首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear localization of multiple receptor-tyrosine kinases (RTKs), such as EGF receptor (EGFR), ErbB-2, FGF receptor (FGFR), and many others, has been reported by several groups. We previously showed that cell surface EGFR is trafficked to the nucleus through a retrograde pathway from the Golgi to the endoplasmic reticulum (ER) and that EGFR is then translocated to the inner nuclear membrane (INM) through the INTERNET (integral trafficking from the ER to the nuclear envelope transport) pathway. However, the nuclear trafficking mechanisms of other membrane RTKs, apart from EGFR, remain unclear. The purpose of this study was to compare the nuclear transport of EGFR family proteins with that of FGFR-1. Interestingly, we found that digitonin permeabilization, which selectively releases soluble nuclear transporters from the cytoplasm and has been shown to inhibit nuclear transport of FGFR-1, had no effects on EGFR nuclear transport, raising the possibility that EGFR and FGFR-1 use different pathways to be translocated into the nucleus. Using the subnuclear fractionation assay, we further demonstrated that biotinylated cell surface ErbB-2, but not FGFR-1, is targeted to the INM, associating with Sec61β in the INM, similar to the nuclear trafficking of EGFR. Thus, ErbB-2, but not FGFR-1, shows a similar trafficking pathway to EGFR for translocation to the nucleus, indicating that at least two different pathways of nuclear transport exist for cell surface receptors. This finding provides a new direction for investigating the trafficking mechanisms of various nuclear RTKs.  相似文献   

2.
Emerging evidence indicates that cell surface receptors, such as the entire epidermal growth factor receptor (EGFR) family, have been shown to localize in the nucleus. A retrograde route from the Golgi to the endoplasmic reticulum (ER) is postulated to be involved in the EGFR trafficking to the nucleus; however, the molecular mechanism in this proposed model remains unexplored. Here, we demonstrate that membrane-embedded vesicular trafficking is involved in the nuclear transport of EGFR. Confocal immunofluorescence reveals that in response to EGF, a portion of EGFR redistributes to the Golgi and the ER, where its NH2-terminus resides within the lumen of Golgi/ER and COOH-terminus is exposed to the cytoplasm. Blockage of the Golgi-to-ER retrograde trafficking by brefeldin A or dominant mutants of the small GTPase ADP-ribosylation factor, which both resulted in the disassembly of the coat protein complex I (COPI) coat to the Golgi, inhibit EGFR transport to the ER and the nucleus. We further find that EGF-dependent nuclear transport of EGFR is regulated by retrograde trafficking from the Golgi to the ER involving an association of EGFR with γ-COP, one of the subunits of the COPI coatomer. Our findings experimentally provide a comprehensive pathway that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking from the Golgi to the ER, and may serve as a general mechanism in regulating the nuclear transport of other cell surface receptors.  相似文献   

3.
4.
Accumulating evidence indicates that endocytosis plays an essential role in the nuclear transport of the ErbB family members, such as epidermal growth factor receptor (EGFR) and ErbB-2. Nevertheless, how full-length receptors embedded in the endosomal membrane pass through the nuclear pore complexes and function as non-membrane-bound receptors in the nucleus remains unclear. Here we show that upon EGF treatment, the biotinylated cell surface EGFR is trafficked to the inner nuclear membrane (INM) through the nuclear pore complexes, remaining in a membrane-bound environment. We further find that importin β regulates EGFR nuclear transport to the INM in addition to the nucleus/nucleoplasm. Unexpectedly, the well known endoplasmic reticulum associated translocon Sec61β is found to reside in the INM and associate with EGFR. Knocking down Sec61β expression reduces EGFR level in the nucleoplasm portion and accumulates it in the INM portion. Thus, the Sec61β translocon plays an unrecognized role in the release of the membrane-anchored EGFR from the lipid bilayer of the INM to the nucleus. The newly identified Sec61β function provides an alternative pathway for nuclear transport that can be utilized by membrane-embedded proteins such as full-length EGFR.  相似文献   

