首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that zebrafishalpha1-3fucosyltrasferase 1 (zFT1) was expressed in embryos at the segmentation period, and was capable of synthesizing the Lewis x epitope [Gal beta1-4(Fuc alpha1-3)GlcNAc] [Kageyama et.al, J. Biochem., 125, 838-845 (1999)]. In the current study, we attempted to detect the enzyme products of zFT1 in zebrafish embryos. Oligosaccharides were prepared from the zebrafish embryos at 12, 18 and 48 h after fertilization and labelled with a fluorophore, 2-aminopyridine, for highly sensitive detections. Pyridylamino (PA)-oligosaccharides that were alpha1-3/4fucosidase sensitive and time-dependently expressed at 18 h after fertilization were identified as candidates for the in vivo products synthesized by zFT1. Structures of these oligosaccharides were determined by a combination of exoglycosidase digestions and two-dimensional HPLC sugar mapping to be the biantennary complex-type structures with two Lewis x epitopes: (Gal beta1-4)(0,1,2)-{Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-2Man alpha1-6[Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-2Man alpha1-3]}Man beta1-4GlcNAc, and (Gal beta1-4)(0,1)-{Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-2Man alpha1-6[Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-2Man alpha1-3]} Man beta1-4GlcNAc beta1-4GlcNAc. The presence of Lewis x structure of these oligosaccharides together with their expression time suggests that they are products of zFT1. Remarkably, most of these oligosaccharides were free form. Furthermore, we detected an endo-beta-N-acetylglucosaminidase activity in the 18 h embryo. These results suggest that the oligosaccharides synthesized by zFT1 are present in the embryo at the segmentation period in free form, owing to the liberation from glycoproteins with endo-beta-N-acetylglucosaminidase(s) and/or glycoamidase(s).  相似文献   

2.
The most acidic carbohydrate chains released by alkaline borohydride treatment of the bulk of airway mucins secreted by a patient (blood group O, secretor) suffering from a mildly infected chronic bronchitis have been fractionated using high-performance anion-exchange chromatography (HPAEC) according to a protocol already described [Lo-Guidice et al., J. Biol. Chem. 269 (1994) 18794] and were analyzed using 1H-NMR spectroscopy and matrix-assisted laser-adsorption-time-of-flight (MALDI-TOF) spectrometry. Many fractions corresponded to mixtures of oligosaccharides. This confirmed the wide diversity of the post-translational processes involved in the biosynthesis of airway mucins, which had already been observed in bronchial diseases, such as chronic bronchitis and cystic fibrosis (CF). Seven fractions were directly purified by HPAEC, allowing their structural determination. Six of them corresponded to 3-O-sulfated oligosaccharide chains terminated by a sulfated N-acetyllactosamine, a sulfated Lewis X or a sulfated Lewis A determinant, and the last one corresponded to a 6-O-sulfated chain terminated by a sulfated H-2 determinant. Three oligosaccharides had core type 2 and the other four had core type 4: IIIc2-9: Gal(beta1-3)[HSO(3)-3-Gal(beta1-4)GlcNAc(beta1-6)]GalNAc-ol, IIIc2-10: Gal(beta1-3)[Fuc(alpha1-2)Gal(beta1-4)[HSO(3)-6-]GlcNAc(beta1-6)]GalNAc-ol, IIIc2-4: Fuc(alpha1-2)Gal(beta1-3)[HSO(3)-3-Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)]GalNAc-ol, IIIc2-8: Fuc(alpha1-2)Gal(beta1-3)GlcNAc(beta1-3)[HSO(3)-3-Gal(beta1-4)GlcNAc(beta1-6)]GalNAc-ol, IIIc2-7: Fuc(alpha1-2)Gal(beta1-3)GlcNAc(beta1-3)[Gal(beta1-4)[HSO(3)-6-]GlcNAc(beta1-6)]GalNAc-ol, IIIc2-3: Fuc(alpha1-2)Gal(beta1-3)GlcNAc(beta1-3)[HSO(3)-3-Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)]GalNAc-ol, IIIc1-4: Fuc(alpha1-2)Gal(beta1-3)GlcNAc(beta1-3)[HSO(3) -3-Gal(beta1-3)[Fuc(alpha1-4)]GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-6)]GalNAc-ol. Like previous data concerning the airway mucins from another patient (blood group O and non-secretor) suffering from chronic bronchitis [Lo-Guidice et al., Glycoconj. J. 14 (1997) 113], no disialylated oligosaccharide and no sialylated and sulfated oligosaccharide bearing sialyl Lewis X epitope could be isolated. This is in contrast with the data obtained with the airway mucins secreted by the patient severely infected by Pseudomonas aeruginosa and suffering from CF, suggesting that important differences occur in the biosynthesis of airway mucins secreted by patients suffering from different bronchial diseases with or without severe infection.  相似文献   

