首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Even though the marsupial order Diprotodontia is one of the most heavily studied groups of Australasian marsupials, phylogenetic relationships within this group remain contentious. The more than 125 living species of Diprotodontia can be divided into two main groups: Vombatiformes (wombats and koalas) and Phalangerida. Phalangerida is composed of the kangaroos (Macropodidae, Potoroidae, and Hypsiprymnodontidae) and possums (Phalangeridae, Burramyidae, Petauridae, Pseudocheiridae, Tarsipedidae, and Acrobatidae). Much of the debate has focused on relationships among the families of possums and whether possums are monophyletic or paraphyletic. A limitation of previous investigations is that no study to date has investigated diprotodontian relationships using all genera. Here, we examine diprotodontian interrelationships using a nuclear multigene molecular data set representing all recognized extant diprotodontian genera. Maximum parsimony, maximum likelihood, and Bayesian methods were used to analyze sequence data obtained from protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF. We also applied a Bayesian relaxed molecular clock method to estimate times of divergence. Diprotodontia was rooted between Vombatiformes and Phalangerida. Within Phalangerida, the model-based methods strongly support possum paraphyly with Phalangeroidea (Burramyidae + Phalangeridae) grouping with the kangaroos (Macropodiformes) to the exclusion of Petauroidea (Tarsipedidae, Acrobatidae, Pseudocheiridae, and Petauridae). Within Petauroidea, Tarsipedidae grouped with both Petauridae and Pseudocheiridae to the exclusion of Acrobatidae. Our analyses also suggest that the diprotodontian genera Pseudochirops and Strigocuscus are paraphyletic and diphyletic, respectively, as currently recognized. Dating analyses suggest Diprotodontia diverged from other australidelphians in the late Paleocene to early Eocene with all interfamilial divergences occurring prior to the early Miocene except for the split between the Potoroidae and Macropodidae, which occurred sometime in the mid-Miocene. Ancestral state reconstructions using a Bayesian method suggest that the patagium evolved independently in the Acrobatidae, Petauridae, and Pseudocheiridae. Ancestral state reconstructions of ecological venue suggest that the ancestor of Diprotodontia was arboreal. Within Diprotodontia, the common ancestor of Macropodidae was reconstructed as terrestrial, suggesting that tree kangaroos (Dendrolagus) are secondarily arboreal.  相似文献   

2.
The marsupial order Diprotodontia includes 10 extant families, which occupy all terrestrial habitats across Australia and New Guinea and have evolved remarkable dietary and locomotory diversity. Despite considerable attention, the interrelations of these families have for the most part remained elusive. In this study, we separately model mitochondrial RNA and protein-coding sequences in addition to nuclear protein-coding sequences to provide near-complete resolution of diprotodontian family-level phylogeny. We show that alternative topologies inferred in some previous studies are likely to be artifactual, resulting from branch-length and compositional biases. Subordinal groupings resolved herein include Vombatiformes (wombats and koala) and Phalangerida, which in turn comprises Petauroidea (petaurid gliders and striped, feathertail, ringtail and honey possums) and a clade whose plesiomorphic members possess blade-like premolars (phalangerid possums, kangaroos and their allies and most likely, pygmy possums). The topology resolved reveals ecological niche structuring among diprotodontians that has likely been maintained for more than 40 million years.  相似文献   

3.
Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade. Within the Australasian clade, Diprotodontia is the sister taxon to a Notoryctemorphia + Dasyuromorphia + Peramelemorphia clade. Within the Diprotodontia, Vombatiformes (wombat + koala) is the sister taxon to a paraphyletic possum group (Phalangeriformes) with kangaroos nested inside. Molecular dating analyses suggest Late Cretaceous/Paleocene dates for all interordinal divergences. All intraordinal divergences were placed in the mid to late Cenozoic except for the deepest splits within the Diprotodontia. Our UBBL estimates of the marsupial fossil record indicate that the South American record is approximately as complete as the Australasian record. The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
In New Zealand, managing the threat of bovine tuberculosis (TB) to livestock includes population reduction of potentially infectious wildlife, primarily the brushtail possum (Trichosurus vulpecula). Population control is often targeted on forested buffer zones adjacent to farmland, in order to limit movements of possums across the buffer and reduce the risk of disease transmission to livestock. To assess the effectiveness of buffers in protecting livestock we analysed GPS telemetry data from possums located in untreated forest adjacent to buffers, and used these data to characterise patterns of movement that could lead to possums reaching farmland during the season when most dispersal occurs. Analyses of movement data showed that the direction of dispersal by sub-adult and adult possums and the extent of long exploratory movements were not biased toward forest buffers, even though these provided vacant habitat as suitable for possums as untreated forest. Instead, dispersal and exploratory movements were uncommon even for sub-adult possums and such events typically lasted <10 days. Dispersing possums settled predominantly in river valleys. A simulation model was developed for the 3-6-month dispersal season; it demonstrated a probability of <0.001 that an infected possum, originating from a low-density population with low disease prevalence in untreated forest, would move across 3 km of recently controlled forest buffer to reach farmland. Our results indicate short-term reduction in the risk of TB transmission from possums to livestock in New Zealand by the use of depopulated buffer zones, while acknowledging that the threat of disease spread from untreated forest is likely to increase over time as possum population density and, potentially, TB prevalence among those possums, increase in the buffer zone.  相似文献   