5.
Binding of ligand to the epidermal growth factor receptor (EGFR) initiates a series of processes including activation of the intrinsic EGFR tyrosine kinase, receptor autophosphorylation, and the assembly of active signaling complexes at the plasma membrane. Concomitantly, receptor trafficking is initiated, and the receptor is ultimately delivered to the lysosome, where it is degraded. Virtually all studies on EGFR trafficking have used fibroblasts and transformed cells. Because EGFR exerts a potent effect on the physiology of epithelial cells, we examined the regulation of EGFR activity and trafficking in nontransformed human mammary epithelial cells (HMEC). We found that HMEC that displayed a luminal phenotype were largely unresponsive to EGF and maintained a majority of their EGFR at the cell surface. In contrast, HMEC with a basal phenotype were highly responsive to EGF and, at steady state in the absence of exogenous ligand, distributed empty EGFR into intracellular pools. Maintenance of the intracellular pools was a direct consequence of specific and rapid endocytosis of the empty EGFR. The trafficking pattern was EGFR specific, used coated pits, and did not require receptor tyrosine kinase activity. Such an mechanism redistributes EGFR signaling potential among different membrane domains and into vesicles with unique biochemical microenviroments. In addition, our data show that EGFR endocytosis can be regulated in the absence of ligand binding and receptor activation in a cell-type-specific manner. J. Cell. Physiol. 180:448–460, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

6.
Regulated activation of the highly conserved Ras GTPase is a central event in the stimulation of cell proliferation, motility, and differentiation elicited by receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR). In fibroblasts, this involves formation and membrane localization of Shc.Grb2.Sos complexes, which increases the rate of Ras guanine nucleotide exchange. In order to control Ras-mediated cell responses, this activity is regulated by receptor down-regulation and a feedback loop involving the dual specificity kinase mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK). We investigated the role of EGFR endocytosis in the regulation of Ras activation. Of fundamental interest is whether activated receptors in endosomes can participate in the stimulation of Ras guanine nucleotide exchange, because the constitutive membrane localization of Ras may affect its compartmentalization. By exploiting the differences in postendocytic signaling of two EGFR ligands, epidermal growth factor and transforming growth factor-alpha, we found that activated EGFR located at the cell surface and in internal compartments contribute equally to the membrane recruitment and tyrosine phosphorylation of Shc in NR6 fibroblasts expressing wild-type EGFR. Importantly, both the rate of Ras-specific guanine nucleotide exchange and the level of Ras-GTP were depressed to near basal values on the time scale of receptor trafficking. Using the selective MEK inhibitor PD098059, we were able to block the feedback desensitization pathway and maintain activation of Ras. Under these conditions, the generation of Ras-GTP was not significantly affected by the subcellular location of activated EGFR. In conjunction with our previous analysis of the phospholipase C pathway in the same cell line, this suggests a selective continuation of specific signaling activities and cessation of others upon receptor endocytosis.  相似文献   

7.
8.
9.
The epidermal growth factor (EGF) receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase that regulates diverse cell functions that are dependent upon cell type, the presence of downstream effectors, and receptor density. In addition to activating biochemical pathways, ligand stimulation causes the EGFR to enter the cell via clathrin-coated pits. Endocytic trafficking influences receptor signaling by controlling the duration of EGFR phosphorylation and coordinating the receptor's association with downstream effectors. To better understand the individual contributions of cell surface and cytosolic EGFRs on cell physiology, we used EGF that was conjugated to 900 nm polystyrene beads (EGF-beads). EGF-beads can stimulate the EGFR and retain the activated receptor at the plasma membrane. In MDA-MB-468 cells, a breast cancer cell line that over-expresses the EGFR, only internalized, activated EGFRs stimulate caspase-3 and induce cell death. Conversely, signaling cascades triggered from activated EGFR retained at the cell surface inhibit caspase-3 and promote cell proliferation. Thus, through endocytosis, the activated EGFR can differentially regulate cell growth in MDA-MB-468 cells.  相似文献   

10.
Ligand activation of the epidermal growth factor receptor (EGFR) leads to its rapid internalization and eventual delivery to lysosomes. This process is thought to be a mechanism to attenuate signaling, but signals could potentially be generated after endocytosis. To directly evaluate EGFR signaling during receptor trafficking, we developed a technique to rapidly and selectively isolate internalized EGFR and associated molecules with the use of reversibly biotinylated anti-EGFR antibodies. In addition, we developed antibodies specific to tyrosine-phosphorylated EGFR. With the use of a combination of fluorescence imaging and affinity precipitation approaches, we evaluated the state of EGFR activation and substrate association during trafficking in epithelial cells. We found that after internalization, EGFR remained active in the early endosomes. However, receptors were inactivated before degradation, apparently due to ligand removal from endosomes. Adapter molecules, such as Shc, were associated with EGFR both at the cell surface and within endosomes. Some molecules, such as Grb2, were primarily found associated with surface EGFR, whereas others, such as Eps8, were found only with intracellular receptors. During the inactivation phase, c-Cbl became EGFR associated, consistent with its postulated role in receptor attenuation. We conclude that the association of the EGFR with different proteins is compartment specific. In addition, ligand loss is the proximal cause of EGFR inactivation. Thus, regulated trafficking could potentially influence the pattern as well as the duration of signal transduction.  相似文献   

