首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Conceptual and technical advances in neural stem cell biology are being applied to the study of human brain tumours. These studies suggest that human brain tumours are organized as a hierarchy and are maintained by a small number of tumour cells that have stem cell properties. Most of the bulk population of human brain tumours comprise cells that have lost the ability to initiate and maintain tumour growth. Although the cell of origin for human brain tumours is uncertain, recent evidence points towards the brain's known proliferative zones. The identification of brain tumour stem cells has important implications for understanding brain tumour biology and these cells may be critical cellular targets for curative therapy.  相似文献   

2.
Organs for donation are in short supply in the United Kingdom, resulting in allegations that relatives of potential donors are not being asked for consent. Legislation on "required request" has been proposed to overcome this. The incidence, causes, complications, and patterns of organ donation in brain stem dead patients in one referral centre were studied over 12 months. Data were collected on all patients fulfilling criteria for brain stem death or considered suitable for donating organs after circulatory arrest. Forty two patients fulfilled the criteria for brain stem death, and in 10 further patients circulatory arrest occurred before formal testing was finished. The major causes of brain stem death were head injury (28) and intracranial haemorrhage (17). Consent to organ donation was obtained for 24 potential donors, and organs were donated by 23 of them. Twenty nine patients did not donate organs. The commonest reasons for failure to donate were medical unsuitability (13) and the coroner not releasing the body (eight). Consent was not sought in three cases, and the relatives refused consent in the remaining five. This study suggests that required request will not considerably increase the supply of donor organs.  相似文献   

3.
Consciousness disorders are closely related to the general dysfunction of the brain stem, and called by some authors brain stem insufficiency. To evaluate the degree of brain stem dysfunction, an original scale has been elaborated. Each group of brain stem functions are scored. Consciousness being the most important symptom of the brain stem insufficiency is scored about 50% in a 63-score scale. Scores are used to achieve the most objectivity in the clinical monitoring of the brain stem insufficiency. Its utility was examined in 75 patients with either ischemia or cerebral hemorrhage. Patients of both groups with severe insufficiency below 33 scores and persisting over 24 hours had no chance to survive. The authors suggest that the scores may successfully be used in the clinical monitoring of all disorders producing consciousness disturbances. Survival of patients with brain stem insufficiency in the course of cerebral ischemia or hemorrhage depends on the degree and duration of the brain stem insufficiency.  相似文献   

4.
The speed of local blood flow (SLBF) in positive emotiogenic hypothalamic zones was recorded in free-moving white rats, by the method of hydrogen clearance, in states of passive and active alertness, in conditions of artificial (local) activation (by cathode) and inactivation (by DC anode) and also during stimulation of other positive and negative emotiogenic structures. It was established that the natural or artificial activation of the emotiogenic brain zones elicits an increase of SLBF and the inactivation evokes its reduction. Blood flow of the positive emotiogenic brain zones is intensified by stimulation of other positive emotiogenic structures, is reduced by stimulation of the negative emotiogenic zones and does not change at stimulation of emotionally neutral zones. It is suggested, that the mechanism of vascular reactions elicited by activation of positive and negative emotiogenic brain structures has a neurogenic basis and is performed in the type of "axon-reflex" by collaterals of ascending and descending fibers of the forebrain medial bundle.  相似文献   

5.
Blood vessels of 167 eyeballs of human embryos and fetuses have been studied, using macro- microscopical, histological and morphometrical methods. Time of appearance and differentiation of blood vessels in the eye anlage has been determined. Topography and architecture of the vitreous body artery are described in detail, as well as the vascular tunic of the lens and the pupil membrane. Regularities and time of reversal development of the vascular formations mentioned are followed during the whole intrauterine development. The data obtained add to extend our knowledge on the role of disturbances of the normal morphogenesis of the eyeball blood bed in pathogenesis of its congenital diseases.  相似文献   

