首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A tetrameric lectin, with hemagglutinating activity toward rabbit erythrocytes and with specificity toward d-mannosamine and d(+)-mannose, was isolated from the ovaries of a teleost, the cobia Rachycentron canadum. The isolation protocol comprised ion exchange chromatography on CM-cellulose and Q-Sepharose, ion exchange chromatography by fast protein liquid chromatography (FPLC) on Mono Q, and finally gel filtration by FPLC on Superose 12. The lectin was adsorbed on all ion exchangers used. It exhibited a molecular mass of 180 kDa in gel filtration on Superose 12 and a single 45-kDa band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that it is a tetrameric protein. The hemagglutinating activity of the lectin was stable up to 40°C and between pH 4 and pH 10. All hemagglutinating activity disappeared at 60°C and at pH 1 and pH 13. The hemagglutinating activity was doubled in the presence of 0.1 μM FeCl3. The lectin exerted antibacterial activity against Escherichia coli with 50% inhibition at 250 μg. There was no antifungal activity toward Coprinus comatus, Fusarium oxysporum, Mycosphaerella arachidicola, and Rhizoctonia solani at a dose of 300 μg. The lectin exhibited maximal mitogenic response from mouse splenocytes at a concentration of 14 μM.  相似文献   

2.
3.
4.
We purified and characterized a lectin from the corn coleoptyle (Zea mays). The lectin (CCL) was purified by affinity chromatography on a Lactosyl–Sepharose 4B column. It is a glycoprotein of 88.7 kDa, composed mainly by glutamic, aspartic, glycine, and Ser residues; in a minor proportion, it contained methionine and cysteine residues. Carbohydrates that constituted 12% of the total weight comprised galactose, mannose, and N-acetyl-D-glucosamine. The lectin contained the blocked amino-terminus. Analysis of the lectin, determined from peptides obtained after trypsin digestion by MALDI-TOF (matrix-assisted laser desorption ionization-time of flight), indicated that CCL has 18% homology with a putative calcium-dependent Ser/Thr protein kinase, from Arabidopsis thaliana, and 39% homology with a NADPH-dependent reductase from Z. mays. The lectin showed hemagglutinating activity toward several erythrocytes, including human A, B, and O. Hapten inhibition assays indicated that the lectin interacts specifically with the OH on C4 from galactose residues. OH- on C1 plays a relevant role in the interaction with CCL, since β-galactose residues are better recognized than those from the anomeric α-galactose. Lack of lectin activity was observed in corn extracts; the highest specific activity was obtained from coleoptyle obtained at the 7th day after seeding.  相似文献   

5.
A new N-acetyl-D-glucosamine (GlcNAc) specific lectin was identified and purified from the fruiting body of the Australian indigenous mushroom Psathyrella asperospora. The functional lectin, named PAL, showed hemagglutination activity against neuraminidase treated rabbit and human blood types A, B and O, and exhibited high binding specificity towards GlcNAc, as well as mucin and fetuin, but not against asialofetuin. PAL purified to homogeneity by a combination of ammonium sulfate precipitation, chitin affinity chromatography and size exclusion chromatography, was monomeric with a molecular mass of 41.8 kDa, was stable at temperatures up to 55 °C and between pH 6–10, and did not require divalent cations for optimal activity. De novo sequencing of PAL using LC-MS/MS, identified 10 tryptic peptides that revealed substantial sequence similarity to the GlcNAc recognizing lectins from Psathyrella velutina (PVL) and Agrocybe aegerita (AAL-II) in both the carbohydrate binding and calcium binding sites. Significantly, PAL was also found to exert a potent anti-proliferative effect on HT29 cells (IC50 0.48 μM) that was approximately 3-fold greater than that observed on VERO cells; a difference found to be due to the differential expression of cell surface GlcNAc on HT29 and VERO cells. Further characterization of this activity using propidium iodine staining revealed that PAL induced cell cycle arrest at G2/M phase in a manner dependent on its ability to bind GlcNAc.  相似文献   

6.
7.
The antiproliferative activity of two chito- specific agglutinins purified from Benincasa hispida (BhL) and Datura innoxia (DiL9) of different plant family origin was investigated on various cancer cell lines. Both lectins showed chitotriose specificity, by inhibiting lectin hemagglutinating activity. On further studies, it was revealed that these agglutinins caused remarkable concentration-dependent antiproliferative effect on human pancreatic cancerous cells but not on the normal human umbilical vein endothelial cells even at higher doses determined using MTT assay. The GI50 values were approximately 8.4 μg ml-1 (0.247 μM) and 142 μg ml-1(14.8 μM) for BhL and DiL9, respectively, against PANC-1 cells. The growth inhibitory effect of these lectins on pancreatic cancer cells were shown to be a consequence of lectin cell surface binding and triggering G0/G1 arrest, mitochondrial membrane depolarization, sustained increase of the intracellular calcium release and the apoptotic signal is amplified by activation of caspases executing cell death. Interestingly, these lectins also showed anti-angiogenic activity by disrupting the endothelial tubulogenesis. Therefore, we report for the first time two chito-specific lectins specifically binding to tumor glycans; they can be considered to be a class of molecules with antitumor activity against pancreatic cancer cells mediated through caspase dependent mitochondrial apoptotic pathway.  相似文献   