11.
The Rho family of GTPases has been implicated in the regulation of intracellular vesicle trafficking. Here, we investigated the mechanism underlying the negative regulation of clathrin-mediated endocytosis of cell surface receptors mediated by the Rho family protein Rac1. Contrary to previous reports, only the activated mutant of Rac1, but not other Rho family members including RhoA and Cdc42, suppressed internalization of the transferrin receptor. On the other hand, down-regulation of Rac1 expression by RNA interference resulted in enhanced receptor internalization, suggesting that endogenous Rac1 in fact functions as a negative regulator. We identified a guanine nucleotide exchange factor splice variant designated Ost-III, which contains a unique C-terminal region including an Src homology 3 domain, as a regulator of Rac1 involved in the inhibition of receptor endocytosis. In contrast, other splice variants Ost-I and Ost-II exerted virtually no effect on receptor endocytosis. We also examined subcellular localization of synaptojanin 2, a putative Rac1 effector implicated in negative regulation of receptor endocytosis. Each Ost splice variant induced distinct subcellular localization of synaptojanin 2, depending on Rac1 activation. Furthermore, we isolated gamma-aminobutyric acid type A receptor-associated protein (GABARAP) as a protein that binds to the C-terminal region of Ost-III. When ectopically expressed, GABARAP was co-localized with Ost-III and potently suppressed the Ost-III-dependent Rac1 activation and the inhibition of receptor endocytosis. Lipid modification of GABARAP was necessary for the suppression of Ost-III. These results are discussed in terms of subcellular region-specific regulation of the Rac1-dependent signaling pathway that negatively regulates clathrin-mediated endocytosis.  相似文献   

12.
The cell membrane receptor ErbB-2 migrates to the nucleus. However, the mechanism of its nuclear translocation is unclear. Here, we report a novel mechanism of its nuclear localization that involves interaction with the transport receptor importin beta1, nuclear pore protein Nup358, and a host of players in endocytic internalization. Knocking down importin beta1 using small interfering RNA oligonucleotides or inactivation of small GTPase Ran by RanQ69L, a dominant-negative mutant of Ran, causes a nuclear transport defect of ErbB-2. Mutation of a putative nuclear localization signal in ErbB-2 destroys its interaction with importin beta1 and arrests nuclear translocation, while inactivation of nuclear export receptor piles up ErbB-2 within the nucleus. Additionally, blocking of internalization by a dominant-negative mutant of dynamin halts its nuclear localization. Thus, the cell membrane-embedded ErbB-2, through endocytosis using the endocytic vesicle as a vehicle, importin beta1 as a driver and Nup358 as a traffic light, migrates from the cell surface to the nucleus. This novel mechanism explains how a receptor tyrosine kinase on the cell surface can be translocated into the nucleus. This pathway may serve as a general mechanism to allow direct communication between cell surface receptors and the nucleus, and our findings thus open a new era in understanding direct trafficking between the cell membrane and nucleus.  相似文献   

13.
Regulation of EGF-stimulated EGF receptor endocytosis during M phase   总被引:1,自引:0,他引:1  
It has been generally accepted that endocytosis is inhibited during mitotic phase (M phase) as a means to insulate the cell from outside influences. Many endocytic/trafficking proteins are present during M phase, but are associated with partners that are distinct from those involved in trafficking pathways. These findings have led to the 'moonlighting' hypothesis. However, all these findings are based on the study of fluid-phase and constitutive endocytosis. Here, we used epidermal growth factor receptor (EGFR) as a model system to study ligand-induced receptor endocytosis in M phase. We found that EGF-induced EGFR endocytosis still occurs during M phase, but follows different kinetics. EGF-induced EGFR endocytosis is delayed/inhibited for a few minutes and is slower in M phase, especially at metaphase. However, consistent with previous reports, transferrin endocytosis is inhibited under the same conditions. We further showed that EGFR endocytosis is differentially regulated during the cell cycle: dependent on EGFR kinase activation in M phase, but independent of EGFR kinase activation in interphase. We conclude that cells have adopted a system for selective endocytosis in M phase.  相似文献   

