首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Golovinomyces is a strictly herb-parasitic genus in the Erysiphaceae. Host–parasite co-speciation was reported recently between the genus Golovinomyces and Asteraceae from molecular phylogenetic analyses. The Asteraceae originated in South America and latterly expanded their geographic distribution into the Northern Hemisphere. If the co-speciation between Golovinomyces and Asteraceae originated in South America, the geographic origin of Golovinomyces could be assumed to be South America. To address this question, Golovinomyces species from hosts of the tribe Mutisieae, an asteraceous tribe endemic to South America, were collected and the ITS and 28S rDNA regions sequenced. Results indicate that Oidium mutisiae and Golovinomyces leuceriae isolated from the Mutisieae do not belong at the base of the Golovinomyces tree. Instead, they are situated separately within two different clades of Golovinomyces isolates from the Northern Hemisphere. Therefore, the tribe Mutisieae is not the most early host of Golovinomyces. Present results suggest that Golovinomyces originated in the Northern Hemisphere, and not in South America. The new species Oidium reginae for the previous O. mutisiae on Mutisia decurrens is proposed.  相似文献   

2.
Advances in the understanding of biological radiations along tropical mountains depend on the knowledge of phylogenetic relationships among species. Here we present a species-level molecular phylogeny based on a multilocus dataset for the Andean hummingbird genus Coeligena. We compare this phylogeny to previous hypotheses of evolutionary relationships and use it as a framework to understand patterns in the evolution of sexual dichromatism and in the biogeography of speciation within the Andes. Previous phylogenetic hypotheses based mostly on similarities in coloration conflicted with our molecular phylogeny, emphasizing the unreliability of color characters for phylogenetic inference. Two major clades, one monochromatic and the other dichromatic, were found in Coeligena. Closely related species were either allopatric or parapatric on opposite mountain slopes. No sister lineages replaced each other along an elevational gradient. Our results indicate the importance of geographic isolation for speciation in this group and the potential interaction between isolation and sexual selection to promote diversification.  相似文献   

3.
Species distributions are a product of contemporary and historical forces. Using phylogenetic and geographic data, we explore the timing of and barriers to the diversification of the Andean butterfly genus Lymanopoda (Nymphalidae, Satyrinae). Clade and species level diversification is coincident with Andean orogeny and Pleistocene glaciation cycles. Lymanopoda has primarily diversified within elevational bands, radiating horizontally throughout the Andes with occasional speciation across elevational boundaries, often associated with ecotones. Narrow elevational ranges and infrequent speciation into adjacent elevational strata suggest that expansion across elevational gradients is relatively difficult. These results are similar to those found in studies of other Andean taxa.  相似文献   

4.
Recent molecular studies on passerine birds have highlighted numerous discrepancies between traditional classification and the phylogenetic relationships recovered from sequence data. Among the traditional families that were shown to be highly polyphyletic are the Muscicapidae Old World flycatcher. This family formerly included all Old World passerines that forage on small insects by performing short sallies from a perch. Genera previously allocated to the Muscicapidae are now thought to belong to at least seven unrelated lineages. While the peculiarity of most of these lineages has been previously recognized by Linnean classification, usually at the rank of families, one, the so-called Stenostiridae, a clade comprising three Afrotropical and Indo-Malayan genera, has only recently been discovered. Here, we address in greater detail the phylogenetic relationships and biogeographic history of the Stenostiridae using a combination of mitochondrial and nuclear data. Our analyses revealed that one species, Rhipidura hypoxantha, previously attributed to the Rhipiduridae (fantails), is in fact a member of the Stenostiridae radiation and sister to the South African endemic genus Stenostira (Fairy Flycatcher). Our dating analyses, performed in a relative-time framework, suggest that the splits between Stenostira/R. hypoxantha and Culicicapa/Elminia occurred synchronously. Given that the Stenostiridae assemblage has been consistently recovered by independent studies, we clarify its taxonomic validity under the rules of the International Code of Zoological Nomenclature.  相似文献   