3.
gamma-Glutamyltranspeptidase purified from human kidneys contains 4-5 asparagine-linked sugar chains in each molecule. The sugar chains were released from the polypeptide portion of the enzyme by hydrazinolysis as oligosaccharides and separated by paper electrophoresis into one neutral and two acidic fractions. By sequential exoglycosidase digestion and methylation analysis, the neutral fraction, which comprised 69% of total oligosaccharides, was shown to be a mixture of bisected bi- and triantennary complex-type sugar chains with and without a fucose on the proximal N-acetylglucosamine residue and with Gal beta 1----4GlcNAc and/or Gal beta 1----4(Fuc alpha 1----3)GlcNAc groups in their outer chain moieties. The acidic oligosaccharide fractions were mixtures of mono- and disialyl derivatives of bisected triantennary complex-type oligosaccharides with Gal beta 1----4GlcNAc and/or Gal beta 1----4(Fuc alpha 1----3)GlcNAc group in their outer chain moieties. Some of the outer chains of the acidic oligosaccharides were considered to be sialylated X-antigenic structures.  相似文献   

4.
The comparative study of fucosylated tetrasialyl-oligosaccharides isolated from normal and cirrhotic alpha 1-AGP was performed using permethylation and 400-MHz 1H-NMR spectroscopy. These results clearly show the tetraantennary structure of these two oligosaccharides with hyperfucosylation for the tetrasialylated fraction from cirrhotic alpha 1-AGP. In the latter oligosaccharide the simultaneous presence on two antennae (7 and 7') of the sialosyl Lewis X determinant NeuAc-(alpha 2-3) Gal(beta 1-4) [Fuc(alpha 1-3)] GlcNAc has been observed. Moreover the 5 and 5' antennae were alpha 2-6 sialylated but without fucose.  相似文献   

5.
The structures of the major oligosaccharide moieties of the nicotinic acetylcholine receptor (AcChoR) protein from Torpedo californica have been reported [Nomoto, H., Takahashi, N., Nagaki, Y., Endo, S., Arata, Y. and Hayashi, K. (1986) Eur. J. Biochem. 157, 233-242] to be high-mannose types. Here we report detailed analyses of the structures of the remaining oligosaccharides in this receptor. The sialylated oligosaccharides released by glycopeptidase (almond) digestion were separated according to the number of sialic acid residues using high-performance anion-exchange chromatography with pulsed amperometric detection. After removal of sialic acid from each fraction, the resulting neutral oligosaccharides were separately pyridylaminated and were analyzed by a combination of sequential exoglycosidase digestion and HPLC, then identified on a two-dimensional sugar map. The structures of two desialylated pyridylamino-oligosaccharides were further analyzed by high-resolution proton NMR. Each oligosaccharide was composed of species containing varying numbers of sialic acids. The desialylated complex-type oligosaccharides of AcChoR consisted of ten, eight and one different biantennary, triantennary and tetraantennary oligosaccharide, respectively. The biantennary oligosaccharides were divided into two groups; oligosaccharides with fucose at the proximal N-acetylglucosamine (six varieties) and oligosaccharides without fucose (four varieties). Each group consisted of species differing in the number of terminal galactose residues. The major component of the biantennary oligosaccharides had two galactose residues at the non-reducing termini. The terminal alpha-galactose residue(s) linked to C3 of beta-galactose were found in the fucose-containing biantennary oligosaccharides (two varieties). The triantennary oligosaccharides were also divided into two groups; oligosaccharides with (four varieties) and without (four varieties) besecting N-acetylglucosamine. These groups were composed of species differing in the number of terminal galactose residues. The major component of the triantennary oligosaccharides was fully galactosylated with three galactose residues. An unusual group, Gal beta 1-3GlcNAc, was present in low levels in the triantennary oligosaccharides. In contrast, the tetraantennary oligosaccharide was composed of only one species, which is fully galactosylated with four galactose residues.  相似文献   

