6倍、催化效率是野生型2倍的突变株.序列分析表明,该突变株共有6个位点发生了氨基酸的替代,其中一个来自易错突变,2个来自同源重组,3个为随机突变.[结论]分段DNA shuffling是进化大分子蛋白质的有效方法.  相似文献   

12.
Translesion (TLS) DNA polymerases are specialized, error-prone enzymes that synthesize DNA across bulky, replication-stalling DNA adducts. In so doing, they facilitate the progression of DNA synthesis and promote cell proliferation. To potentiate the effect of cancer chemotherapeutic regimens, we sought to identify inhibitors of TLS DNA polymerases. We screened five libraries of ∼3000 small molecules, including one comprising ∼600 nucleoside analogs, for their effect on primer extension activity of DNA polymerase η (Pol η). We serendipitously identified sphingosine, a lipid-signaling molecule that robustly stimulates the activity of Pol η by ∼100-fold at low micromolar concentrations but inhibits it at higher concentrations. This effect is specific to the Y-family DNA polymerases, Pols η, κ, and ι. The addition of a single phosphate group on sphingosine completely abrogates this effect. Likewise, the inclusion of other sphingolipids, including ceramide and sphingomyelin to extension reactions does not elicit this response. Sphingosine increases the rate of correct and incorrect nucleotide incorporation while having no effect on polymerase processivity. Endogenous Pol η activity is modulated similarly as the recombinant enzyme. Importantly, sphingosine-treated cells exhibit increased lesion bypass activity, and sphingosine tethered to membrane lipids mimics the effects of free sphingosine. Our studies have uncovered sphingosine as a modulator of TLS DNA polymerase activity; this property of sphingosine may be associated with its known role as a signaling molecule in regulating cell proliferation in response to cellular stress.  相似文献   

13.
Genetic analysis has revealed that radiation and many chemical mutagens induce in bacteria an error-prone DNA repair process which is responsible for their mutagenic effect. The biochemical mechanism of this inducible error-prone repair has been studied by analysis of the first round of DNA synthesis on ultraviolet light-irradiated φX174 DNA in both intact and ultraviolet light-irradiated host cells. Intracellular φX174 DNA was extracted, subjected to isopycnic CsCl density-gradient analysis, hydroxylapatite chromatography and digestion by single-strand-specific endonuclease S1. Ultraviolet light-induced photolesions in viral DNA cause a permanent blockage of DNA synthesis in intact Escherichia coli cells. However, when host cells are irradiated and incubated to fully induce the error-prone repair system, a significant fraction of irradiated φX174 DNA molecules can be fully replicated. Thus, inducible error-prone repair in E. coli is manifested by an increased capacity for DNA synthesis on damaged φX174 DNA. Chloramphenicol (100 μg/ml), which is an inhibitor of the inducible error-prone DNA repair, is also an inhibitor of this particular inducible DNA synthesis.  相似文献   

14.
DNA replication fidelity maintains low mutation rates in bacteria. The ε-subunit of a replisome generally acts as the main proofreader during replication, using its 3′–5′ exonuclease activity to excise misincorporated bases thereby maintaining faithful replication. In Mycobacterium tuberculosis (Mtb), however, the polymerase and histidinol phosphatase (PHP) domain of the DNA polymerase DnaE1 is the primary proofreader. This domain thus maintains low mutation rates during replication and is an attractive target for drug development. Even though the structures of DnaE polymerases are available from various organisms, including Mtb, the mechanism of exonuclease activity remains elusive. In this study, we sought to unravel the mechanism and also to identify scaffolds that can specifically inhibit the exonuclease activity. To gain insight into the mode of action, we also characterized the PHP domain of the Mtb error-prone polymerase DnaE2 which shares a nearly identical active site with DnaE1-PHP. Kinetic and mutational studies allowed us to identify the critical residue involved in catalysis. Combined inhibition and computational studies also revealed a specific mode of inhibition of DnaE1-PHP by nucleoside diphosphates. Thus, this study lays the foundation for the rational design of novel inhibitors which target the Mtb replicative proofreader.  相似文献   

