首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Migratory birds replenishing their fuel stores have to decide when to leave their stopover site for the next flight bout. We studied whether the decision to leave a stopover site depends on wind and rain conditions. From capture-recapture data of 1153 European robins collected during three autumns at a stopover site in Switzerland, we estimated the daily emigration probability with a newly developed multistate capture-recapture model that accounts for the occurrence of transients. We tested whether the variation in the daily emigration probabilities can be explained by wind speed, wind direction (both on the ground and 300 m above ground) or rain. Variation in emigration probability was largely explained by variation in wind at 300 m and rain. The emigration probability was highest (0.5) during nights with no or weak (<1.5 m/s) winds at 300 m and no rain, intermediate (0.15-0.2) on nights without rain and with medium wind (>1.5 m/s), and on nights with weak winds (<1.5 m/s) and rain; and almost zero during nights with rain and strong winds at 300 m. Wind direction at 300 m and wind conditions (speed and direction) on the ground had no influence on departure decision. We suggest that birds may consider cues other than wind speed at ground level to predict wind speed at higher altitudes, and that they consider wind direction only when aloft by selecting an optimal flight altitude. Wind speed aloft and rain appeared to be significant factors that synchronize bird migration spatially and temporally.  相似文献   

2.
Birds: blowin’ by the wind?   总被引:1,自引:0,他引:1  
Migration is a task that implies a route, a goal and a period of time. To achieve this task, it requires orientation abilities to find the goal and energy to cover the distance. Completing such a journey by flying through a moving airspace makes this relatively simple task rather complex. On the one hand birds have to avoid wind drift or have to compensate for displacements to reach the expected goal. On the other hand flight costs make up a large proportion of energy expenditure during migration and, consequently, have a decisive impact on the refuelling requirements and the time needed for migration. As wind speeds are of the same order of magnitude as birds’ air speeds, flight costs can easily be doubled or, conversely, halved by wind effects. Many studies have investigated how birds should or actually do react to winds aloft, how they avoid additional costs or how they profit from the winds for their journeys. This review brings together numerous theoretical and empirical studies investigating the flight behaviour of migratory birds in relation to the wind. The results of these studies corroborate that birds select for favourable wind conditions both at departure and aloft to save energy and that for some long-distance migrants a tail-wind is an indispensable support to cover large barriers. Compensation of lateral wind drift seems to vary between age classes, depending on their orientation capacities, and probably between species or populations, due to the variety of winds they face en route. In addition, it is discussed how birds might measure winds aloft, and how flight behaviour with respect to wind shall be tested with field data.  相似文献   

3.
A bird's ground speed is influenced by the wind conditions it encounters. Wind conditions, although variable, are not entirely random. Instead, wind exhibits persistent spatial and temporal dynamics described by the general circulation of the atmosphere. As such, in certain geographical areas wind's assistance (or hindrance) on migratory flight is also persistent, being dependent upon the bird's migratory direction in relation to prevailing wind conditions. We propose that, considering the western migration route of nocturnal migrants through Europe, winds should be more supportive in spring than in autumn. Thus, we expect higher ground speeds, contributing to higher overall migration speeds, in spring. To test whether winds were more supportive in spring than autumn, we quantified monthly wind conditions within western Europe relative to the seasonal direction of migration using 30 years (1978–2008) of wind data from the NCEP/NCAR Reanalysis dataset. We found that supporting winds were significantly more frequent for spring migration compared to autumn and up to twice as frequent at higher altitudes. We then analyzed three years (2006–2008) of nocturnal migratory ground speeds measured with radar in the Netherlands which confirmed higher ground speeds in spring than autumn. This seasonal difference in ground speed suggests a 16.9% increase in migration speed from autumn to spring. These results stress the importance of considering the specific wind conditions experienced by birds when interpreting migration speed. We provide a simple methodological approach enabling researchers to quantify regional wind conditions for any geographic area and time period of interest.  相似文献   