6.
Nonspecific cross-reacting antigen-2 (NCA-2) is a glycoprotein purified from meconium as a closely correlated entity with carcinoembryonic antigen (CEA). As in the case of CEA, only asparagine-linked sugar chains are included in NCA-2. In order to elucidate the structural characteristics of the sugar chains of NCA-2, they were quantitatively released from the polypeptide backbone by hydrazinolysis and reduced with NaB3H4 after N-acetylation. The radioactive oligosaccharides were fractionated by paper electrophoresis, serial chromatography on immobilized lectin columns, and Bio-Gel P-4 (under 400 mesh) column chromatography. Structures of the oligosaccharides were estimated from the data of the binding specificities of immobilized lectin columns and the effective size of each oligosaccharide determined by passing through a Bio-Gel P-4 column and were then confirmed by endo-beta-galactosidase digestion, sequential digestion with exoglycosidases with different aglycon specificities, and methylation analysis. NCA-2 contains a similar number (27 mol) of sugar chains in one molecule compared with CEA (24-26 mol). However, all sugar chains of NCA-2 were complex-type in contrast to CEA, approximately 8% of the sugar chains of which were high mannose-type (Yamashita, K., Totani, K., Kuroki, M., Matsuoka, Y., Ueda, I., and Kobata, A. (1987) Cancer Res. 47, 3451-3459). About 80% of the oligosaccharides from NCA-2 contain bisecting N-acetylglucosamine residues, and the percent molar ratio of mono-, bi, tri, and tetraantennary oligosaccharides was 2:14:57:27. (+/- Fuc alpha 1----2)Gal beta 1----4(+/- Fuc alpha 1----3)GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----3(+/- Fuc alpha 1----4)GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----4(+/- Fuc alpha 1----3)GlcNAc beta 1---- 3Gal beta 1----4GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----3(+/- Fuc alpha 1----4)GlcNAc beta 1---- 3Gal beta 1----4GlcNAc, and GalNAc beta 1----3Gal beta 1----3GlcNAc beta 1----3Gal beta 1----4GlcNAc were found as their outer chain moieties. Approximately 60% of the oligosaccharides from NCA-2 contain the Gal beta 1----4 or 3GlcNAc beta 1----3Gal beta 1----4GlcNAc beta 1----group in their outer chains.  相似文献   