8.
Insects depend on lectins for non‐self recognition and clearance of invading pathogens. Naturally occurring lectin showing specificity for galactose was purified from the serum of lepidopteran pest Parasa lepida by affinity chromatography using Sepharose 6B coupled with galactose as a gel matrix. Preliminary studies on crude serum agglutinin revealed that the agglutinin molecule showed varying degrees of specificity to avian and mammalian red blood cells tested. Among them, the highest titer of 128 was recorded against rabbit red blood cell type. The agglutinin molecule in the crude serum was stable up to 60°C and at pH between 6 and 9. Also, the hemagglutinating activity was neither dependent on divalent cations nor sensitive to ethylenediaminetetraacetic acid treatment. Galactose inhibited the hemagglutinating activity at minimum inhibitory concentration of 12.5 mM and hence it was used as a ligand for affinity chromatography. Native polyacrylamide gel electrophoresis analysis revealed a single band and the molecular weight of the lectin was found to be approximately 90 kDa. Bacterial agglutination activity of the purified lectin with two significant toxin bacteria, namely Salmonella typhi and Bacillus thuringiensis, was observed.  相似文献   

9.
10.
11.
A divalent cation-independent 16 kDa d-galactose binding lectin (AKL-2) was isolated from eggs of sea hare, Aplysia kurodai. The lectin recognized d-galactose and d-galacturonic acid and had a 32 kDa dimer consisting of two disulfide-bonded 16 kDa subunits. Eighteen N-terminus amino acids were identified by Edman degradation, having unique primary structure. Lectin blotting analysis with horseradish peroxidase-conjugated lectins has shown that AKL-2 was a glycoprotein with complex type oligosaccharides with N-acetyl d-glucosamine and mannose at non-reducing terminal. Two protein bands with 38 and 36 kDa in the crude extract of sea hare eggs after purification of the lectin was isolated by AKL-2-conjugated Sepharose column and elution with 0.1 M lactose containing buffer. It suggested that the lectin binds with an endogenous ligand in the eggs. AKL-2 kept extreme stability on haemagglutination activity if it was treated at pH 3 and 70 °C for 1 h. Glycan binding profile of AKL-2 by frontal affinity chromatography technology using 15 pyridylamine labeled oligosaccharides has been appeared that the lectin uniquely recognized globotriose (Galα1-4Galβ1-4Glc; Gb3) in addition to bi-antennary complex type N-linked oligosaccharides with N-acetyllactosamine. Surface plasmon resonance analysis of AKL-2 against a neo-glycoprotein, Gb3-human serum albumin showed the k ass and k diss values are 2.4 × 103 M?1 s?1 and 3.8 × 10?3 s?1, respectively. AKL-2 appeared cytotoxicity against both Burkitt’s lymphoma Raji cell and erythroleukemia K562. The activity to Raji by the lectin was preferably cancelled by the co-presence of melibiose mimicing Gb3. On the other hand, K562 was cancelled effectively by lactose than melibiose. It elucidated that AKL-2 had cytotoxic ability mediated glycans structure to cultured cells.  相似文献   

12.
Peanut lectin (or an immunologically indistinguishable material) is present in seeds of 4556 genotypes of the peanut, Arachis hypogaea, and in 65 genotypes of related species of Arachis. Seeds of one line of A. villosa and three lines of unclassified Arachis spp. are devoid of the lectin. Peanut lectin from 116 A. hypogaea genotypes is resolved by isoelectric focusing into three related isolectin profiles, which are designated the V, S, and V2 types. Each is composed of from six to eight separate isolectins. Peanut lectin from A. monticola, A. pusilla, and one genotype of Arachis spp. is of the V type; isolectin profiles from other wild Arachis genotypes are variable, but comprise several distinct groups. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate resolves peanut lectin preparations from 37 genotypes into the lectin subunit of Mr 30,000 and a second polypeptide of Mr 60,000. Lectin preparations from five genotypes lack the Mr 60,000 polypeptide band and have a subunit that migrates slightly faster (and therefore probably is of lower molecular weight) than the subunits of all other tested lines. Peanut lectin preparations from 62 lines have specific hemagglutinating activities ranging from 1024 to 4196 with desialyzed human Type O erythrocytes. The lectin from one genotype exhibits substantially less hemagglutinating activity and is hemolytic.  相似文献   