5.
Invasive species are often favoured in fragmented, highly-modified, human-dominated landscapes such as urban areas. Because successful invasive urban adapters can occupy habitat that is quite different from that in their original range, effective management programmes for invasive species in urban areas require an understanding of distribution, habitat and resource requirements at a local scale that is tailored to the fine-scale heterogeneity typical of urban landscapes. The common brushtail possum (Trichosurus vulpecula) is one of New Zealand’s most destructive invasive pest species. As brushtail possums traditionally occupy forest habitat, control in New Zealand has focussed on rural and forest habitats, and forest fragments in cities. However, as successful urban adapters, possums may be occupying a wider range of habitats. Here we use site occupancy methods to determine the distribution of brushtail possums across five distinguishable urban habitat types during summer, which is when possums have the greatest impacts on breeding birds. We collected data on possum presence/absence and habitat characteristics, including possible sources of supplementary food (fruit trees, vegetable gardens, compost heaps), and the availability of forest fragments from 150 survey locations. Predictive distribution models constructed using the programme PRESENCE revealed that while occupancy rates were highest in forest fragments, possums were still present across a large proportion of residential habitat with occupancy decreasing as housing density increased and green cover decreased. The presence of supplementary food sources was important in predicting possum occupancy, which may reflect the high nutritional value of these food types. Additionally, occupancy decreased as the proportion of forest fragment decreased, indicating the importance of forest fragments in determining possum distribution. Control operations to protect native birds from possum predation in cities should include well-vegetated residential areas; these modified habitats not only support possums but provide a source for reinvasion of fragments.  相似文献   

6.
The common brushtail possum (Trichosurus vulpecula) is one of the most abundant native marsupials in urban Australia, having successfully adapted to utilize anthropogenic resources. The habituation of possums to food and shelter available in human settlements has facilitated interaction with people, pets, and zoo animals, increasing the potential for transmission of zoonotic Cryptosporidium pathogens. This study sought to examine the identity and prevalence of Cryptosporidium species occurring in possums adapted to urban settings compared to possums inhabiting remote woodlands far from urban areas and to characterize the health of the host in response to oocyst shedding. Findings indicated that both populations were shedding oocysts of the same genotype (brushtail possum 1 [BTP1]) that were genetically and morphologically distinct from zoonotic species and genotypes and most closely related to Cryptosporidium species from marsupials. The urban population was shedding an additional five Cryptosporidium isolates that were genetically distinct from BTP1 and formed a sister clade with Cryptosporidium parvum and Cryptosporidium hominis. Possums that were shedding oocysts showed no evidence of pathogenic changes, including elevated levels of white blood cells, diminished body condition (body mass divided by skeletal body length), or reduced nutritional state, suggesting a stable host-parasite relationship typical of Cryptosporidium species that are adapted to the host. Overall, Cryptosporidium occurred with a higher prevalence in possums from urban habitat (11.3%) than in possums from woodland habitat (5.6%); however, the host-specific nature of the genotypes may limit spillover infection in the urban setting. This study determined that the coexistence of possums with sympatric populations of humans, pets, and zoo animals in the urban Australian environment is unlikely to present a threat to public health safety.  相似文献   

7.

Background

Buruli ulcer (BU) is a skin disease caused by Mycobacterium ulcerans, with endemicity predominantly in sub-Saharan Africa and south-eastern Australia. The mode of transmission and the environmental reservoir(s) of the bacterium and remain elusive. Real-time PCR investigations have detected M. ulcerans DNA in a variety of Australian environmental samples, including the faeces of native possums with and without clinical evidence of infection. This report seeks to expand on previously published findings by the authors'' investigative group with regards to clinical and subclinical disease in selected wild possum species in BU-endemic areas of Victoria, Australia.