7.
The extent of glycans heterogeneity in a pathological human immunoglobulin M ZAJ has been studied on oligosaccharides released by hydrazinolysis from the purified glycoprotein. After reduction with NaB3H4, asparagine-linked carbohydrate chains were separated by affinity chromatography on concanavalin A-Sepharose into oligomannosidic and N-acetyllactosaminic types. Glycans of the oligomannosidic type were further fractionated by HPLC and those of the N-acetyllactosamine type by preparative high-voltage electrophoresis. The primary structure of the main oligosaccharides was investigated on the basis of micro-methylation analysis, mass spectrometry and sequential exo-glycosidase digestion. Glycans of the oligomannosidic type varied in size from Man5GlcNAc2 to Man9GlcNAc2. N-Acetyllactosaminic glycans were found of the biantennary, bisected-biantennary and triantennary types. They presented a higher degree of heterogeneity due to the presence of a variable number of NeuAc and fucose residues. The new structures we report here were in addition to the major biantennary one we previously described on the basis of methylation analysis and 500 MHz 1H-NMR spectroscopy (Cahour, A., Debeire, P., Hartmann, L., Montreuil, J., Van Halbeek, H. and Vliegenthart, J.F.G. (1984) FEBS Lett. 170, 343-349): NeuAc(alpha 2-6)Gal(beta 1-4)GlcNAc(beta 1-2)Man(alpha 1-3)[Gal(beta 1-4)Glc-NAc(beta 1-2)Man(alpha 1-6)]Man(beta 1-4)]Glc-NAc(beta 1-4) [Fuc(alpha 1-6)]GlcNAc.  相似文献   

8.
We have identified a novel oligosaccharide in human milk that is a fucosyl derivative of sialyltetrasaccharide c (NeuAc alpha 2-6Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc). This oligosaccharide was purified by affinity chromatography on a column of immobilized Ricinus communis I lectin. Structural analyses of radiolabeled oligosaccharides by exoglycosidase digestions, binding by specific anti-carbohydrate antibodies, and analysis of the 3H-labeled glucitol derivative obtained after permethylation and hydrolysis are consistent with the following proposed structure. (formula; see text) The analyses of human milk sialylpentasaccharides from donors typed as Le(a-,b+), Le(a+,b-), and Le(a-,b-) secretor confirmed the secretor gene-dependent expression of the sialylated lacto-N-fucopentaose I (Fuc alpha 1-2Gal beta 1-3[NeuAc alpha 2-6]GlcNAc beta 1-3Gal beta 1-4Glc) and the Lewis gene-dependent expression of the sialylated lacto-N-fucopentaose II (NeuAc alpha 2-3Gal beta 1-3[Fuc alpha 1-4]GlcNAc beta 1-4Glc). However, the presence of this novel oligosaccharide in human milk is not dependent on the expression of either the secretor gene or the Lewis gene-specified fucosyltransferases.  相似文献   

9.
We previously described a bacterial fermentation process for the in vivo conversion of lactose into fucosylated derivatives of lacto-N-neotetraose Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (LNnT). The major product obtained was lacto-N-neofucopentaose-V Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, carrying fucose on the glucosyl residue of LNnT. Only a small amount of oligosaccharides fucosylated on N-acetylglucosaminyl residues and thus carrying the LewisX group (Le(X)) was also produced. We report here a fermentation process for the large-scale production of Le(X) oligosaccharides. The two fucosyltransferase genes futA and futB of Helicobacter pylori (strain 26695) were compared in order to optimize fucosylation in vivo. futA was found to provide the best activity on the LNnT acceptor, whereas futB expressed a better Le(X) activity in vitro. Both genes were expressed to produce oligosaccharides in engineered Escherichia coli (E. coli) cells. The fucosylation pattern of the recombinant oligosaccharides was closely correlated with the specificity observed in vitro, FutB favoring the formation of Le(X) carrying oligosaccharides. Lacto-N-neodifucohexaose-II Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc represented 70% of the total oligosaccharide amount of futA-on-driven fermentation and was produced at a concentration of 1.7 g/L. Fermentation driven by futB led to equal amounts of both lacto-N-neofucopentaose-V and lacto-N-neofucopentaose-II Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, produced at 280 and 260 mg/L, respectively. Unexpectedly, a noticeable proportion (0.5 g/L) of the human milk oligosaccharide 3-fucosyllactose Gal(beta1-4)[Fuc(alpha1-3)]Glc was produced in futA-on-driven fermentation, underlining the activity of fucosyltransferase FutA in E. coli and leading to a reassessment of its activity on lactose. All oligosaccharides produced by the products of both fut genes were natural compounds of human milk.  相似文献   