13.
Lectins are proteins that are subject of intense investigations. Information on lectin from chickpea (Cicer arietinum L.) with respect to its biological activities are very limited. In this study, we purified lectin from the seeds of chickpea employing DEAE-cellulose and SP-Sephadex ion exchange chromatography and identified its molecular subunit mass as 35 kDa. The free radical scavenging activity of lectin measured by the DPPH assay has IC50 of 0.88 µg/mL. Lectin exerted antifungal activity against Candida krusei, Fusarium oxysporium oxysporium, Saccharomyces cerevisiae and Candida albicans, while antibacterial activity against E. coli, B. subtilis, S. marcescens and P. aeruginosa. The minimum inhibitory concentrations were 200, 240, 160 and 140 µg for C. krusei, F. oxysporium, S. cerevisiae and C. albicans respectively. Lectin was further examined for its antiproliferative potential against cancerous cell line. The cell viability assay indicated a high inhibition activity on Ishikawa, HepG2, MCF-7 and MDA-MB-231 with IC50 value of 46.67, 44.20, 53.58 and 37.46?µg/mL respectively. These results can provide a background for future research into the benefits of chickpea lectin to pharmacological perspective.  相似文献   

14.
Arcelin, a seed protein originally discovered in wild bean accessions, was purified, characterized, and compared to phaseolin, the major seed protein of common bean, and to phytohemagglutinin (PHA), the major bean seed lectin. Arcelin and PHA has several characteristics in common. Both were glycoproteins having similar subunit Mr, deglycosylated Mr, and amino acid compositions. The two proteins were related antigenically and they had the same developmental timing of accumulation. Arcelin also had some hemagglutinating activity, a characteristic associated with lectins. However, several features distinguished arcelin from PHA. Arcelin had a more basic isoelectric point than PHA, greater numbers of basic amino acid residues, additional cysteine residues, and one methionine residue, which PHA lacks. Native PHA protein is a tetramer of subunits, and although a small component of native arcelin protein was also tetrameric, most of the arcelin preparation was dimeric. The hemagglutinating activity of arcelin was specific only for some pronase-treated erythrocytes. It did not agglutinate native erythrocytes, nor did it bind to thyroglobulin or fetuin affinity resins as did PHA. Although arcelin has lectin-like properties, we believe the distinctions between arcelin and PHA warrant the designation of arcelin as a unique bean seed protein.  相似文献   

15.
Sophora japonica lectin agglutinates human B erythrocytes strongly and A1 erythrocytes weakly. Bivalent metal ions such as Ca2+, Mn2+, or Mg2+ were shown to be essential for hemagglutinating and precipitating activities. At optimal concentrations of bivalent metal ions, hemagglutinating activity was highest between pH 8.5 and 9.0 and decreased sharply below pH 8.5, whereas precipitating capacity was maximal between pH 6.7 and 9.5. The combining site of the S. japonica lectin was explored by quantitative precipitin and precipitin inhibition assays. This lectin showed substantial differences in precipitation with several blood group B substances ascribable to heterogeneity resulting from incomplete biosynthesis of their carbohydrate side chains. The lectin precipitated moderately well with A1 substance and precursor blood group I fractions (OG). It precipitated weakly or not at all with A2, H, or Lea substances. In inhibition assays, glycosides of dGalNAc were about five to six times better than those of dGal; dGalNAc itself was about six times better than dGal. Nitrophenyl glycosides were all substantially better than the methyl glycosides, indicating a hydrophobic contribution to the site subterminal to the nonreducing moiety. Although nitrophenyl β-glycosides were much better than the corresponding α-glycosides, the methyl α-and βDGalNAcp were equal in activity as were methyl α- and βDGalp. Among the oligosaccharides tested, the β-linked N-tosyl-l-serine glycoside of dGalβ1 → 3dGalNAc was best and was as active as p-nitrophenyl βDGalNAcp, whereas dGalβ1 → 3dGalNAc α-N-tosyl serine and the nitrophenyl and phenyl α-glycosides of dGalβ1 → 3dGalNAc were much less active, suggesting that the hydrophobic moiety and/or a subterminal dGalNAc β-linked and substituted on carbon 3 play an important role in binding and that a β-linked glycoside of dGalβ1 → 3dGalNAc may be an essential requirement for binding. The results of inhibition studies with other oligosaccharides indicate that a subterminal dGlcNAc substituted on carbon 3 or 4 by dGalβ may contribute somewhat to binding and that whether the dGlcNAc is linked β1 → 3 or β1 → 6 to a third sugar does not contribute to or interfere with binding. The β1 → 3 linkage of the terminal dGal to the subterminal amino sugar is significant since dGalβ1 → 4dGlcNAc was one-half as active as the corresponding β1 → 3-linked compound and the subterminal sugar must be unsubstituted for optimal binding. N-Acetyllactosamine was 50% more active than lactose, indicating that the subterminal N-acetamido group was also contributing significantly to binding. A variety of other sugars, glycosides, and oligosaccharides showed little or not activity. From the oligosaccharides available, the combining size of this lectin would appear to be least as large a β-linked disaccharide and most complementary to dGalβ1 → 3dGalNAc β-linked to tosyl-l-serine the most active compound tested.  相似文献   