Methodology/Principal Findings

Twenty-seven clinical cases of M. ulcerans infection in free-ranging possums from southeastern Australia were identified retrospectively and prospectively between 1998–2011. Common ringtail possums (Pseudocheirus peregrinus), a common brushtail possum (Trichosurus vulpecula) and a mountain brushtail possum (Trichosurus cunninghami) were included in the clinically affected cohort. Most clinically apparent cases were adults with solitary or multiple ulcerative cutaneous lesions, generally confined to the face, limbs and/or tail. The disease was minor and self-limiting in the case of both Trichosurus spp. possums. In contrast, many of the common ringtail possums had cutaneous disease involving disparate anatomical sites, and in four cases there was evidence of systemic disease at post mortem examination. Where tested using real-time PCR targeted at IS2404, animals typically had significant levels of M. ulcerans DNA throughout the gut and/or faeces. A further 12 possums without cutaneous lesions were found to have PCR-positive gut contents and/or faeces (subclinical cases), and in one of these the organism was cultured from liver tissue. Comparisons were made between clinically and subclinically affected possums, and 61 PCR-negative, non-affected individuals, with regards to disease category and the categorical variables of species (common ringtail possums v others) and sex. Animals with clinical lesions were significantly more likely to be male common ringtail possums.

Conclusions/Significance

There is significant disease burden in common ringtail possums (especially males) in some areas of Victoria endemic for M. ulcerans disease. The natural history of the disease generally remains unknown, however it appears that some mildly affected common brushtail and mountain brushtail possums can spontaneously overcome the infection, whereas some severely affected animals, especially common ringtail possums, may become systemically, and potentially fatally affected. Subclinical gut carriage of M. ulcerans DNA in possums is quite common and in some common brushtail and mountain brushtail possums this is transient. Further work is required to determine whether M. ulcerans infection poses a potential threat to possum populations, and whether these animals are acting as environmental reservoirs in certain geographical areas.  相似文献   

8.
We conducted a field trial to determine whether percutaneous challenge of wild brushtail possums (Trichosurus vulpecula) with virulent Mycobacterium bovis, the causative agent of bovine tuberculosis (TB), resulted in subsequent transmission of M. bovis to other possums. We then used our results to make a preliminary first direct estimate of the ‘TB detection probability’ or transmission rate in wild possums. Seven free-living adult possums in the Rimutaka Forest Park, New Zealand, were captured, GPS-collared, experimentally challenged and then released. Possum populations surrounding the challenged individuals were examined for secondary cases 4–8 months post-challenge. Of 37 possums caught within the home ranges of the challenged individuals, one had confirmed TB. As no TB was detected in 355 other possums examined in this study, or 659 possums in a concurrent study in the immediate vicinity, we conclude that this represents the first documented case of onward transmission of M. bovis from an experimentally challenged possum in the wild. This pilot trial therefore gives some confidence that the new percutaneous challenge model for TB in possums can be used to obtain empirical estimates of TB detection probabilities. The calculated probability of onward transmission (‘detection’) here was just 0.027; however, with the possibility that further transmission events would have occurred from the one challenged possum removed from the trial before it had died, or if our trapping missed secondary cases, this value could be an underestimate. The implications of this low preliminary estimate are discussed.  相似文献   

9.
The shape of the bony labyrinth of the inner ear was quantified using geometric morphometrics in a sample of 16 species of living marsupial diprotodontians, the extinct Diprotodon and Thylacoleo, and four outgroups. X-ray micro-computed tomography (μCT) and conventional computed tomography (CT) were used to acquire 3D data. The analyses of 22 landmarks revealed a strong body-mass related allometric pattern. A discriminant analysis on allometry-free labyrinthine shape served to evaluate the phylogenetic signal portion of the labyrinth for Macropodiformes, Phalangeroidea, Petauroidea, and Vombatiformes. The inner shape of Thylacoleo is consistent with its phylogenetic placement as a vombatiform.  相似文献   