5.
Geologic events promoting the aridization of southern South America contributed to lineage divergences and species differentiation through geographic (allopatric divergence) and biotic and abiotic factors (ecological divergence). For the genus Anarthrophyllum, which is distributed in arid and semi-arid regions of Patagonia, we assessed how these factors affected species diversification and reconstructed its possible biogeographic history in South American arid environments. Sequences were obtained from two molecular markers: the ITS nuclear region and the trnS-trnG plastid region. Using Parsimony, Maximum likelihood and Bayesian inference individual gene trees were reconstructed, and a species tree was obtained using multi-species coalescent analysis. Divergence times among species were estimated using secondary calibrations. Flexible Bayesian models and stochastic character mapping were used to elucidate ancestral geographic distributions and the evolution of the floral and vegetative phenotypes in the genus. Gene trees and species tree analyses strongly support Anarthrophyllum as monophyletic; all analyses consistently retrieved three well-supported main clades: High Andean Clade, Patagonian Clade 1, and Patagonian Clade 2. Main diversification events occurred concomitant with the Andean uplift and steppe aridization; the Andean mountain range possibly acted as a species barrier for the High Andean Clade. Vegetative traits showed adaptations to harsh climates in some clades, while pollinator-related floral features were associated with independent diversification in bee- and bird-pollinated clades within both Patagonian Clades. In conclusion, evolutionary and biogeographic history of Anarthrophyllum resulted from the action of ecological, historical, and geographic factors that acted either alternatively or simultaneously.  相似文献   

6.
The American mink’s relationship to the weasels in Mustela has been uncertain. Karyological, morphological, and phylogenetic comparisons to Eurasian Mustela support placing the mink outside the genus as Neovison vison. However, genetic comparisons that incorporate other endemic American Mustela suggest the interpretation of N. vison’s position to Mustela has been handicapped by biased geographic sampling. Here, we analyzed mitochondrial cytochrome-b from all weasels endemic to the Americas, including two poorly known South American species (M. felipei, M. africana), weasels native to North America (M. vison, M. frenata, M. nigripes), Mustela migrant to North America (M. erminea, M. nivalis), palearctic Mustela, and other American members of Mustelidae. Bayesian and likelihood inference methods were used to construct a phylogeny of Mustela, and relaxed Bayesian phylogenetic techniques estimated ages of divergence within the genus using priors calibrated by fossil ages. Our analyses show that the American mink and the smaller Mustela endemic to the Americas represent a distinct phylogenetic heritage apart from their Eurasian cousins, and biogeographic barriers like the Bering and Panamanian land bridges have influenced the evolutionary history of Mustela in the Americas.  相似文献   

7.
Summary Gossypium barbadense L. is a commercially important cotton species of tropical South American origin presently grownin many regions of the world. The species is morphologically diverse, consisting of a wide range of wild (or feral), commensal, landrace, and highly improvedcommercial forms. We performed allozyme analysis on 153 accessions representing the spectrum of G. barbadense diversityto ascertain the geographic origin of the species, its patterns of diffusion subsequent to domestication, and to reveal infraspecific relationships. Levels ofgenetic variation in G. barbadense are moderate. Of 59 loci scored, 24 were polymorphic, with a mean number of alleles perlocus of 1.69 and an average panmictic heterozygosity of 0.062. Principal component analysis revealed geographic clustering of accessions into six relativelydiscrete regions. Gene frequencies at many loci are significantly heterogeneous among these regions, with an average G STof 0.272. Northwestern South America contains the greatest genetic variability; we suggest that this region is the ancestral home of the species. The data indicate separate diffusion pathways from this region into Argentina-Paraguay and into eastern and northern South America east of the Andes. Caribbean Island and Central American forms appear to be derived from the latter. These diffusion pathways are in accordance with morphological evidence and historical record. In contrast to expectations based on geographic proximity, Pacific Island forms have their closest affinity to accessions from eastern South America. Advanced cultivated stocks seem largely derived from western Andean material, but also contain introgressed G. hirsutum germ plasm. Introgression was relatively high (22%–50% of accessions) in commercial stocks and in forms from Argentina-Paraguay and various Pacific Islands, but was conspicuously low or absent in material from Central America and the Caribbean, where commensal and commercial forms of both species are sympatric.  相似文献   