6.
An important mechanism of neuronal plasticity is neurogenesis, which occurs during the embryonic period, forming the brain and its structure, and in the postnatal period, providing repair processes and participating in the mechanisms of memory consolidation. Adult neurogenesis in mammals, including humans, is limited in two specific brain areas, the lateral walls of the lateral ventricles (subventricular zone) and the granular layer of the dentate gyrus of the hippocampus (subgranular zone). Neural stem cells (NSC), self-renewing, multipotent progenitor cells, are formed in these zones. Neural stem cells are capable of differentiating into the basic cell types of the nervous system. In addition, NSC may have neurogenic features and non-specific non-neurogenic functions aimed at maintaining the homeostasis of the brain. The microenvironment formed in neurogenic niches has importance maintaining populations of NSC and regulating differentiation into neural or glial cells via cell-to-cell interactions and microenvironmental signals. The vascular microenvironment in neurogenic niches are integrated by signaling molecules secreted from endothelial cells in the blood vessels of the brain or by direct contact with these cells. Accumulation of astrocytes in neurogenic niches if also of importance and leads to activation of neurogenesis. Dysregulation of neurogenesis contributes to the formation of neurological deficits observed in neurodegenerative diseases. Targeting regulation of neurogenesis could be the basis of new protocols of neuroregeneration.  相似文献   

7.
Brain tumours are a diverse group of neoplasms that continue to present a formidable challenge in our attempt to achieve curable intervention. Our conceptual framework of human brain cancer has been redrawn in the current decade. There is a gathering acceptance that brain tumour formation is a phenotypic outcome of dysregulated neurogenesis, with tumours viewed as abnormally differentiated neural tissue. In relation, there is accumulating evidence that brain tumours, similar to leukaemia and many solid tumours, are organized as a developmental hierarchy which is maintained by a small fraction of cells endowed with many shared properties of tissue stem cells. Proof that neurogenesis persists throughout adult life, compliments this concept. Although the cancer cell of origin is unclear, the proliferative zones that harbour stem cells in the embryonic, post-natal and adult brain are attractive candidates within which tumour-initiation may ensue. Dysregulated, unlimited proliferation and an ability to bypass senescence are acquired capabilities of cancerous cells. These abilities in part require the establishment of a telomere maintenance mechanism for counteracting the shortening of chromosomal termini. A strategy based upon the synthesis of telomeric repeat sequences by the ribonucleoprotein telomerase, is prevalent in ~ 90% of human tumours studied, including the majority of brain tumours. This review will provide a developmental perspective with respect to normal (neurogenesis) and aberrant (tumourigenesis) cellular turnover, differentiation and function. Within this context our current knowledge of brain tumour telomere/telomerase biology will be discussed with respect to both its developmental and therapeutic relevance to the hierarchical model of brain tumourigenesis presented by the cancer stem cell paradigm.  相似文献   

8.
The thyroid gland vascularization has been studied on 58 pieces belonging to young organisms (human and animal) by means of both morphometric methods (macro- and microscopic) and injection of radioisotopes (86Rb). The statistical-mathematical study of the dimensional values characterizing the thyroid vascular branch at different levels assumed for study allowed to determine the thyroid central area as the best vascularized of the thyroid parenchyma. Estimating the specific activity and the absorption constant value of the 86Rb in the vascular wall and the glandular parenchyma, the radioisotope-based study attests the data obtained morphologically. By the simultaneous injection of 86Rb into strychnine, the pharmacodynamic study shows a more prominent reduction of the 86Rb absorption constant value in the distal area of the gland as compared to its central one and the blank batch.  相似文献   

9.
Stem cells in the adult mammalian central nervous system   总被引:23,自引:0,他引:23  
Over the past year, evidence has accrued that adult CNS stem cells are a widespread progenitor cell type. These cells may normally replace neurons and/or glia in the adult brain and spinal cord. Advances have been made in understanding the signals that regulate stem cell proliferation and differentiation. A deeper understanding of the structure of germinal zones has helped us move towards identifying stem cells in vivo. Recent studies suggest that the fate of stem cell progeny in vivo may be linked to the complexity of the animal's environment.  相似文献   

10.
Research on stem cells has developed as one of the most promising areas of neurobiology. In the beginning of the 1990s, neurogenesis in the adult brain was indisputably accepted, eliciting great research efforts. Neural stem cells in the adult mammalian brain are located in the ‘neurogenic’ areas of the subventricular and subgranular zones. Nevertheless, many reports indicate that they subsist in other regions of the adult brain. Adult neural stem cells have arisen considerable interest as these studies can be useful to develop new methods to replace damaged neurons and treat severe neurological diseases such as neurodegeneration, stroke or spinal cord lesions. In particular, a promising field is aimed at stimulating or trigger a self‐repair system in the diseased brain driven by its own stem cell population. Here, we will revise the latest findings on the characterization of active and quiescent adult neural stem cells in the main regions of neurogenesis and the factors necessary to maintain their active and resting states, stimulate migration and homing in diseased areas, hoping to outline the emerging knowledge for the promotion of regeneration in the brain based on endogenous stem cells.  相似文献   