10.
The asparagine-linked sugar chains of the plasma membrane glycoproteins of rat erythrocytes were released as oligosaccharides by hydrazinolysis and labeled by NaB3H4 reduction. The radioactive oligosaccharides were separated into a neutral and at least four acidic fractions by paper electrophoresis. The neutral oligosaccharide fraction was separated into at least 11 peaks upon Bio-Gel P-4 column chromatography. Structural studies of them by sequential exoglycosidase digestion in combination with methylation analysis revealed that they were a mixture of three high mannose-type oligosaccharides and at least 11 complex type oligosaccharides with Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4(±Fucα1 → 6)GlcNAc as their cores and Galβ1 → 4GlcNAc, Galβ1 → 3Galβ1 → 4GlcNAc, and various lengths of Galβ1 → 4GlcNAc repeating chains in their outer chain moieties. Most of the complex-type Oligosaccharides were biantennary, and the tri- and tetraantennary Oligosaccharides contain only the Galβ1 → 3Galβ1 → 4GlcNAc group in their outer chain moieties.  相似文献   

11.
This report describes the structure of novel complex-type Asn-linked oligosaccharides in glycoproteins synthesized by the human blood fluke, Schistosoma mansoni. Adult schistosome worm pairs (male and female) isolated from infected hamsters were metabolically radiolabelled with either [3H]glucosamine, [3H]mannose or [3H]galactose. The glycopeptides prepared by pronase digestion of the total glycoprotein fraction were isolated by affinity chromatography on columns of immobilized Concanavalin A (Con A) and Wisteria floribunda agglutinin (WFA). A subset of glycopeptides, designated IIb, that bound to both Con A and WFA was isolated. WFA has been shown to have affinity for oligosaccharides containing beta 1,4-linked N-acetylgalactosamine (GalNAc) at their non-reducing termini. Compositional analysis of IIb glycopeptides demonstrated that they contained N-acetylglucosamine (GlcNAc), GalNAc, mannose (Man) and fucose (Fuc), but no galactose (Gal) or N-acetylneuraminic acid (NeuAc). Methylation analyses and exoglycosidase digestions indicated that IIb glycopeptides were complex-type biantennary structures with branches containing the sequence GalNAc beta 1-4-[+/- Fuc alpha 1-3]GlcNAc beta 1-2Man alpha 1-R. The discovery of these unusual oligosaccharides synthesized by a human parasite, which appear to be similar to some newly discovered mammalian cell-derived oligosaccharides, may shed light on future studies related to the role oligosaccharides may play in host-parasite interactions.  相似文献   

12.
Lewis a and Lewis x oligosaccharides Gal beta 3(Fuc alpha 4)GlcNAc beta 3Gal beta 4Glc and Gal beta 4(Fuc alpha 3)GlcNAc beta 3Gal beta 4Glc are easily isolated as a mixture from biological fluids, including human milk. However, because they behave almost identically in most chromatographic systems, it is difficult to have each of them as a pure compound. Incidentally, we found that they were easily separated by HPLC as glycosynthons [Gal beta 3(Fuc alpha 4)GlcNAc beta 3Gal beta 4Glc-Glp-beta Ala-OBzl and Gal beta 4(Fuc alpha 3)GlcNAc beta 3Gal beta 4Glc-Glp-beta Ala-OBzl] after substitution of the terminal reducing sugar by a short peptide (pyroglutamyl-beta alanyl-O-benzyl ester) in a one-pot two-step reaction (Carbohydr. Lett. 1 (1995) 269; Bioconjug. Chem. 9 (1998) 268). Such glycosynthons are easily either converted back to native Lewis a and Lewis x oligosaccharides upon hydrazinolysis or used to synthesize glycoconjugates, such as glycoclusters, glycopeptides, glycooligonucleotides, glycosylated polymers or glycosylated matrices for therapeutic or analytical purposes.  相似文献   