4.
Nocturnal passerine migrants could substantially reduce the amount of energy spent per distance covered if they fly with tailwind assistance and thus achieve ground speeds that exceed their airspeeds (the birds’ speed in relation to the surrounding air). We analysed tracking radar data from two study sites in southern and northern Scandinavia and show that nocturnally migrating passerines, during both spring and autumn migration, regularly travelled without tailwind assistance. Average ground and airspeeds of the birds were strikingly similar for all seasonal and site‐specific samples, demonstrating that winds had little overall influence on the birds’ resulting travel speeds. Distributions of wind effects, measured as (1) the difference between ground and airspeed and (2) the tail/headwind component along the birds’ direction of travel, showed peaks close to a zero wind effect, indicating that the migratory flights often occurred irrespective of wind direction. An assessment of prevailing wind speeds at the birds’ mean altitude indicated a preference for lower wind speeds, with flights often taking place in moderate winds of 3–10 m/s. The limited frequency of wind‐assisted flights among the nocturnal passerine migrants studied is surprising and in clear contrast to the strong selectivity of tailwinds exhibited by some other bird groups. Relatively high costs of waiting for favourable winds, rather low probabilities of occurrence of tailwind conditions and a need to use a large proportion of nights for flying are probably among the factors that explain the lack of a distinct preference for wind‐assisted flights among nocturnal passerine migrants.  相似文献   

5.
We used radio-telemetry to study autumn migratory flight initiation and orientation in relation to wind and air pressure in a nocturnal passerine migrant, the reed warbler Acrocephalus scirpaceus at Falsterbo, southwest Sweden. The majority of the reed warblers departed in the expected migratory direction towards south of southwest, while a low number of the birds took off in reverse directions between north and east. Flight directions at departure correlated with wind directions. These correlations were particularly prominent at higher wind speeds but were absent at wind speeds below 4 m/s. Birds departing in the expected migratory direction compensated completely for wind drift. The reed warblers preferred to depart during nights with tailwinds and when air pressure was increasing suggesting that reed warblers are sensitive to winds and air pressure and select favourable wind conditions for their migratory flights. Since air pressure as well as velocity and direction of the wind are correlated with the passage of cyclones, a combination of these weather variables is presumably important for the birds' decision to migrate and should therefore be considered in optimal migration models.  相似文献   

6.
Optimal use of wind by migrating birds: combined drift and overcompensation   总被引:1,自引:0,他引:1  
Migrating birds may save flying time by allowing themselves to be partially drifted by strong winds at high altitude and correcting for the displacement at low altitude under relatively weaker winds. This behaviour will be favourable with strong upper winds and with wind direction approx. 30 ° to 90 ° in relation to the goal direction (following side winds). Radar observations of drift in high altitude bird migration and visual records of low altitude overcompensation are compatible with the optimal flight behaviour of migrants at high and low altitude, respectively, as predicted from this hypothesis.  相似文献   

7.
According to migration theory and several empirical studies, long‐distance migrants are more time‐limited during spring migration and should therefore migrate faster in spring than in autumn. Competition for the best breeding sites is supposed to be the main driver, but timing of migration is often also influenced by environmental factors such as food availability and wind conditions. Using GPS tags, we tracked 65 greater white‐fronted geese Anser albifrons migrating between western Europe and the Russian Arctic during spring and autumn migration over six different years. Contrary to theory, our birds took considerably longer for spring migration (83 days) than autumn migration (42 days). This difference in duration was mainly determined by time spent at stopovers. Timing and space use during migration suggest that the birds were using different strategies in the two seasons: In spring they spread out in a wide front to acquire extra energy stores in many successive stopover sites (to fuel capital breeding), which is in accordance with previous results that white‐fronted geese follow the green wave of spring growth. In autumn they filled up their stores close to the breeding grounds and waited for supportive wind conditions to quickly move to their wintering grounds. Selection for supportive winds was stronger in autumn, when general wind conditions were less favourable than in spring, leading to similar flight speeds in the two seasons. In combination with less stopover time in autumn this led to faster autumn than spring migration. White‐fronted geese thus differ from theory that spring migration is faster than autumn migration. We expect our findings of different decision rules between the two migratory seasons to apply more generally, in particular in large birds in which capital breeding is common, and in birds that meet other environmental conditions along their migration route in autumn than in spring.  相似文献   

8.
Migrating animals should optimise time and energy use when migrating, travelling directly to their destination. Detours from the most direct route may arise however because of barriers and weather conditions. Identifying how such situations arise from variable weather conditions is crucial to understand population response in the light of increased anthropogenic climate change. Here we used light-level geolocators to follow Cyprus wheatears for their full annual cycle in two separate years migrating between Cyprus, over the Mediterranean and the Sahara to winter in north–east sub-Saharan Africa. We predicted that any route detours would be related to wind conditions experienced during migration. We found that spring migration for all birds included an eastern detour, whilst autumn migrations were direct across the Sahara. The direct autumn migration was likely a consequence of consistent tail-winds, whilst the eastern detour in spring is likely to be more efficient given the wind conditions which are against a direct route. Such variable migration routes shaped by coincidence with prevailing winds are probably common suggesting that some birds may be able to adapt to future changes in wind conditions.  相似文献   