10.
The last 20 years has seen a significant series of outbreaks of Buruli/Bairnsdale Ulcer (BU), caused by Mycobacterium ulcerans, in temperate south-eastern Australia (state of Victoria). Here, the prevailing view of M. ulcerans as an aquatic pathogen has been questioned by recent research identifying native wildlife as potential terrestrial reservoirs of infection; specifically, tree-dwelling common ringtail and brushtail possums. In that previous work, sampling of environmental possum faeces detected a high prevalence of M. ulcerans DNA in established endemic areas for human BU on the Bellarine Peninsula, compared with non-endemic areas. Here, we report research from an emergent BU focus recently identified on the Mornington Peninsula, confirming associations between human BU and the presence of the aetiological agent in possum faeces, detected by real-time PCR targeting M. ulcerans IS2404, IS2606 and KR. Mycobacterium ulcerans DNA was detected in 20/216 (9.3%) ground collected ringtail possum faecal samples and 4/6 (66.6%) brushtail possum faecal samples. The distribution of the PCR positive possum faecal samples and human BU cases was highly focal: there was a significant non-random cluster of 16 M. ulcerans positive possum faecal sample points detected by spatial scan statistics (P<0.0001) within a circle of radius 0.42 km, within which were located the addresses of 6/12 human cases reported from the area to date; moreover, the highest sample PCR signal strength (equivalent to ≥106 organisms per gram of faeces) was found in a sample point located within this cluster radius. Corresponding faecal samples collected from closely adjacent BU-free areas were predominantly negative. Possums may be useful sentinels to predict endemic spread of human BU in Victoria, for public health planning. Further research is needed to establish whether spatial associations represent evidence of direct or indirect transmission between possums and humans, and the mechanism by which this may occur.  相似文献   

11.
《新西兰生态学杂志》2011,31(2):261-262
The importance of possums as competitors with livestock for pasture is sometimes used as justification for possum control. Unfortunately a confusion of wet and dry weight values of pasture and daily consumption by possums appears to have resulted in a significant overestimate of the economic costs of possums as pasture pests. A correctly estimated daily dry matter intake of pasture by possums is 0.0144 kg pasture dry matter per possum per day. For a possum density of 1 ha-1, this amounts to a reduction of about 1% of a stock unit ha-1 year-1. At higher possum densities, which often occur on farms adjacent to forest or scrub, losses would be correspondingly higher. A more direct way to measure possum impact on pasture production would be to use exclosures.  相似文献   

12.
Immunocontraceptive vaccines against zona pellucida (ZP) proteins are being developed for brushtail possum (Trichosurus vulpecula) management in New Zealand. Mapping of B cell epitopes on the ZP2 protein of possums was undertaken in this study to define the antigenic regions that may be crucial to sperm-egg binding. The amino acid sequence of the full-length possum ZP2 protein (712 amino acids) was used to synthesize a complete set of 71 (15-mer) biotinylated peptides with an offset of five amino acids. The peptides were used in a modified enzyme-linked immunosorbent assay (ELISA) to identify continuous epitopes recognized by antibodies in the sera of possums immunized with recombinant possum ZP2 (rZP2) constructs. Seventeen continuous epitopes were located on possum ZP2 protein. Comparisons of the peptide binding pattern of antibodies in individual sera with the fertility status of the same immunized possums revealed three significant infertility-relevant peptide epitopes (amino acids 111-125, 301-315, and 431-445). One of these (amino acids 431-445) bound to possum spermatozoa from the caudal epididymis. The implications of these findings for developing immunocontraceptive vaccines for possum control are discussed.  相似文献   

13.
The bacterial communities in the guts of the adults and larvae of the Asian honey bee Apis cerana and the European honey bee Apis mellifera were surveyed by pyrosequencing the 16S rRNA genes. Most of the gut bacterial 16S rRNA gene sequences were highly similar to the known honey bee-specific ones and affiliated with Pasteurellaceae or lactic acid bacteria (LAB). The numbers of operational taxonomic units (OTUs, defined at 97% similarity) were lower in the larval guts (6 or 9) than in the adult guts (18 or 20), and the frequencies of Pasteurellaceae-related OTUs were higher in the larval guts while those of LAB-related OTUs in the adult guts. The frequencies of Lactococcus, Bartonella, Spiroplasma, Enterobacteriaceae, and Flavobacteriaceae-related OTUs were much higher in A. cerana guts while Bifidobacterium and Lachnospiraceae-related OTUs were more abundant in A. mellfera guts. The bacterial community structures in the midguts and hindguts of the adult honey bees were not different for A. cerana, but significantly different for A. mellifera. The above results substantiated the previous observation that honey bee guts are dominated by several specific bacterial groups, and also showed that the relative abundances of OTUs could be markedly changed depending on the developmental stage, the location within the gut, and the honey bee species. The possibility of using the gut bacterial community as an indicator of honey bee health was discussed.  相似文献   