13.
Human and great ape milks contain a diverse array of milk oligosaccharides, but little is known about the milk oligosaccharides of other primates, and how they differ among taxa. Neutral and acidic oligosaccharides were isolated from the milk of three species of Old World or catarrhine monkeys (Cercopithecidae: rhesus macaque (Macaca mulatta), toque macaque (Macaca sinica) and Hamadryas baboon (Papio hamadryas)) and three of New World or platyrrhine monkeys (Cebidae: tufted capuchin (Cebus apella) and Bolivian squirrel monkey (Saimiri boliviensis); Atelidae: mantled howler (Alouatta palliata)). The milks of these species contained 6-8% total sugar, most of which was lactose: the estimated ratio of oligosaccharides to lactose in Old World monkeys (1:4 to 1:6) was greater than in New World monkeys (1:12 to 1:23). The chemical structures of the oligosaccharides were determined mainly by (1)H-NMR spectroscopy. Oligosaccharides containing the type II unit (Gal(β1-4)GlcNAc) were found in the milk of the rhesus macaque, toque macaque, Hamadryas baboon and tufted capuchin, but oligosaccharides containing the type I unit (Gal(β1-3)GlcNAc), which have been found in human and many great ape milks, were absent from the milk of all species studied. Oligosaccharides containing Lewis x (Gal(β1-4)[Fuc(α1-3)]GlcNAc) and 3-fucosyl lactose (3-FL, Gal(β1-4)[Fuc(α1-3)]Glc) were found in the milk of the three cercopithecid monkey species, while 2-fucosyl lactose (5'-FL, Fuc(α1-2)Gal(β1-4)Glc) was absent from all species studied. All of these milks contained acidic oligosaccharides that had N-acetylneuraminic acid as part of their structures, but did not contain oligosaccharides that had N-glycolylneuraminic acid, in contrast to the milk or colostrum of great apes which contain both types of acidic oligosaccharides. Two GalNAc-containing oligosaccharides, lactose 3'-O-sulfate and lacto-N-novopentaose I (Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc) were found only in the milk of rhesus macaque, hamadryas baboon and tufted capuchin, respectively. Further research is needed to determine the extent to which the milk oligosaccharide patterns observed among these taxa represent wider phylogenetic trends among primates and how much variation occurs among individuals or species.  相似文献   

14.
It was previously shown that alkaline borohydride treatment of human midcycle cervical mucin releases a heterogeneous population of reduced neutral, sialylated, and sulfated oligosaccharides (Yurewicz, E. C., and Moghissi, K. S. (1981) J. Biol. Chem. 256, 11895-11905). Three major neutral oligosaccharides were isolated with approximate compositions of Fuc:Gal:GlcNAc:N-acetylgalactosaminitol (GalNAcol) = 0:2:1:1 (A1), 1:2:1:1 (A2), and 2:2:1:1 (A3). They comprised roughly 21%, 13%, and 8% of human cervical mucin oligosaccharide chains, respectively. In the present report, each was analyzed by periodate oxidation, methylation, and sequential degradation with glycosidases. A1 was shown to contain more than one component, but structural analyses clearly demonstrated the presence of one predominant (75%) tetrasaccharide. The proposed structure, Gal beta 1-4GlcNAc beta 1-6(Gal beta 1-3)GalNAcol, has previously been found in human gastric, submaxillary, and ovarian cyst mucins in their carbohydrate-to-protein linkage regions. beta-Galactosidase from Aspergillus niger selectively cleaved the Gal beta 1-4GlcNAc linkage in the intact tetrasaccharide. Enzymatic hydrolysis of the Gal beta 1-3GalNAcol linkage required prior removal of the Gal beta 1-4GlcNAc beta 1-unit attached to 0-6 of GalNAcol. The data for A2 indicated a mixture of two oligosaccharides, Gal beta 1-4,3(Fuc alpha 1-3,4)GlcNAc beta 1-6(Gal beta 1-3)GalNacol and Fuc alpha 1-2Gal beta 1-4GlcNac beta 1-6(Gal beta 1-3)-GalNacol, in an approximate molar ratio of 3 to 4:1, respectively. Two structures are consistent with the data obtained for A3: Fuc alpha 1-2Gal beta 1-4,3(Fuc alpha 1-3,4)GlcNAc beta 1-6(Gal beta 1-3)GalNAcol and/or Gal beta 1-4,3(Fuc alpha 1-3,4)GlcNac beta 1-6(Fuc alpha 1-2Gal beta 1-3)GalNacol. The results indicate that A1 represents the "core" tetrasaccharide of the larger human cervical mucin oligosaccharides A2 and A3.  相似文献   