9.
Departure and stopover decisions are crucial for a successful migration. Such decisions are modulated by a complex interplay between endogenous (physiological state) and external factors, such as weather (e.g. wind) and geography (ecological barriers). In this study of the black redstart Phoenicurus ochruros, a short‐distance migrant passerine, we investigate the effect of weather, as gauged by tailwind and crosswind conditions, rainfall, temperature, and barometric pressure, on departures from a stopover site in the central Mediterranean Sea, off the western coast of Italy (Ventotene island), during both spring and autumn migration. We found that stopover duration was longer in birds arriving with lower fat stores, and that birds departed with generally favourable weather conditions (favourable tailwinds, weak or no crosswinds, low rainfall, high temperatures, and high pressure). However, the effects of weather on departure decisions were stronger in autumn: this could be related to 1) a seasonal difference in selection pressures for early arrival at the goal areas, that are expected to be stronger in spring than in autumn or 2) a difference in the residual extent of sea crossing since, in autumn, birds are confronted with a much longer non‐stop sea crossing (at least 300 km) than in spring (~50 km). In spring we also found males to leave the study site under less favourable tailwinds than females, and adults to leave with more favourable tailwinds than young. Our findings indicate that departure decisions are flexible and differently affected by weather in different seasons, either because of seasonal effects or because of different distances to be covered before reaching the next stopover site. Moreover, our study suggests that sex‐specific weather selectivity should be regarded among the proximate factors affecting differential spring migration of either sex.  相似文献   

10.
Soaring birds that undertake long-distance migration should develop strategies to minimize the energetic costs of endurance flight. This is relevant because condition upon completion of migration has direct consequences for fecundity, fitness and thus, demography. Therefore, strong evolutionary pressures are expected for energy minimization tactics linked to weather and topography. Importantly, the minute-by-minute mechanisms birds use to subsidize migration in variable weather are largely unknown, in large part because of the technological limitations in studying detailed long-distance bird flight. Here, we show golden eagle (Aquila chrysaetos) migratory response to changing meteorological conditions as monitored by high-resolution telemetry. In contrast to expectations, responses to meteorological variability were stereotyped across the 10 individuals studied. Eagles reacted to increased wind speed by using more orographic lift and less thermal lift. Concomitantly, as use of thermals decreased, variation in flight speed and altitude also decreased. These results demonstrate how soaring migrant birds can minimize energetic expenditures, they show the context for avian decisions and choices of specific instantaneous flight mechanisms and they have important implications for design of bird-friendly wind energy.  相似文献   

11.
A limitation of standardized mist netting for monitoring migration is caused by the lack of knowledge about the relationship between trapped birds and birds flying aloft. Earlier studies related nocturnal radar counts with trapping data of the following day. In this study, we compared for the first time data gathered simultaneously by radar and mist netting, separately for diurnal and nocturnal migration. Trapping numbers were strongly correlated with migratory intensities measured by radar (r>0.6). A multiple regression analysis, including wind speed and wind direction explained 61% of variation in the number of captures. During the night, and particularly with favourable winds, birds flew at higher altitudes and hence escaped the nets to a higher proportion. The number of nocturnal migrants trapped during daytime was well correlated with migratory intensities observed by radar in the preceding night. The diurnal time patterns, however, revealed fundamental differences between trapping counts and radar observations. This was mainly due to increasing and decreasing flight altitudes in the course of the night, and by the limitations of the radar technique that underestimates migratory intensities during the day when birds aggregate in flocks. In relation to the migratory intensity recorded by radar, diurnal migrants are trapped in a much higher proportion than nocturnal migrants. Finally, our results confirm that trapping data from a site hardly used for stopover are well suited to represent the ongoing migration during the day and night.  相似文献   

