首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent developments in the static theory of evolutionarily stable sets (ESSets) are applied to the single-locus frequency-dependent model of natural selection. Particular emphasis is paid to the ESSet properties of the preimage of an ESS (or ESSet) under the genotype-phenotype map. When an ESS is realized in genetic equilibrium with redundancy in a diploid sexual population, the basic problem in biological terms is whether the corresponding set of allele frequencies is an evolutionarily stable set. The interesting question of the dynamic stability of this preimage is also discussed and a geometric condition developed which implies its evolutionary and dynamic stability.The authors appreciate detailed suggestions for improvement made by the reviewers of the original version of this paper. Financial assistance from the Natural Sciences and Engineering Research Council of Canada and from the Hungarian National Scientific Research Fund (OTKA Projects T029320 and T037271) is also gratefully acknowledged.  相似文献   

2.
We investigate the equilibrium structure for an evolutionary genetic model in discrete time involving two monoecious populations subject to intraspecific and interspecific random pairwise interactions. A characterization for local stability of an equilibrium is found, related to the proximity of this equilibrium with evolutionarily stable strategies (ESS). This extends to a multi-population framework a principle initially proposed for single populations, which states that the mean population strategy at a locally stable equilibrium is as close as possible to an ESS.  相似文献   

3.
R. A. Fisher's Fundamental Theorem of Natural Selection states that the rate of increase in the mean fitness of a population ascribable to gene-frequency changes is exactly equal to the additive genetic variance in fitness. It has been widely misunderstood, though clarification has gradually come about particularly through the work of G. R. Price, W. J. Ewens, and S. Lessard. Building on their interpretations we here explain the approach adopted by Fisher (1941), devising a figure as an aid to understanding this important paper.  相似文献   

4.
Fisher's Fundamental Theorem of natural selection is one of the most widely cited theories in evolutionary biology. Yet it has been argued that the standard interpretation of the theorem is very different from what Fisher meant to say. What Fisher really meant can be illustrated by looking in a new way at a recent model for the evolution of clutch size. Why Fisher was misunderstood depends, in part, on the contrasting views of evolution promoted by Fisher and Wright.  相似文献   

5.
Frequency-dependent selection is an important process in the maintenance of genetic variation in fitness. In humans, it has been proposed that the polymorphism of handedness is maintained by negative frequency-dependent selection, through a strategic advantage of left-handers in fighting interactions. Using simple mathematical models, we explore: (1) whether it is possible to predict the range of left-handedness frequencies observed in human populations by the frequency and the violence of fighting interactions; (2) the consequences of the sex differences in the probability of transmission of hand preference to offspring. We show that a wide range of values of the frequency of left-handers can be obtained with realistic changes of the parameters values. Our models reinforce the idea that negative frequency-dependence may have played a role in maintaining left-handedness in human populations, and provide further support for the importance of fighting interactions in the evolution of hand preference. Moreover, they suggest an explanation for the occurrence of left-handedness among women in this context, namely an indirect selective advantage through their male offspring.  相似文献   

6.
We describe a computer model that stimulates a combination of stabilizing and frequency-dependent selection acting on a quantitative character determined by several loci. The results correspond to many features of natural variations at both the phenotypic and genotypic levels. The model is robust, and its results are not strongly dependent either on the nature and shape of the function describing the stabilizing selection, or on the precise form of frequency dependence, except near the extrema. It suggests a mechanism for the maintenance of large amounts of variability, and shows a relation between population size and heterozygosity roughly corresponding to that found in nature. In this respect it is unlike the purely neutral model.  相似文献   

7.
A nonlinear ESS model is put forward, that is, a nonnegative exponential ESS model. For a simple case, we discuss the existence, uniqueness, and stability of an ESS. As an application of the model, we give a quantitative analysis of frequency-dependent selection in population genetics when the rare type has an advantage.  相似文献   

8.
In this paper, a sex-dependent matrix game haploid model is investigated. For this model, since the phenotypes of female and male individuals are determined by alleles located at a single locus and are sex dependent, any given genotype corresponds to a strategy pair. Thus, a strategy pair is an ESS if and only if the allele corresponding to this strategy pair cannot be invaded by any mutant allele. We show that an ESS equilibrium must be locally asymptotically stable if it exists.  相似文献   

9.
Random phase variation (RPV) is a control strategy in which the expression of a cell state or phenotype randomly alternates between discrete 'on' and 'off' states. Though this mode of control is common for bacterial virulence factors like pili and toxins, precise conditions under which RPV confers an advantage have not been well defined. In Part I of this study, we predicted that fluctuating environments select for RPV if transitions between different selective environments cannot be reliably sensed (J. Theor. Biol. (2005)). However, selective forces both inside and outside of human hosts are also likely to be frequency dependent in the sense that the fitnesses of some bacterial states are greatest when rare. Here we show that RPV at slow rates can provide a survival advantage in such a frequency-dependent environment by generating population heterogeneity, essentially mimicking a polymorphism. More surprisingly, RPV at a faster 'optimal' rate can shift the population composition toward an optimal growth rate that exceeds that possible for polymorphic populations, but this optimal strategy is not evolutionarily stable. The population would be most fit if all cells randomly phase varied at the optimal rate, but individual cells have a growth-rate incentive to defect (mutate) to other switching rates or non-phase variable phenotype expression, leading to an overall loss of fitness of the individual and the population. This scenario describes a modified Prisoner's Dilemma game (Evolution and the Theory of Games, Cambridge University Press, Cambridge, New York, 1982, viii, 224pp.; Nature 398 (6726) (1999) 367), with random phase variation at optimal switching rates serving as the cooperation strategy.  相似文献   