15.
By using near-UV circular dichroism (CD) and solvent proton nuclear magnetic relaxation dispersion measurements, three different conformational states have been detected in Ca(2+)-Mn(2+)-concanavalin A upon binding a variety of asparagine-linked carbohydrates. Two of these transitions have been described previously, one for the binding of monosaccharides such as methyl alpha-D-mannopyranoside and oligosaccharides with terminal alpha-Glc or alpha-Man residues, and the second for the binding of oligomannose and complex type carbohydrates (Brewer, C. F., and Bhattacharyya, L. (1986) J. Biol. Chem. 261, 7306-7310). The third transition occurs upon binding a bisected biantennary complex type carbohydrate with terminal GlcNAc residues. Temperature-dependent nuclear magnetic relaxation dispersion and CD measurements have identified regions of the protein near the two metal ion binding sites that are associated with the conformation changes, and Tyr-12, which is part of the monosaccharide binding site, as responsible for the CD changes. The results support our previous conclusions that the rotamer conformation of the (alpha 1,6) arm of bisected complex type oligosaccharides binds to concanavalin A with dihedral angle omega = -60 degrees whereas nonbisected complex type oligosaccharides bind with omega = 180 degrees (Bhattacharyya, L., Haraldsson, M., and Brewer, C. F. (1987) J. Biol. Chem. 262, 1294-1299). The present findings also explain the effects of increasing chain length of bisected complex type carbohydrates on their interactions with the lectin.  相似文献   

16.
The oligosaccharides present in the milk of an African elephant (Loxodonta africana africana), collected 4 days post partum, were separated by size exclusion-, anion exchange- and high-performance liquid chromatography (HPLC) before characterisation by (1)H NMR spectroscopy. Neutral and acidic oligosaccharides were identified. Neutral oligosaccharides characterised were isoglobotriose, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc and a novel oligosaccharide that has not been reported in the milk or colostrum of any other mammal: Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc. Acidic oligosaccharides that are also found in the milk of Asian elephant were Neu5Ac(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc and Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3){Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)}Gal(beta1-4)Glc, while Neu5Gc(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)[Gal(beta1-4)GlcNAc(beta1-6)]Gal(beta1-4)Glc and Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3){Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)}Gal(beta1-4)Glc have not been found in Asian elephant milk. The oligosaccharides characterised contained both alpha(2-3)- and alpha(2-6)-linked Neu5Ac residues. They also contain only the type II chain, as found in most non-human, eutherian mammals.  相似文献   