12.
Because energy reserves limit flight range, wind assistance may be of crucial importance for migratory birds. We tracked eight Bewicks swans Cygnus columbianus bewickii, using 95-g satellite transmitters with altimeters and activity sensors, during their spring migration from Denmark to northern Russia in 1996. During the 82 occasions where a swans location was recorded in flight, average flight altitude was 165 m a.s.l. with a maximum of 759 m a.s.l., despite winds often being more favourable at higher altitudes. We also counted Bewicks swans departing from the Gulf of Finland and subsequently passing an observatory in the next major stop-over area 800 km further north in the White Sea, northern Russia, during the springs of 1994, 1995 and 1996. A comparison of these counts with wind data provided evidence for Bewicks swans using favourable changes in wind conditions to embark on migration. Changes in the numbers of birds arriving in the White Sea correlated best with favourable changes in winds in the Gulf of Finland 1 day earlier. Again, migratory volume showed a correlation with winds at low altitudes only, despite wind conditions for the swans being more favourable at high altitudes. We conclude that the relatively large Bewicks swan tends to gear its migration to wind conditions at low altitude only. We argue that Bewicks swans do not climb to high altitudes because of mechanical and physiological limitations with respect to the generation of power for flight and to avoid rapid dehydration.Communicated by F. Bairlein  相似文献   

13.
On their migratory journeys, terrestrial birds can come across large inhospitable areas with limited opportunities to rest and refuel. Flight over these areas poses a risk especially when wind conditions en route are adverse, in which case inhospitable areas can act as an ecological barrier for terrestrial migrants. Thus, within the east-Atlantic flyway, the North Sea can function as an ecological barrier. The main aim of this study was to shed light on seasonal patterns of bird migration in the southern North Sea and determine whether departure decisions on nights of intense migration were related to increased wind assistance. We measured migration characteristics with a radar that was located 18 km off the NW Dutch coast and used simulation models to infer potential departure locations of birds on nights with intense nocturnal bird migration. We calculated headings, track directions, airspeeds, groundspeeds on weak and intense migration nights in both seasons and compared speeds between seasons. Moreover, we tested if departure decisions on intense migration nights were associated with supportive winds. Our results reveal that on the intense migration nights in spring, the mean heading was towards E, and birds departed predominantly from the UK. On intense migration nights in autumn, the majority of birds departed from Denmark, Germany and north of the Netherlands with the mean heading towards SW. Prevailing winds from WSW at departure were supportive of a direct crossing of the North Sea in spring. However, in autumn winds were generally not supportive, which is why many birds exploited positive wind assistance which occurred on intense migration nights. This implies that the seasonal wind regimes over the North Sea alter its migratory dynamics which is reflected in headings, timing and intensity of migration.  相似文献   

14.
Migration is a critical period of time with fitness consequences for birds. The development of tracking technologies now allows researchers to examine how different aspects of bird migration affect population dynamics. Weather conditions experienced during migration are expected to influence movements and, subsequently, the timing of arrival and the energetic costs involved. We analysed satellite‐tracking data from 68 Eurasian Woodcock Scolopax rusticola fitted with Argos satellite tags in the British Isles and France (2012–17). First, we evaluated the effect of weather conditions (temperature, humidity, wind speed and direction, atmospheric stability and visibility) on migration movements of individuals. Then we investigated the consequences for breeding success (age ratio) and brood precocity (early‐brood ratio) population‐level indices while accounting for climatic variables on the breeding grounds. Air temperature, wind and relative humidity were the main variables related to migration movements, with high temperatures and northward winds greatly increasing the probability of onward flights, whereas a trend towards greater humidity over 4 days decreased the probability of movement. Breeding success was mostly affected by climatic variables on the breeding grounds. The proportion of juveniles in autumn was negatively correlated with temperature in May, but positively correlated with precipitation in June and July. Brood precocity was poorly explained by the covariates used in this study. Our data for the Eurasian Woodcock indicate that, although weather conditions during spring migration affect migration movements, they do not have a major influence on subsequent breeding success.  相似文献   