16.
A novel lectin from the wild mushroom Polyporus adusta   总被引:3,自引:0,他引:3  
A lectin with antiproliferative activity toward tumor cell lines and mitogenic activity toward splenocytes was isolated from the mushroom Polyporus adusta. The lectin was composed of two identical subunits each with a molecular weight of 12 kDa. It was adsorbed on both DEAE-cellulose and Q-Sepharose and unadsorbed on CM-Sepharose. The hemagglutinating activity of the lectin was inhibited by turanose and by a large variety of other carbohydrates. It was adversely affected in the presence of NaOH or HCl at a concentration of 7.5mM and above, and when the ambient temperature was raised above 70 degrees C. All divalent and trivalent metallic chlorides tested at 1.25-10mM including CaCl(2), MgCl(2), ZnCl(2), MnCl(2), and AlCl(3), did not alter the hemagglutinating activity of the lectin. FeCl(3) at 10mM caused the hemagglutinating activity to increase by 100%, but it did not change the lectin activity when tested at lower concentrations up to 5mM.  相似文献   

17.
《Process Biochemistry》2010,45(9):1477-1485
A 48 kDa, chitin-binding lectin with antifungal, antiviral and apoptosis-inducing activities was isolated from the rhizomes of Setcreasea purpurea Boom, a member of family Commelinaceae. Setcreasea purpurea lectin (designated as SPL) is a homotetrameric protein consisting of 12031.9 Da subunits linked by non-covalent bonds as determined by SDS-PAGE, gel filtration and MS. The N-terminal 25 amino-acid sequence of SPL, NVLGRDAYCGSQNPGATCPGLCCSK was determined and homology analysis suggested that SPL belongs to the family of chitin-binding plant lectins composed of hevein domains. The lectin exhibited strong hemagglutinating activity towards rabbit erythrocytes at 0.95 μg/ml and the activity could be reversed exclusively by chitin hydrolysate (oligomers of GlcNAc). Its hemagglutinating activity was stable in pH range of 2.0–9.0 and it showed excellent thermal tolerance. SPL showed antifungal activity against Rhizoctonia solani, Sclerotinia sclerotiorum, Penicillium italicum and Helminthosporiun maydis. It also exhibited inhibitory effect on HIV-1 (IIIB) and HIV-2 (ROD), with an EC50 of 13.8 ± 1.3 and 57.1 ± 15 μg/ml, respectively. Subsequently, MTT method, cell morphological analysis and LDH activity-based cytotoxicity assays demonstrated that SPL was highly cytotoxic to CNE-1 cells and induced apoptosis in a dose-dependent manner. Moreover, due to the caspase inhibitors analyses, caspase was also found to play an important role in the potential apoptotic mechanism of SPL.  相似文献   

18.
19.
A thermostable amidase produced by Geobacillus subterraneus RL-2a was purified to homogeneity, with a yield of 9.54 % and a specific activity of 48.66 U mg?1. The molecular weight of the native enzyme was estimated to be 111 kDa. The amidase of G. subterraneus RL-2a is constitutive in nature, active at a broad range of pH (4.5–11.5) and temperature (40–90 °C) and has a half-life of 5 h and 54 min at 70 °C. Inhibition of enzyme activity was observed in the presence of metal ions, such as Co2+, Hg2+, Cu2+, Ni2+, and thiol reagents. The presence of mid-chain aliphatic and amino acid amides enhances the enzymatic activity. The acyl transferase activity was detected with propionamide, butyramide and nicotinamide. The enzyme showed moderate stability toward toluene, carbon tetrachloride, benzene, ethylene glycol except acetone, ethanol, butanol, propanol and dimethyl sulfoxide. The K m and V max of the purified amidase with nicotinamide were 6.02 ± 0.56 mM and 132.6 ± 4.4 μmol min?1 mg?1 protein by analyzing Michaelis–Menten kinetics. The results of MALDI-TOF analysis indicated that this amidase has homology with the amidase of Geobacillus sp. C56-T3 (gi|297530427). It is the first reported wide-spectrum thermostable amidase from a thermophilic G. subterraneus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号