11.
Saransaari P  Oja SS 《Amino acids》2007,32(3):439-446
Summary. Taurine has been thought to be essential for the development and survival of neural cells and to protect them under cell-damaging conditions. In the brain stem taurine regulates many vital functions, including cardiovascular control and arterial blood pressure. We have recently characterized the release of taurine in the adult and developing brain stem under normal conditions. Now we studied the properties of preloaded [3H]taurine release under various cell-damaging conditions (hypoxia, hypoglycemia, ischemia, the presence of metabolic poisons and free radicals) in slices prepared from the mouse brain stem from developing (7-day-old) and young adult (3-month-old) mice, using a superfusion system. Taurine release was greatly enhanced under these cell-damaging conditions, the only exception being the presence of free radicals in both age groups. The ischemia-induced release was characterized to consist of both Ca2+-dependent and -independent components. Moreover, the release was mediated by Na+-, Cl-dependent transporters operating outwards, particularly in the immature brain stem. Cl channel antagonists reduced the release at both ages, indicating that a part of the release occurs through ion channels, and protein kinase C appeared to be involved. The release was also modulated by cyclic GMP second messenger systems, since inhibitors of soluble guanylyl cyclase and phosphodiesterases suppressed ischemic taurine release. The inhibition of phospholipases also reduced taurine release at both ages. This ischemia-induced taurine release could constitute an important mechanism against excitotoxicity, protecting the brain stem under cell-damaging conditions.  相似文献   

12.
The release of neurotransmitters and modulators has been studied mostly using labeled preloaded compounds. For several reasons, however, the estimated release may not reliably reflect the release of endogenous compounds. The basal and K+-evoked release of the neuroactive endogenous amino acids GABA, glycine, taurine, l-glutamate and l-aspartate was now studied in slices from the hippocampus and brain stem from 7-day-old and 3-month-old mice under control and ischemic conditions. The release of synaptically not active l-glutamine, l-alanine, l-threonine and l-serine was assessed for comparison. The estimates for the hippocampus and brainstem were markedly different and also different in developing and adult mice. GABA release was much greater in 3-month-old than in 7-day-old mice, whereas with taurine the situation was the opposite, in the hippocampus in particular. K+ stimulation enhanced glycine release more in the mature than immature brain stem while in the hippocampus the converse was observed. Ischemia enhanced the release of all neuroactive amino acids in both brain regions, the effects being relatively most pronounced in the case of GABA, aspartate and glutamate in the hippocampus in 3-month-old mice, and taurine in 7-day-old and glycine in 3-month-old mice in the brain stem. These results are qualitatively similar to those obtained on earlier experiments with labeled preloaded amino acids. However, the magnitudes of the release cannot be quite correctly estimated using radioactive labels. In developing mice only taurine release may counteract the harmful effects of excitatory amino acids in ischemia in both hippocampus and brain stem.  相似文献   

13.
The distribution of cytochrome-oxidase activity in rabbit brain   总被引:3,自引:2,他引:1  
1. The cytochrome-oxidase activity in eleven structures of the rabbit brain has been investigated. 2. Kinetic data suggest that the same enzyme occurs in all brain structures but that the activity on a tissue-weight basis differs from structure to structure, being in general higher in the phylogenetically newer structures. 3. When the kinetic data are related to cell density (as measured by DNA concentration) all the neuron-containing structures of the cerebrum and brain stem show the same activity but the corpus callosum and the cerebellum show much less. 4. A special study was made of the distribution of activity and cell density within the diencephalon. 5. The results suggest that all neurons in the cerebrum and brain stem have a similar cytochrome-oxidase activity, which is about 80 times that of glia, and that the cerebellum is relatively richer in glia or that it contains neurons with a much lower cytochrome-oxidase activity, or both.  相似文献   