14.
The basal split among living marsupials is traditionally placed between the cohorts Ameridelphiaand Australidelphia. Ameridelphia includes all American forms excepting the South AmericanDramicuipx gliroidex (Order Microbiotheria). Australidelphia includes all Australasian taxaplus Dromiciops glinmles. DNA data support Eometatheria Dromiciaps + Diprotodontia +Dasyuromorphia + Notoryctemorphia) but do not resolve the position of bandicoots, whetherwith other australidelphians or with ameridelphians. Also, the most robust molecular trees (DNAhybridization, multigene studies) exhibit minimal branch subdivision and raise the possibility ofartit'actual associations owing to long branch attraction. We analyzed data sets that consistedof complete sequences tor four niitochondrial genes (cytochrome b, 12S rRNA, tRNA valine,16S rRNA). One data set included 14 marsupial taxa. A second data set included 14 marsupialsas well as outgroup sequences (one monolreme; 20 placentals). Phylogenetic analyses includedparsimony, minimum evolution, maximum likelihood, and quartet puzzling. When phylogeneticanalyses were restricted to just the marsupial sequences, there was 75 to 96% boostrap supportfor the separation of Ameridelphia versus Australidelphia. This suggests that either one orboth of these groups are monophyletic. Also, there was 71 to 98% bootstrap support for theseparation of Eometatheria versus Ameridelphia + Peramelina. Nonmonophyly of several a prioriclades was accepted by at least some statistical tests including the following: Diprotodontia+ Peramelina, Notoryctemorphia + Peramelina, Diprotodonlia + Notoryctemorphia, and themonophyly of Australasian marsupials. With the inclusion of outgroup sequences, there wasreduced bootstrap support for associations among marsupial orders and statistical tests failed toreject all interordinal associations that were tested.  相似文献   

15.
Harvest Mouse (Micromys minutus) has a very wide range of distribution in Asia and Europe. However, the phylogenetic relationship of M. minutus is still uncertain. In this study, we determined the complete mitochondrial (mt) genome sequences of M. minutus, and used the complete mitochondrial genome sequences constructed the phylogenetic tree of Muroidea. The size of the genome is 16,232 bp in length and has a base composition of 33.6% A, 29.1% T, 24.8% C, and 12.5% G. The mitogenome structure was similar to that of typical vertebrate and other rodents' mitochondrial genomes, includes 13 protein-coding genes, 2 rRNA genes (12S rRNA and 16S rRNA), 22 tRNA genes, and 1 control region. We suggested a new initiation codon for ND5 (NADH dehydrogenase subunit), which has been never reported in the mitochondrial genome of vertebrate. The ML and BI phylogenetic trees, which based on the combination of the 12 protein-coding genes, supported strongly that the genus Micromys was represent an early offshoot within the Muridae with high support values (BI = 1.00, ML = 100).  相似文献   

16.
A method is described, based on the simultaneous turnover of both stable (18O) and radioactive isotopes (3H and 22Na), whereby the daily nectar and pollen intake of free-ranging marsupial honey possums (Tarsipes rostratus) may be estimated. The field metabolic rate is measured using doubly labelled water and nectar intake is estimated independently from the measured water and sodium fluxes. The method assumes that free-water intake is negligible (but may be accounted for if not the case), that virtually all dietary sodium is derived from nectar rather than from pollen, and that the animals are in energetic balance over the period of measurement. These assumptions have been tested and found to be robust, except during periods of heavy rain when significant intakes of free-water were recorded. Leaching experiments with pollen grains suggest that less than 10% of the sodium ingested by honey possums is derived from pollen and calculations thus assumed a 90%:10% split between nectar and pollen. Nectar intake averaged 5.9 ± 0.6 ml · day−1 and regressing nectar intake on daily change in body mass predicts an intake of approximately 7 ml · day−1 nectar to maintain balance for a 9 g honey possum. Estimates of pollen intake averaged 660 ± 156 mg · day−1 and a similar regression analysis of the data predicts that a daily intake of approximately 1 g pollen would be needed to maintain mass balance of honey possums. Estimated nectar and pollen intakes did not differ significantly between males and females, but nectar intake was higher in winter compared with dry periods of the year. The sugar content of nectar falls during winter, however, and the overall energy derived from nectar thus remains roughly constant. Estimates of pollen and nectar intake for individual animals were not significantly correlated, suggesting that honey possums forage selectively for these two food items. Accepted: 19 August 1999  相似文献   