14.
15.
Phosphotidylinositols (PIs) are known to play an essential role in membrane trafficking and signaling transduction. PIs serve multiple functions, such as recruitment of cytosolic proteins with PI phosphate (PIP) binding domains and modification of the physical properties of the membranes in which they reside. As substrates for phosphoinositide-specific lipases they function as a switch point in phosphoinositide metabolism. Recent work with epidermal growth factor receptor (EGFR) and colony stimulating factor-1 receptor (CSFR) has identified a possible connection between endocytosis of activated receptors and type-1 phosphatidylinositol-4-phosphate-5-kinase. Furthermore, serine/tyrosine phosphorylation of phosphatidylinositol-4-phosphate-5-kinase seems to be essential for its activities. Indeed, one of the products of the phosphatidylinositol-4-phosphate-5-kinases, PIP2, has been shown to be involved in multiple steps of endocytosis, including the assembly of the clathrin coat, regulation of adaptor proteins, and production of endocytic vesicles via the regulation of dynamin. The discussion in this review focuses primarily on receptors with intrinsic enzymatic activity, specifically on receptor tyrosine kinases (RTKs). We will discuss their structure; mechanism of action and potential role in membrane trafficking and/or signaling through the regulation of phosphatidylinositol phosphate kinases.  相似文献   

16.
17.
The interactions of growth factors with cell surface receptors regulate fundamental cell processes, such as growth, differentiation and transformation. Understanding the nature of these interactions at the molecular level is of fundamental importance in cell biology. This is not only from the point of view of basic science, but also because of the repercussions such knowledge might have in understanding the mode of action of drugs in cells. Receptor mediated endocytosis has been implicated in the downregulation of the mitogenic signal. However, no data are thus far available on how growth factor/receptor interactions might control endocytic trafficking. Here we show that information on modes of binding and receptor conformational changes can be obtained using time-resolved fluorescence methods. We have found that fluorescent probes bound to epidermal growth factor (EGF) show dynamic fluorescence quenching when EGF is bound to internalising EGF receptors (EGFR). We propose that this dynamic quenching takes place because EGF-bound probes interact with tryptophan residues in the extracellular domain of the EGF-EGFR complex. Real-time accumulation of fluorescent decays has also allowed us to follow the time course of a conformational change in EGFR occurring during endocytosis, and correlate this information with endosomal trafficking and EGFR recycling.  相似文献   

18.
Members of the nuclear receptor superfamily play key roles in a host of physiologic and pathologic processes from embryogenesis to cancer. Some members, including the retinoic acid receptor (RAR), are activated by ligand binding but are unaffected in their subcellular distribution, which is predominantly nuclear. In contrast, several members of the steroid receptor family, including the glucocorticoid receptor, are cytoplasmic and only translocate to the nucleus after ligand binding. We have constructed chimeras between RAR and glucocorticoid receptor that selectively respond to RAR agonists but display cytoplasmic localization in the absence of ligand. These chimeric receptors manifest both nuclear translocation and gene activation functions in response to physiological concentrations of RAR ligands. The ability to achieve regulated subcellular trafficking with a heterologous ligand binding domain has implications both for current models of receptor translocation and for structural-functional conservation of ligand binding domains broadly across the receptor superfamily. When coupled to the green fluorescent protein, chimeric receptors offer a powerful new tool to 1) study mechanisms of steroid receptor translocation, 2) detect dynamic and graded distributions of ligands in complex microenvironments such as embryos, and 3) screen for novel ligands of "orphan" receptors in vivo.  相似文献   

19.
20.
Dual localization of proteins at the plasma membrane and within the nucleus has been reported in mammalian cells. Among these proteins are those involved in cell adhesion structures and in clathrin-mediated endocytosis. In the case of endocytic proteins, trafficking to the nucleus is not known to play a role in their endocytic function. Here, we show localization of the yeast endocytic adaptor protein Sla1p to the nucleus as well as to the cell cortex and we demonstrate the importance of specific regions of Sla1p for this nuclear localization. A role for specific karyopherins (importins and exportins) in Sla1p nuclear localization is revealed. Furthermore, endocytosis of Sla1p-dependent cargo is defective in three strains with karyopherin mutations. Finally, we investigate possible functions for nuclear trafficking of endocytic proteins. Our data reveal for the first time that nuclear transport of endocytic proteins is important for functional endocytosis in Saccharomyces cerevisiae. We determine the mechanism, involving an alpha/beta importin pair, that facilitates uptake of Sla1p and demonstrate that nuclear transport is required for the functioning of Sla1p during endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号