17.
18.
The acidic oligosaccharide alditols released from bovine submaxillary-gland mucin by Carlson degradation were investigated by a combination of liquid secondary-ion mass spectrometry, methylation analysis and 1H-NMR. Among the largest structures identified were four branched hexasaccharides, three of them novel, comprising two separate pairs of structures. One pair contained the sequence Fuc(alpha 1-2)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-) (Fuc, L-fucose), at C3 of N-acetylgalactosaminitol and differed only by substitution at C6 by N-acetylneuraminic or N-glycolylneuraminic acid. The other pair also differed in substitution of the sialic acid linked at C6 and contained the GalNAc-(alpha 1-3)[Fuc(alpha 1-2)]Gal(beta 1-4)GlcNAc(beta 1-), sequence at C3 of N-acetylgalactosaminitol. The Lewis(y) and blood-group-A determinants of these sequences have not been found previously in the acidic oligosaccharides of bovine submaxillary-gland mucin, although they have recently been characterised in the neutral chains of bovine submaxillary-gland mucin.  相似文献   

19.
The in vivo specificity for E-selectin binding to a panel of N-linked oligosaccharides containing a clustered array of one to four sialyl Lewisx (SLex; NeuAcalpha2-3Gal[Fucalpha1-3]beta1-4GlcNAc) determinants was studied in mice. Following intraperitoneal dosing with lipopolysaccharide, radioiodinated tyrosinamide N-linked oligosaccharides were dosed i.v. and analyzed for their pharmacokinetics and biodistribution. Specific targeting was determined from the degree of SLex oligosaccharide targeting relative to a sialyl oligosaccharide control. Oligosaccharides targeted the kidney with the greatest selectivity after a 4-h induction period following lipopolysaccharide dosing. Unique pharmacokinetic profiles were identified for SLex biantennary and triantennary oligosaccharides but not for monovalent and tetraantennary SLex oligosaccharides or sialyl oligosaccharide controls. Biodistribution studies established that both SLex biantennary and triantennary oligosaccharides distributed to the kidney with 2-3-fold selectivity over sialyl oligosaccharide controls, whereas monovalent and tetraantennary SLex oligosaccharides failed to mediate specific kidney targeting. Simultaneous dosing of SLex biantennary or triantennary oligosaccharide with a mouse anti-E-selectin monoclonal antibody blocked kidney targeting, whereas co-administration with anti-P-selectin monoclonal antibody did not significantly block kidney targeting. The results suggest that SLex biantennary and triantennary are N-linked oligosaccharide ligands for E-selectin and implicate E-selectin as a bivalent receptor in the murine kidney endothelium.  相似文献   

20.
T Endo  D Groth  S B Prusiner  A Kobata 《Biochemistry》1989,28(21):8380-8388
Prion proteins from humans and rodents contain two consensus sites for asparagine-linked glycosylation near their C-termini. The asparagine-linked oligosaccharides of the scrapie isoform of the hamster prion protein (PrP 27-30) were released quantitatively from the purified molecule by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. The radioactive oligosaccharides were fractionated into one neutral and three acidic oligosaccharide fractions by anion-exchange column chromatography. All oligosaccharides in the acidic fractions could be converted to neutral oligosaccharides by sialidase digestion. Structural studies on these oligosaccharides including sequential exoglycosidase digestion in combination with methylation analysis revealed that PrP 27-30 contains a mixture of bi-, tri-, and tetraantennary complex-type sugar chains with Man alpha 1----6(GlcNAc beta 1----4)(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4-(Fuc alpha 1----6)GlcNAc as their core. Variation is produced by the different combination of the oligosaccharides Gal beta 1----4GlcNAc beta 1----, Gal beta 1----4(Fuc alpha 1----3)GlcNAc beta 1----, GlcNAc beta 1----, Sia alpha 2----3Gal beta 1----4GlcNAc beta 1----, and Sia alpha 2----6Gal beta 1----4GlcNAc beta 1---- in their outer chain moieties. When both asparagine-linked consensus sites are glycosylated, the diversity of oligosaccharide structures yields over 400 different forms of the scrapie prion protein. Whether these diverse asparagine-linked oligosaccharides participate in scrapie prion infectivity or modify the function of the cellular prion protein remains to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号