14.
The distribution of γ-aminobutyric-α-oxoglutarate transaminase (GABA-T) has been studied in mouse brain by histochemical visualization on sections, quantitative determination in grossly dissected brain regions, and in subcellular fractions prepared from whole brain homogenates. The results indicate that GABA-T is predominantly a mitochondrial enzyme and that its concentration is particularly high in brain stem areas. The results are discussed in relation to the overall function of the GABA system in the CNS.  相似文献   

15.
The effect of chronic treatment with tyroxine (T4) or propylthiouracile (PTU) on the turnover of norepinephrine (NE), dopamine (DA) and 5-hydroxytryptamine (5-HT) has been studied in various areas of the rat brain (brain stem, hypothalamus, striatum and "rest of the brain"). The turnover of NE and DA was determined by the decay in endogenous levels after inhibition of tyrosine hydroxylase by alpha-methylparatyrosine and the turnover of 5-HT was evaluated by the initial accumulation of endogenous 5-HT after inhibition of monoamine oxydase by pargyline. T4 treatment accelerated the release of DA from the striatum but had no significant effects on NA release in the various cerebral areas : nevertheless the NE endogenous level was significantly reduced in the brain stem. PTU treatment delayed the release of DA and NA only from the "rest of the brain". Concerning 5-HT, the only significant variation was observed in the hypothalamus of PTU-treated rats and implied increased turnover. The possible relations between the changes in cerebral monoamines turnover and the behavioural alterations which are observed in thyroid disfunction are discussed.  相似文献   

16.
Although the systemic effects of progestogens have been extensively studied, little is known in regards to the cellular effects of these compounds. Using a cellular model for vascular (macrophages) and brain (microglial) cells, we studied the effects of various progestogens, either alone or in combination with 17β-estradiol (E2) on the activity of matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme involved in vascular remodeling and plaque destabilization in cardiovascular events, blood–brain barrier breakdown in stroke and brain regeneration and neurovascular remodeling during repair phases of brain injury. In the absence of E2, medroxyprogesterone acetate (MPA), a synthetic progestogen and progesterone (PG) metabolites tended to increase MMP-9 enzyme activity in macrophages and microglial cells, whereas PG decreased such activity in macrophages; exceptions being that MPA and the PG metabolite, pregnanediol (Pdiol) had no effect on macrophage MMP-9 enzyme activity and PG had no effect on microglial cell MMP-9 enzyme activity. In the presence of E2, an opposite affect was observed whereby MPA and the PG metabolites tended to decrease MMP-9 enzyme activity from macrophages and microglial cells, whereas PG had no effect; exceptions being that MPA and Pdiol had no effect on macrophage MMP-9 enzyme activity. In conclusion, these results demonstrate that the effects of PG, PG metabolites and MPA on MMP-9 enzyme activity differ across vascular and brain cells when administered alone or in combination with E2 which could have important mechanistic implications for hormone therapy.  相似文献   

17.
《Cytotherapy》2020,22(8):400-411
Tissue defects in the human body after trauma and injury require precise reconstruction to regain function. Hence, there is a great demand for clinically translatable approaches with materials that are both biocompatible and biodegradable. They should also be able to adequately integrate within the tissue through sufficient vascularization. Adipose tissue is abundant and easily accessible. It is a valuable tissue source in regenerative medicine and tissue engineering, especially with regard to its angiogenic potential. Derivatives of adipose tissue, such as microfat, nanofat, microvascular fragments, stromal vascular fraction and stem cells, are commonly used in research, but also clinically to enhance the vascularization of implants and grafts at defect sites. In plastic surgery, adipose tissue is harvested via liposuction and can be manipulated in three ways (macro-, micro- and nanofat) in the operating room, depending on its ultimate use. Whereas macro- and microfat are used as a filling material for soft tissue injuries, nanofat is an injectable viscous extract that primarily induces tissue remodeling because it is rich in growth factors and stem cells. In contrast to microfat that adds volume to a defect site, nanofat has the potential to be easily combined with scaffold materials due to its liquid and homogenous consistency and is particularly attractive for blood vessel formation. The same is true for microvascular fragments that are easily isolated from adipose tissue through collagenase digestion. In preclinical animal models, it has been convincingly shown that these vascular fragments inosculate with host vessels and subsequently accelerate scaffold perfusion and host tissue integration. Adipose tissue is also an ideal source of stem cells. It yields larger quantities of cells than any other source and is easier to access for both the patient and doctor compared with other sources such as bone marrow. They are often used for tissue regeneration in combination with biomaterials. Adipose-derived stem cells can be applied unmodified or as single cell suspensions. However, certain pretreatments, such as cultivation under hypoxic conditions or three-dimensional spheroids production, may provide substantial benefit with regard to subsequent vascularization in vivo due to induced growth factor production. In this narrative review, derivatives of adipose tissue and the vascularization of biomaterials are addressed in a comprehensive approach, including several sizes of derivatives, such as whole fat flaps for soft tissue engineering, nanofat or stem cells, their secretome and exosomes. Taken together, it can be concluded that adipose tissue and its fractions down to the molecular level promote, enhance and support vascularization of biomaterials. Therefore, there is a high potential of the individual fat component to be used in regenerative medicine.  相似文献   