8.
The phylogenetic relationships within many clades of the Crassulaceae are still uncertain, therefore in this study attention was focused on the “Acre clade”, a group comprised of approximately 526 species in eight genera that include many Asian and Mediterranean species of Sedum and the majority of the American genera (Echeveria, Graptopetalum, Lenophyllum, Pachyphytum, Villadia, and Thompsonella). Parsimony and Bayesian analyses were conducted with 133 species based on nuclear (ETS, ITS) and chloroplast DNA regions (rpS16, matK). Our analyses retrieved four major clades within the Acre clade. Two of these were in a grade and corresponded to Asian species of Sedum, the rest corresponded to a European–Macaronesian group and to an American group. The American group included all taxa that were formerly placed in the Echeverioideae and the majority of the American Sedoideae. Our analyses support the monophyly of three genera – Lenophyllum, Thompsonella, and Pachyphytum; however, the relationships among Echeveria, Sedum and the various segregates of Sedum are largely unresolved. Our analyses represents the first broad phylogenetic framework for Acre clade, but further studies are necessary on the groups poorly represented here, such as the European and Asian species of Sedum and the Central and South American species of Echeveria.  相似文献   

9.
The systematics and taxonomy of North Americancyprinid fishes has historically been said tobe in a chaotic state of affairs. Much of theconfusion as to relationships of species restsin the lack of explicit phylogenetic hypothesesof species and reliance upon degree ofdistinctiveness of taxa or their overallsimilarity for generic placement. Some specieshave had more turbulent or variable taxonomichistories than others. The ornate shiner, Cyprinella ornata, is one of those species,having been placed in the genera Notropis,Codoma, and Cyprinella within the last20 years and found in current texts in any ofthese three genera. Most of the confusionregarding placement of this species has beenrelated to lack of explicit phylogenetichypotheses to formulate its classification, butto a certain degree some researchers haveignored phylogenetic studies and preferred torely upon its morphological distinctiveness orreproductive behavioral traits of questionablehomology to place it in a monotypic genus andalign it with the genera Pimephales andOpsopoeodus.I present a phylogenetic analysis based oncomplete Cytochrome b sequences fromornate shiners, other species of Cyprinella, purported relatives, and severalother species of the Shiner Clade to determinethe phylogenetic affinities of this enigmaticspecies. Molecular analysis reveals the ornateshiner to be more closely related to species ofCyprinella than to a Pimephalesplus Opsopoeodus clade as previouslydiscussed in one morphological analysis, or asargued by Page and Johnston (1990), Johnstonand Page (1992) and Page and Ceas (1989) basedon observations of spawning behaviors andhypotheses of homology between crevice-spawningand egg-clumping behaviors. This molecularanalysis is more consistent with earliermorphological phylogenetic hypotheses of Mayden(1989) wherein these two clades are notconsidered to be closely related and the ornateshiner is a member of the genus Cyprinella.  相似文献   

10.
Polystichum, one of the largest genera of ferns, occurs worldwide with the greatest diversity in southwest China and adjacent regions. Although there have been studies of Chinese Polystichum on its traditional classification, geographic distributions, and even a few on its molecular systematics, its relationships to other species outside China remain little known. Here, we investigated the phylogeny and biogeography of the Polystichum species from China and Australasia. The evolutionary relationships among 42 Polystichum species found in China (29 taxa) and Australasia (13 taxa) were inferred from phylogenetic analyses of two chloroplast DNA sequence data sets: rps4-trnS and trnL-F intergenic spacers. The divergence time between Chinese and Australasian Polystichum was estimated. The results indicated that the Australasian species comprise a monophyletic group that is nested within the Chinese diversity, and that the New Zealand species are likewise a monophyletic group nested within the Australasian species. The divergence time estimates suggested that Chinese Polystichum migrated into Australasia from around 40 Ma ago, and from there to New Zealand from about 14 Ma. The diversification of the New Zealand Polystichum species began about 10 Ma. These results indicated that Polystichum probably originated in eastern Asia and migrated into Australasia: first into Australia and then into New Zealand.  相似文献   

11.
A recent phylogenetic study of langurs and leaf monkeys of South Asia suggested a reticulate evolution of capped and golden leaf monkeys through ancient hybridization between Semnopithecus and Trachypithecus. To test this hybridization scenario, I analysed nuclear copies of the mitochondrial cytochrome b gene (numts) from capped, golden and Phayre’s leaf monkeys. These numts were aligned with mitochondrial cytochrome b sequences of various species belonging to the genera Semnopithecus and Trachypithecus. In the phylogenetic tree derived from this alignment, the numts fell into three distinct clades (A, B and C) suggesting three independent integration events. Clade A was basal to Semnopithecus, and clades B and C were basal to Trachypithecus. Among the numts in clades A and C were sequences derived from species not represented in their respective sister mitochondrial groups. This unusual placement of certain numts is taken as additional support for the hybridization scenario. Based on the molecular dating of these integration events, hybridization is estimated to have occurred around 7.1 to 3.4 million years ago. Capped and golden leaf monkeys might have to be assigned to a new genus to reconcile their unique evolutionary history. Additionally, northeast India appears to be a ‘hot spot’ for lineages that might have evolved through reticulate evolution.  相似文献   