10.
Stochastic fluctuations in a simple frequency-dependent selection model with one-locus, two-alleles and two-phenotypes are investigated. The steady-state statistics of allele frequencies for an interior stable phenotypic equilibrium are shown to be similar to the stochastic fluctuations in standard evolutionary game dynamics [Tao, Y., Cressman, R., 2007. Stochastic fluctuations through intrinsic noise in evolutionary game dynamics. Bull. Math. Biol. 69, 1377-1399]. On the other hand, for an interior stable phenotypic or genotypic equilibrium, our main results show that the deterministic model cannot be used to predict the expectation of phenotypic frequency. The variance of phenotypic frequency for an interior stable genotypic equilibrium is more sensitive to the expected population size than for an interior stable phenotypic equilibrium. Furthermore, the stochastic fluctuations of allele frequency and phenotypic frequency can be considered approximately independent of each other for these genotypic equilibria, but not for phenotypic.  相似文献   

11.
12.
When social scientists began employing evolutionary game theory (EGT) in their disciplines, the question arose what the appropriate interpretation of the formal EGT framework would be. Social scientists have given different answer, of which I distinguish three basic kinds. I then proceed to uncover the conceptual tension between the formal framework of EGT, its application in the social sciences, and these three interpretations. First, I argue that EGT under the biological interpretation has a limited application in the social sciences, chiefly because strategy replication often cannot be sensibly interpreted as strategy bearer reproduction in this domain. Second, I show that alternative replication mechanisms imply interpersonal comparability of strategy payoffs. Giving a meaningful interpretation to such comparisons is not an easy task for many social situations, and thus limits the applicability of EGT in this domain. Third, I argue that giving a new interpretation both to strategy replication and selection solves the issue of interpersonal comparability, but at the costs of making the new interpretation incompatible with natural selection interpretations of EGT. To the extent that social scientists seek such a natural selection interpretation, they face a dilemma: either face the challenge that interpersonal comparisons pose, or give up on the natural selection interpretation. By identifying these tensions, my analysis pleas for greater awareness of the specific purposes of EGT modelling in the social sciences, and for greater sensitivity to the underlying microstructure on which the evolutionary dynamics and other EGT solution concepts supervene.  相似文献   

13.
The "Secondary Theorem of Natural Selection," an extension of Fisher's fundamental theorem, states that the rate of change in the mean of an arbitrary character in response to selection is proportional to the additive genetic covariance between the character and fitness. Here I derive an expression for the change in the mean value of a trait subject to both genetic and cultural transmission. I start with the one-locus case under generalized mating and cultural transmission from parents to offspring, then proceed to the two-locus case. My results support previous work on the effects of nongenetic inheritance by showing that (i) cultural transmission introduces a timelag in the population response to selection; (ii) with cultural transmission the effects of selection persist even after selection is relaxed; and (iii) cultural transmission can either enhance or retard phenotypic evolution relative to that obtained under purely genetic transmission.  相似文献   

14.
The study of the mechanisms that maintain genetic variation has a long history in population genetics. We analyze a multilocus-multiallele model of frequency- and density-dependent selection in a large randomly mating population. The number of loci and the number of alleles per locus are arbitrary. The n loci are assumed to contribute additively to a quantitative character under stabilizing or directional selection as well as under frequency-dependent selection caused by intraspecific competition. We assume the strength of stabilizing selection to be weak, whereas the strength of frequency dependence may be arbitrary. Density-dependence is induced by population regulation. Our main result is a characterization of the equilibrium structure and its stability properties in terms of all parameters. It turns out that no equilibrium exists with more than two alleles segregating per locus. We give necessary and sufficient conditions on the strength of frequency dependence to ensure the maintenance of multilocus polymorphism. We also give explicit formulas on the number of polymorphic loci maintained at equilibrium. These results are based on the assumption that selection is sufficiently weak compared with recombination, so that linkage equilibrium can be assumed. If additionally the population size is assumed to be constant, we prove that the dynamics of the model form a generalized gradient system. For the model in its general form we are able to derive necessary and sufficient conditions for the stability of the monomorphic equilibria. Furthermore, we briefly analyze a special symmetric two-locus two-allele model for a constant population size but allowing for linkage disequilibrium. Finally, we analyze a single diallelic locus with dominance to illustrate the complications that can occur if the assumption of additivity is relaxed.  相似文献   