15.
Loop migration among birds is characterized by the spring route lying consistently west or east of the autumn route. The existence of loops has been explained by general wind conditions or seasonal differences in habitat distribution. Loop migration has predominantly been studied at the population level, for example by analysing ring recoveries. Here we study loop migration of individual marsh harriers Circus aeruginosus tracked by satellite telemetry. We show that despite a generally narrow migration corridor the harriers travelled in a distinct clockwise loop through Africa and southern Europe, following more westerly routes in spring than in autumn. We used the Normalized Difference Vegetation Index (NDVI) to identify potential feeding habitat in Africa. Suitable habitat seemed always more abundant along the western route, both in spring and autumn, and no important stopover site was found along the eastern route. Observed routes did thus not coincide with seasonal variation in habitat availability. However, favourable habitat might be more important during spring migration, when the crossing of the Sahara seems more challenging, and thus habitat availability might play an indirect role in the harriers’ route choice. Grid‐based wind data were used to reconstruct general wind patterns, and in qualitative agreement with the observed loop marsh harriers predominantly encountered westerly winds in Europe and easterly winds in Africa, both in autumn and in spring. By correlating tail‐ and crosswinds with forward and perpendicular movement rates, respectively, we show that marsh harriers are partially drifted by wind. Thus, we tentatively conclude that wind rather than habitat seems to have an overriding effect on the shape of the migration routes of marsh harriers. General wind conditions seem to play an important role also in the evolution of narrow migratory loops as demonstrated for individual marsh harriers.  相似文献   

16.
Nocturnal passerine migrants were tracked with a small automatic tracking radar during spring migration in eastern New York. Climbing, descending and markedly non-linear tracks were selected for analysis because they may reveal relationships not evident in normal straight and level tracks. Climbing individuals ascended at 1 to 2 vertical metres per second by heading into the wind and increasing their ascent angles while air speed tended to remain constant. Within individual tracks, birds flew slower when flying downwind than when flying into the wind and changes in air speed were performed over periods of a few seconds. A small amount of data suggested that this behaviour did not occur under overcast skies. Both the direction and speed of the wind force were important in predicting air speed. Multiple regression analysis indicated that faster flying birds were more likely to fly in winds of high speed and at large angles into the wind.  相似文献   

17.
The height distribution of nocturnal migrants in southern Israel was determined by con-ically scanning the sky with the pencil-beam of an X-band radar at different elevation angles. Altitudinal profiles of meteorological parameters were derived from radio sondes launched at midnight and from pilot balloons launched every 4 h. A model to predict the height distribution of birds by means of meteorological variables was developed by assuming that the observed proportions of birds within a height zone, compared with the neighbouring height zones, reflect the degree of the birds' preference for that height zone. Only one among the variables included in the multiple regression analysis proved to have a significant influence on the height distribution of migrants: the difference of tailwind speed between height zones. Simulations with 1000 birds choosing altitudes by means of the night's altitudinal profile of tailwind speed closely traced the observed distributions. The fact that all the other meteorological factors which were previously suggested to have an influence on the flight range in trans-desert migration were not selected as relevant factors is discussed. The following basic information on nocturnal bird migration in the Negev is provided as a background for the statistical analysis: Directions of migration are within very narrow limits. During the first hour after take-off, 60% of autumn migrants and 75% of spring migrants are climbing, with vertical speeds of 0.1–2 m per s and 0.1–4 m per s, respectively. During the rest of the night, climbing and descending birds are in nearly equal proportions. Thus, there is a high potential of sampling atmospheric conditions at different altitudes. Height distributions in spring and autumn show the influence of the trade wind situation, autumn migrants making use of the northerly winds at low levels in spite of high temperatures, while spring migrants tend to reach the southwesterly winds at higher levels.  相似文献   

18.
The Fulmar has a long period at the breeding colony prior to egg-laying. The pattern of annual occupation and build-up in numbers has been examined in detail at Marsden, Co. Durham, at a colony in which over 100 eggs are laid annually (Order 3 of Fisher's classification). The re-occupation of the cliff starts in early November with an occasional visit by one or two birds. The main period of activity at the cliff is during the morning and, as the numbers build up, the diurnal period of occupation increases. By mid-December the first birds to arrive in the colony do so before dawn and the last to leave remain well after dark until near midnight. Almost throughout the pre-egg stage, the colony is deserted each night and re-occupied the next day and birds only stay regularly overnight just before egg-laying. A similar pattern of occupation occurs after breeding but in the reverse order. The numbers of birds at the colony in January and February exceed the breeding population and include many non-breeders. The non-breeders progressively decline in numbers until May when only the breeding birds remain with a few non-breeding birds. The daily variation in the numbers of birds at the cliff is influenced by the wind speed. In general, the birds leave the colony under freshening conditions and the number present at the colony can be interpreted in terms of the wind conditions over the last three days. It is suggested that the synchronised departures are primarily feeding trips, the birds using the strong winds to reach feeding areas, except that the departure just before egg-laying is linked to egg development and synchronised laying in the colony. Competition between Fulmars and Kittiwakes for nesting sites usually results in the Kittiwakes gaining the site. This is achieved by the Kittiwakes taking over the Fulmar sites during one of the latter's departures.  相似文献   