12.
13.
Previous phylogenetic studies of Lupinus (Leguminosae) based on nuclear DNA have shown that the western New World taxa form a monophyletic group representing the majority of species in the genus, with evidence for high rates of recent diversification in South America following final uplift of the Andes 2–4 million years ago (Mya). For this study, three regions of rapidly evolving non-coding chloroplast DNA (trnL intron, trnS–trnG, and trnT–trnL) were examined to estimate the timing and rates of diversification in the western New World, and to infer ancestral states for geographic range, life history, and maximum elevation. The western New World species (5.0–9.3 Mya, 0.6–1.1 spp./My) comprise a basally branching assemblage of annual plants endemic to the lower elevations of western North America, from which two species-rich clades are recently derived: (i) the western North American perennials from the Rocky Mountains, Great Basin, and Pacific Slope (0.7–2.1 Mya, 2.0–5.9 spp./My) and (ii) the predominantly perennial species from the Andes Mountains of South America and highlands of Mexico (0.8–3.4 Mya, 1.4–5.7 spp./My). Bayesian posterior predictive tests for association between life history and maximum elevation demonstrate that perennials are positively correlated with higher elevations. These results are consistent with a series of one or more recent radiations in the western New World, and indicate that rapid diversification of Lupinus coincides with the derived evolution of perennial life history, colonization of montane habitats, and range expansion from North America to South America.  相似文献   

14.
Using mitochondrial 12S and 16S rRNA sequences, we investigated phylogenetic relationships among populations of the endemic Japanese salamander Hynobius naevius. Monophyly of this species was recovered only in the maximum parsimony tree and was unresolved in maximum likelihood and Bayesian trees. Instead the following four haplotype clades consistently emerged clearly: Clade 1 from northwestern Kyushu, Clade 2 from Chugoku and northeastern Kyushu, Clade 3 from western Shikoku and Kyushu, and Clade 4 from Chubu-Kinki and central-eastern Shikoku. Of these, Clades 1 and 2, and Clades 3 and 4, respectively, correspond to Groups A and B previously recognized from the analyses of allozyme data in this species, but monophyly of these groups was not strongly supported. Unlike the previous results, the western and eastern samples from Shikoku did not form a clade, and were grouped with Kyushu-B in Clade 3 and Chubu-Kinki in Clade 4, respectively. The reason for this conflict between mtDNA and allozyme results is unknown, but might be related to retention of ancestral mtDNA polymorphism in Shikoku populations. Nearly simultaneous divergence of as many as four lineages in wide-ranging H. naevius is inferred for the late Miocene-Pliocene history of this taxon.  相似文献   

15.
Allozyme variation was examined inCarex sect.Phyllostachys (Cyperaceae) to study the effects of species-specific traits and phylogenetic relatedness on genetic structure. In contrast to the findings of similar studies, genetic variability in thePhyllostachys is poorly correlated with geographic range and putative differences in breeding systems (as inferred from morphology). This suggests that other patterns of evolution, colonization, and gene flow characterize the species found in this section. Fixation indices are negative for all populations suggesting that mechanisms such as disassortative mating and selection are maintaining heterozygous excess within populations. Closely related taxa often exhibit different genetic variability statistics. In some instances, however, clades (e.g.C. jamesii andC. juniperorum) display very similar levels of genetic variability despite marked differences in species-specific traits. Recent speciation coupled with the ability to maintain historical levels of variation within populations may be factors accounting for this phenomenon. Contrary to similar studies, species restricted to known glacial refugia have lower genetic diversity than those species that underwent mass migrations in response to deglaciation. Narrowly endemic species were found to partition their genetic diversity within, as opposed to between populations. The opposite trend was evident in wider ranging congeners.  相似文献   