18.
When food is restricted to a few hours daily, animals increase their locomotor activity 2-3 h before food access, which has been termed food anticipatory activity. Food entrainment has been linked to the expression of a circadian food-entrained oscillator (FEO) and the anatomic substrate of this oscillator seems to depend on diverse neural systems and peripheral organs. Previously, we have described a differential involvement of hypothalamic nuclei in the food-entrained process. For the food entrainment pathway, the communication between the gastrointestinal system and central nervous system is essential. The visceral synaptic input to the brain stem arrives at the dorsal vagal complex and is transmitted directly from the nucleus of the solitary tract (NST) or via the parabrachial nucleus (PBN) to hypothalamic nuclei and other areas of the forebrain. The present study aims to characterize the response of brain stem structures in food entrainment. The expression of c-Fos immunoreactivity (c-Fos-IR) was used to identify neuronal activation. Present data show an increased c-Fos-IR following meal time in all brain stem nuclei studied. Food-entrained temporal patterns did not persist under fasting conditions, indicating a direct dependence on feeding-elicited signals for this activation. Because NST and PBN exhibited a different and increased response from that expected after a regular meal, we suggest that food entrainment promotes ingestive adaptations that lead to a modified activation in these brain stem nuclei, e.g., stomach distension. Neural information provided by these nuclei to the brain may provide the essential entraining signal for FEO.  相似文献   

19.
The regional changes in quantities of the glial S-100 protein and the neuron specific enolase in the rat nervous system have been studied after long-term exposure to 2,5-hexanedione. The wet weights of most of the examined nervous tissues were found to be reduced, with an extensive effect seen in the brain stem. Using dot immunobinding assays, the concentrations of S-100 were found to be increased in most of the examined tissues, but unaffected in the brain stem. The total amount of S-100 per tissue was markedly reduced in the brain stem. The content of neuron specific enolase was reduced only in the brain stem. Thus the effects of 2,5-hexanedione on the nervous system varied regionally. The brain stem was severely atrophied with a reduction of neuronal as well as of glial marker proteins. Other brain regions contained increased glial cell marker proteins as signs of progressive astroglial reactions.  相似文献   

20.
The aerial stem of Prionium has been studied by motion-picture analysis which permits the reliable tracing of one among hundreds of vascular strands throughout long series of transverse sections. By plotting the path of many bundles in the mature stem, a quantitative, 3-dimensional analysis of their distribution has been made, and by repeating this in the apical region an understanding of vascular development has been achieved. In the mature stem axial continuity is maintained by a vertical bundle which branches from each leaf trace just before this enters the leaf base. Lateral continuity results from bridges which link leaf traces with nearby vertical bundles. Development of the provascular system involves a meristematic cap into which the blind ends of vertical bundles can be followed. Leaf traces are produced continuously in association with developing leaf primordia for a period of over 30 plastochrones; they connect with the vertical bundles in the meristematic cap and so establish the essential vascular configuration which is later reorientated through about 90° by overall growth of the crown. The last bundles to differentiate from the leaf do so outside the meristematic cap and thus fail to make contact with the axial system; they appear in the mature axis as blind-ending cortical bundles. Prionium is only distantly related to palms and its vascular histology is quite different. Nevertheless, the course of vascular bundles and the origin of this pattern in the stem resembles that of a palm. It is suggested that we are examining the fundamental pattern of vascular development in large monocotyledons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号