19.
By altering its flight altitude, a bird can change the atmospheric conditions it experiences during migration. Although many factors may influence a bird's choice of altitude, wind is generally accepted as being the most influential. However, the influence of wind is not clearly understood, particularly outside the trade‐wind zone, and other factors may play a role. We used operational weather radar to measure the flight altitudes of nocturnally migrating birds during spring and autumn in the Netherlands. We first assessed whether the nocturnal altitudinal distribution of proportional bird density could be explained by the vertical distribution of wind support using three different methods. We then used generalized additive models to assess which atmospheric variables, in addition to altitude, best explained variability in proportional bird density per altitudinal layer each night. Migrants generally remained at low altitudes, and flight altitude explained 52 and 73% of the observed variability in proportional bird density in spring and autumn, respectively. Overall, there were weak correlations between altitudinal distributions of wind support and proportional bird density. Improving tailwind support with height increased the probability of birds climbing to higher altitude, but when birds did fly higher than normal, they generally concentrated around the lowest altitude with acceptable wind conditions. The generalized additive model analysis also indicated an influence of temperature on flight altitudes, suggesting that birds avoided colder layers. These findings suggested that birds increased flight altitudes to seek out more supportive winds when wind conditions near the surface were prohibitive. Thus, birds did not select flight altitudes only to optimize wind support. Rather, they preferred to fly at low altitudes unless wind conditions there were unsupportive of migration. Overall, flight altitudes of birds in relation to environmental conditions appear to reflect a balance between different adaptive pressures.  相似文献   

20.
Thomas  Alerstam Staffan  Ulfstrand 《Ibis》1974,116(4):522-542
The migration of Wood Pigeons in southern Scandinavia was studied from 21 September to 10 October 1971 and from 16 September to 15 November 1972 using radar stations supplemented with observations from an aircraft and a network of ground observers. By far the largest quantities of Wood Pigeons migrated after cold front passages with northwesterly to northeasterly tailwinds. Most birds departed on a few days, apparently as a consequence of strong preference for tailwind situations. With northwesterly winds a proportionately high migratory activity was recorded in the Kattegatt area. With northeasterly winds activity was higher in the Baltic area. This allowed the Wood Pigeons to make maximal use of the tailwind component, and their ground speed usually exceeded 80 km/h. The calculated mean air speed was 60 km/h. Their dependence on tailwind was particularly strong when the birds were engaging in long sea-crossings, such as across the Kattegatt. Different coastlines affected the geographical pattern of migration in different ways. Frequently Wood Pigeon flocks flew almost parallel to the coast but some distance off shore, until they finally departed. The deflective force of coastlines was greatest when the birds' ground speed was low, that is, under headwind conditions or in calm weather. Mean track directions measured over two areas in northern Skane, called Inland W and Inland E, situated about 60 km apart, differed by 11, those over the western area being directed more to the south than those over the eastern. No significant correlation with wind directions was found in these areas. Combining data from the whole land area, however, track directions were found to vary from day to day in significant correlation to the wind direction. Mean track directions over the Baltic agreed with those over Skane, but both differed significantly from those over the Kattegatt. Both over the Baltic and over the Kattegatt directions were significantly correlated with wind directions, and showed greater variation than track directions over land. Daily track differences over the Baltic resulted both from differences taking place over the land, and from real wind deflection (drift). Both over the land and over the sea heading directions were correlated with wind directions, suggesting compensatory efforts on the part of the birds. On three days extensive fog covered much of the study area. Wood Pigeons continued to migrate, but certain aberrations in their behaviour were noted. Over land migration was relatively heavier in the west with northwesterly winds and in the east with northeasterly winds. The correlation demonstrated between wind direction and the mean track direction was based upon the fact that populations with different inherent primary directions made up different proportions of the migrating cohorts under different wind conditions (pseudo-drift). The incomplete compensation for wind deflection over the sea is ascribed to the lack of visual orientation cues. The more accurate orientation possible over land suggests one reason for the birds' reluctance to flights across the open sea. When mean track directions of Wood Pigeons in different parts of southern Scandinavia were related to the migratory goals of these birds, it was found that they have to change their primary direction in the course of their journey from breeding to wintering areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号