16.
Interspecific hybridization has been implicated in population declines for some waterfowl species within the mallard complex, and hybridization with mallards (Anas platyrhynchos) is currently considered the largest threat to mottled ducks (A. fulvigula), one North American member of that complex. We assessed genetic variation among 225 mottled ducks and mallards using five microsatellite loci, and detected significant overall differences between these species within two geographic areas. We characterized hybridization in Florida, where mottled ducks are endemic and mallards are beginning to appear on the breeding grounds, and in South Carolina, where mottled ducks were introduced outside their native range. We used Bayesian genetic mixture analysis in an attempt to distinguish between these closely related species. In Florida, we detected two distinct genetic groups, and 10.9% of our samples from Florida mottled ducks were inferred to have been hybrids. In contrast only 3.4% of Florida mallards were inferred to have been hybrids, suggesting asymmetric hybridization. Populations from different geographic areas within Florida exhibited hybridization rates ranging from 0% to 24%. These data indicate a genetic component would be appropriate in actively managing interspecific hybridization in Florida mottled ducks. In contrast, South Carolina mottled ducks and mallards cannot be differentiated.  相似文献   

17.
An investigation was made of the phylogenetic relationships among wild accessions of Lima bean (Phaseolus lunatus) and wild allies of Mesoamerican and Andean origins, using electrophoresis of seed storage proteins and isozymes. Mesoamerican wild species are phylogenetically more distant fromP. lunatus than Andean species, and apparently belong to the tertiary gene pool of Lima bean. The Andean wild species, which are investigated for the first time, reveal a high similarity to the Lima bean, and particularly with its Mesoamerican gene pool. These Andean species probably constitute a secondary gene pool of Lima bean, and are thus of considerable interest in the context of genetic improvement of the crop. Based on these observations, an Andean origin is suggested for the Andean wild species and forP. lunatus. These results point out the importance of collecting and conserving AndeanPhaseolus germplasm.  相似文献   

18.
19.
The lizard genus Liolaemus is endemic to temperate South America and includes 190 species. Liolaemus bibronii has a large geographic distribution and inhabits a great diversity of habitats, including the Monte, Steppe, and high Andean grassland environments. Liolaemus gracilis has a similar body size and shape to L. bibronii; the two are parapatrically distributed, and L. gracilis is also widely distributed. Here we use the mtDNA cytb sequence data of these two species to investigate lizard phylogeographic patterns in southern South America. L. bibronii is paraphyletic with respect to L. gracilis, Liolaemus ramirezae, Liolaemus robertmertensi and Liolaemus saxatilis; it is composed of many genetically different allopatric haploclades, some of which are reciprocally monophyletic. We also found evidence for introgression between L. bibronii and L. gracilis in the same area that introgression was hypothesized in the Liolaemus darwinii complex. We discuss the distribution of the major haploclades with inferences of their population histories, the concordance of these clades' distributions and histories with other lizard complexes studied with the same markers and methods, and taxonomic implications of these results.  相似文献   

20.
The Andean uplift has played a major role in shaping the current Neotropical biodiversity. However, in arthropods other than butterflies, little is known about how this geographic barrier has impacted species historical diversification. Here, we examined the phylogeography of the widespread color polymorphic spider Gasteracantha cancriformis to evaluate the effect of the northern Andean uplift on its divergence and assess whether its diversification occurred in the presence of gene flow. We inferred phylogenetic relationships and divergence times in G. cancriformis using mitochondrial and nuclear data from 105 individuals in northern South America. Genetic diversity, divergence, and population structure were quantified. We also compared multiple demographic scenarios for this species using a model‐based approach (Phrapl ) to determine divergence with or without gene flow. At last, we evaluated the association between genetic variation and color polymorphism. Both nuclear and mitochondrial data supported two well‐differentiated clades, which correspond to populations occurring on opposite sides of the Eastern cordillera of the Colombian Andes. The final uplift of this cordillera was identified as the most likely force that shaped the diversification of G. cancriformis in northern South America, resulting in a cis‐ and trans‐Andean phylogeographic structure for the species. We also found shared genetic variation between the cis‐ and trans‐Andean clades, which is better explained by a scenario of historical divergence in the face of gene flow. This has been likely facilitated by the presence of low‐elevation passes across the Eastern Colombian cordillera. Our work constitutes the first example in which the Andean uplift coupled with gene flow influenced the evolutionary history of an arachnid lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号