17.
A total of 7386 samples of adult honey bees from different areas of Serbia (fifteen regions and 79 municipalities) were selected for light microscopy analysis for Nosema species during 1992–2017. A selection of honey bee samples from colonies positive for microsporidian spores during 2009–2011, 2015 and 2017 were then subjected to molecular diagnosis by multiplex PCR using specific primers for a region of the 16S rRNA gene of Nosema species. The prevalence of microsporidian spore-positive bee colonies ranged between 14.4% in 2013 and 65.4% in 1992. PCR results show that Nosema ceranae is not the only Nosema species to infect honey bees in Serbia. Mixed N. apis/N. ceranae infections were detected in the two honey bee samples examined by mPCR during 2017. The beekeeping management of disease prevention, such as replacement of combs and queens and hygienic handling of colonies are useful in the prevention of Nosema infection.  相似文献   

18.
Mitochondrial ND2 sequences were used to investigate the phylogenetic relationships amongst 31 diprotodontid marsupials (kangaroos, wombats, koala, possums, and allies). ND2 sequences were analyzed separately and in conjunction with available 12S rDNA sequences for 22 diprotodontid taxa. Phylogenetic analyses consistently identified monophyly for the Burramyoidea, Phalangeroidea, Petauroidea, Tarsipedoidea, Macropodoidea, and the Vombatiformes. Like previous molecular and morphological studies, relationships between the super-families were less well resolved. Inconsistency between taxonomic rank and genetic distance was identified amongst the diprotodontids.  相似文献   

19.
Relationships among the seven extant orders of marsupials remain poorly understood. Most classifications recognize a fundamental split between Ameridelphia, which contains the American orders Didelphimorphia and Paucituberculata, and Australidelphia, which contains four Australasian orders (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelina) and the South American order Microbiotheria, represented by Dromiciops gliroides. Ameridelphia and Australidelphia are each supported by key morphological characters with dichotomous character states. To date, molecular studies indexing all marsupial orders have reported inconclusive results. However, several studies have suggested that Dromiciops is nested within Australidelphia. This result has important implications for understanding the biogeographic history of living marsupials. To address questions in higher-level marsupial systematics, we sequenced portions of five nuclear genes (Apolipoprotein B gene; Breast and Ovarian cancer susceptibility gene 1; Recombination activating gene 1; Interphotoreceptor retinoid binding protein gene; and von Willebrand factor gene) for representatives of all orders of marsupials, as well as placental outgroups. The resulting 6.4kb concatenation was analyzed using maximum parsimony, distance methods, maximum likelihood, and Bayesian methods. tests were used to examine a priori hypotheses. All analyses provided robust support for the monophyly of Australidelphia (bootstrap support=99-100%; posterior probability=1.00). Ameridelphia received much lower support, although this clade was not rejected in statistical tests. Within Diprotodontia, both Vombatiformes and Phalangeriformes were supported at the 100% bootstrap level and with posterior probabilities of 1.00.  相似文献   

20.
Vertebrate herbivores generally have greater effects than invertebrates on plants. However, few studies have investigated the effects of both invertebrate and vertebrate herbivores on a single plant species. In New Zealand, nationwide declines in mistletoe populations have often been attributed to possum herbivory, but never to insect herbivory. The main goal of the present study was to document levels of vertebrate and invertebrate herbivory on endemic New Zealand mistletoe plants to suggest whether herbivory is leading to mistletoe decline. In the present study, the annual amount of leaf loss from herbivory by the brushtail possum (Trichosurus vulpecula), insect herbivory and leaf abscission were measured in two populations each of three mistletoe species (Alepis flavida, Peraxilla colensoi, and Peraxilla tetrapetala, Loranthaceae). In two populations of each species from February 1997 to February 1998, abscission accounted for the most leaf loss (range 10–84% of total mean leaf area, mean 33%), whereas insects and possums usually removed small and similar amounts (less than 3%). Possum browse caused large amounts of abscission in only one population (A. flavida at Eglinton). Observed possum browse was more heterogeneous than insect browse among branches within a plant (possum coefficient of variation = 2.63, insect CV = 1.98, P < 0.001), among plants in a population (possum CV = 2.15, insect CV = 0.69, P < 0.001), and between populations (possum CV = 1.36, insect CV = 1.09). Moreover, insects damaged 100% of the study plants but never removed more than 16% of leaf area on a single plant, whereas possums only browsed 32% of the study plants but severely defoliated some plants. Thus, while the mean amount of biomass removed across a population may have important consequences for mistletoe survival, the effect of possums on mistletoe populations may also depend on the heterogeneity of browse among individuals in the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号