15.
Alvarez-Castro JM  Alvarez G 《Genetics》2005,170(3):1167-1179
We investigate mechanisms of balancing selection by extending two deterministic models of selection in a one-locus two-allele genetic system to allow for frequency-dependent fitnesses. Specifically we extend models of constant selection to allow for general frequency-dependent fitness functions for sex-dependent viabilities and multiplicative fertilities, while non-multiplicative mating-dependent components remain constant. We compute protected polymorphism conditions that take the form of harmonic means involving both the frequency- and the mating-dependent parameters. This allows for a direct comparison of the equilibrium properties of the frequency-dependent models with those of the constant models and for an analysis of equilibrium of the general model of constant fertility. We then apply the theory to analyze the maintenance of inversion polymorphisms in Drosophila subobscura and D. pseudoobscura, for which data on empirical fitness component estimates are available in the literature. Regression on fitness estimates obtained at different starting frequencies enables us to implement explicit fitness functions in the models and therefore to perform complete studies of equilibrium and stability for particular sets of data. The results point to frequency dependence of fitness components as the main mechanism responsible for the maintenance of the inversion polymorphisms considered, particularly in relation to heterosis, although we also discuss the contribution of other selection mechanisms.  相似文献   

16.
Trotter MV  Spencer HG 《Genetics》2008,180(3):1547-1557
Frequency-dependent selection remains the most commonly invoked heuristic explanation for the maintenance of genetic variation. For polymorphism to exist, new alleles must be both generated and maintained in the population. Here we use a construction approach to model frequency-dependent selection with mutation under the pairwise interaction model. The pairwise interaction model is a general model of frequency-dependent selection at the genotypic level. We find that frequency-dependent selection is able to generate a large number of alleles at a single locus. The construction process generates multiallelic polymorphisms with a wide range of allele-frequency distributions and genotypic fitness relationships. Levels of polymorphism and mean fitness are uncoupled, so constructed polymorphisms remain permanently invasible to new mutants; thus the model never settles down to an equilibrium state. Analysis of constructed fitness sets reveals signatures of heterozygote advantage and positive frequency dependence.  相似文献   

17.
Personality differences can be found in a wide range of species across the animal kingdom, but why natural selection gave rise to such differences remains an open question. Frequency-dependent selection is a potent mechanism explaining variation; it does not explain, however, the other two key features associated with personalities, consistency and correlations. Using the hawk-dove game and a frequency-dependent foraging game as examples, we here show that this changes fundamentally whenever one takes into account the physiological architecture underlying behavior (e.g., metabolism). We find that the inclusion of physiology changes the evolutionary predictions concerning consistency and correlations: while selection gives rise to inconsistent individuals and stochastically fluctuating behavioral correlations in scenarios that neglect physiology, we find high levels of behavioral consistency and tight and stable trait correlations in scenarios that incorporate physiology. The coevolution of behavioral and physiological traits also gives rise to adaptive physiological differences that are systematically associated with behavioral differences. As well as providing a framework for understanding behavioral consistency and behavioral correlations, our work thus also provides an explanation for systematic physiological differences within populations, a phenomenon that appears to exist in a wide range of species but that, up to now, has been poorly understood.  相似文献   

18.
A long standing question in evolutionary biology concerns the maintenance of adaptive combinations of traits in the presence of recombination. This problem may be solved if positive epistasis selects for reducing the rate of recombination between such traits, but this requires sufficiently strong epistasis. Here we use a model that we developed previously to analyze a frequency-dependent strategy game in asexual populations, to study how adaptive combinations of traits may be maintained in the presence of recombination when epistasis is too weak to select for genetic linkage. Previously, in the asexual case, our model demonstrated the evolution of adaptive associations between social foraging strategies and learning rules. We verify that these adaptive associations, which are represented by different two-locus haplotypes, can easily be broken by genetic recombination. We also confirm that a modifier allele that reduces the rate of recombination fails to evolve (due to weak epistasis). However, we find that under the same conditions of weak epistasis, there is an alternative mechanism that allows an association between traits to evolve. This is based on a genetic switch that responds to the presence of one social foraging allele by activating one of the two alternative learning alleles that are carried by all individuals. We suggest that such coordinated phenotypic expression by genetic switches offers a general and robust mechanism for the evolution of adaptive combinations of traits in the presence of recombination.  相似文献   

19.
We examine the characteristics of non-equilibrium dynamics produced by a simple well-known model of frequency-dependent selection at a single diploid locus. An examination of the parameter space of this “pairwise-interaction model” (PIM) revealed non-equilibrium dynamics for polymorphisms of 3, 4 and 5 alleles; both allele-frequency cycling and aperiodic trajectories were detected. We measured the number, cycle length and domains of attraction of the various attractors produced by the model. The domains of attraction tended to be smaller, and the cycles longer, for systems with larger number of alleles. Fitnesses that parametrized negative frequency-dependent selection were more likely to allow cycling, and these cycles also had larger domains of attraction. Aperiodic trajectories were detected only in cases with 4 or 5 alleles. The genetic cycles produced by the model do not have periods as short as those predicted in ecological models with cycling (such as predator–prey population cycles, etc.). Consequently, in a real-world system, PIM allele-frequency cycling is likely to be indistinguishable from stable equilibria when observed over short time scales.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号