15.
Abasic sites in genomic DNA can be a significant source of mutagenesis in biological systems, including human cancers. Such mutagenesis requires translesion DNA synthesis (TLS) bypass of the abasic site by specialized DNA polymerases. The abasic site bypass specificity of TLS proteins had been studied by multiple means in vivo and in vitro, although the generality of the conclusions reached have been uncertain. Here, we introduce a set of yeast reporter strains for investigating the in vivo specificity of abasic site bypass at numerous random positions within chromosomal DNA. When shifted to 37 °C, these strains underwent telomere uncapping and resection that exposed reporter genes within a long 3′ ssDNA overhang. Human APOBEC3G cytosine deaminase was expressed to create uracils in ssDNA, which were excised by uracil-DNA N-glycosylase. During repair synthesis, error-prone TLS bypassed the resulting abasic sites. Because of APOBEC3G's strict motif specificity and the restriction of abasic site formation to only one DNA strand, this system provides complete information about the location of abasic sites that led to mutations. We recapitulated previous findings on the roles of REV1 and REV3. Further, we found that sequence context can strongly influence the relative frequency of A or C insertion. We also found that deletion of Pol32, a non-essential common subunit of Pols δ and ζ, resulted in residual low-frequency C insertion dependent on Rev1 catalysis. We summarize our results in a detailed model of the interplay between TLS components leading to error-prone bypass of abasic sites. Our results underscore the utility of this system for studying TLS bypass of many types of lesions within genomic DNA.  相似文献   

16.
17.
The juxtaposition of intracellular DNA segments, together with the DNA‐passage activity of topoisomerase II, leads to the formation of DNA knots and interlinks, which jeopardize chromatin structure and gene expression. Recent studies in budding yeast have shown that some mechanism minimizes the knotting probability of intracellular DNA. Here, we tested whether this is achieved via the intrinsic capacity of topoisomerase II for simplifying the equilibrium topology of DNA; or whether it is mediated by SMC (structural maintenance of chromosomes) protein complexes like condensin or cohesin, whose capacity to extrude DNA loops could enforce dissolution of DNA knots by topoisomerase II. We show that the low knotting probability of DNA does not depend on the simplification capacity of topoisomerase II nor on the activities of cohesin or Smc5/6 complexes. However, inactivation of condensin increases the occurrence of DNA knots throughout the cell cycle. These results suggest an in vivo role for the DNA loop extrusion activity of condensin and may explain why condensin disruption produces a variety of alterations in interphase chromatin, in addition to persistent sister chromatid interlinks in mitotic chromatin.  相似文献   

18.
Polymerase Chain Reaction (PCR) is the DNA-equivalent of Gutenberg’s movable type printing, both allowing large-scale replication of a piece of text. De novo DNA synthesis is the DNA-equivalent of mechanical typesetting, both ease the setting of text for replication. What is the DNA-equivalent of the word processor? Biology labs engage daily in DNA processing—the creation of variations and combinations of existing DNA—using a plethora of manual labor-intensive methods such as site-directed mutagenesis, error-prone PCR, assembly PCR, overlap extension PCR, cleavage and ligation, homologous recombination, and others. So far no universal method for DNA processing has been proposed and, consequently, no engineering discipline that could eliminate this manual labor has emerged. Here we present a novel operation on DNA molecules, called Y, which joins two DNA fragments into one, and show that it provides a foundation for DNA processing as it can implement all basic text processing operations on DNA molecules including insert, delete, replace, cut and paste and copy and paste. In addition, complicated DNA processing tasks such as the creation of libraries of DNA variants, chimeras and extensions can be accomplished with DNA processing plans consisting of multiple Y operations, which can be executed automatically under computer control. The resulting DNA processing system, which incorporates our earlier work on recursive DNA composition and error correction, is the first demonstration of a unified approach to DNA synthesis, editing, and library construction.

Electronic supplementary material

The online version of this article (doi:10.1007/s11693-010-9059-y) contains supplementary material, which is available to authorized users.  相似文献   

19.
采用易错聚合酶链反应和DNA改组技术构建野生型梅花鹿过氧化氢酶(CAT)基因的突变体文库,并随机对两种方法所得产物各5个样品做序列测定。序列分析结果表明突变率分别为0.329%和27.58%,易错聚合酶链反应体系的错配率可以比普通PCR体系提高约10倍,DNA改组的突变率则更高,但是难以避免由于突变率太高造成的目的基因无法正确翻译这一情况。另外,应用邻接法(neighbor-joining, NJ)对随机选择的过氧化氢酶基因突变体序列和野生型序列做核酸和蛋白质序列的NJ进化树,进化关系与突变率分析基本一致。  相似文献   

20.
G4 DNA motifs, which can form stable secondary structures called G-quadruplexes, are ubiquitous in eukaryotic genomes, and have been shown to cause genomic instability. Specialized helicases that unwind G-quadruplexes in vitro have been identified, and they have been shown to prevent genetic instability in vivo. In the absence of these helicases, G-quadruplexes can persist and cause replication fork stalling and collapse. Translesion synthesis (TLS) and homologous recombination (HR) have been proposed to play a role in the repair of this damage, but recently it was found in the nematode Caenorhabditis elegans that G4-induced genome alterations are generated by an error-prone repair mechanism that is dependent on the A-family polymerase Theta (Pol θ). Current data point towards a scenario where DNA replication blocked at G-quadruplexes causes DNA double strand breaks (DSBs), and where the choice of repair pathway that can act on these breaks dictates the nature of genomic alterations that are observed in various organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号