首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mu TW  Ong DS  Wang YJ  Balch WE  Yates JR  Segatori L  Kelly JW 《Cell》2008,134(5):769-781
Loss-of-function diseases are often caused by a mutation in a protein traversing the secretory pathway that compromises the normal balance between protein folding, trafficking, and degradation. We demonstrate that the innate cellular protein homeostasis, or proteostasis, capacity can be enhanced to fold mutated enzymes that would otherwise misfold and be degraded, using small molecule proteostasis regulators. Two proteostasis regulators are reported that alter the composition of the proteostasis network in the endoplasmic reticulum through the unfolded protein response, increasing the mutant folded protein concentration that can engage the trafficking machinery, restoring function to two nonhomologous mutant enzymes associated with distinct lysosomal storage diseases. Coapplication of a pharmacologic chaperone and a proteostasis regulator exhibits synergy because of the former's ability to further increase the concentration of trafficking-competent mutant folded enzymes. It may be possible to ameliorate loss-of-function diseases by using proteostasis regulators alone or in combination with a pharmacologic chaperone.  相似文献   

2.
β-Barrel proteins, or outer membrane proteins (OMPs), perform many essential functions in Gram-negative bacteria, but questions remain about the mechanism by which they are assembled into the outer membrane (OM). In Escherichia coli, β-barrels are escorted across the periplasm by chaperones, most notably SurA and Skp. However, the contributions of these two chaperones to the assembly of the OM proteome remained unclear. We used differential proteomics to determine how the elimination of Skp and SurA affects the assembly of many OMPs. We have shown that removal of Skp has no impact on the levels of the 63 identified OM proteins. However, depletion of SurA in the skp strain has a marked impact on the OM proteome, diminishing the levels of almost all β-barrel proteins. Our results are consistent with a model in which SurA plays a primary chaperone role in E. coli. Furthermore, they suggest that while no OMPs prefer the Skp chaperone pathway in wild-type cells, most can use Skp efficiently when SurA is absent. Our data, which provide a unique glimpse into the protein content of the nonviable surA skp mutant, clarify the roles of the periplasmic chaperones in E. coli.  相似文献   

3.
Cellular chaperone networks prevent potentially toxic protein aggregation and ensure proteome integrity. Here, we used Escherichia coli as a model to understand the organization of these networks, focusing on the cooperation of the DnaK system with the upstream chaperone Trigger factor (TF) and the downstream GroEL. Quantitative proteomics revealed that DnaK interacts with at least ~700 mostly cytosolic proteins, including ~180 relatively aggregation-prone proteins that utilize DnaK extensively during and after initial folding. Upon deletion of TF, DnaK interacts increasingly with ribosomal and other small, basic proteins, while its association with large multidomain proteins is reduced. DnaK also functions prominently in stabilizing proteins for subsequent folding by GroEL. These proteins accumulate on DnaK upon GroEL depletion and are then degraded, thus defining DnaK as a central organizer of the chaperone network. Combined loss of DnaK and TF causes proteostasis collapse with disruption of GroEL function, defective ribosomal biogenesis, and extensive aggregation of large proteins.  相似文献   

4.
Biogenesis of c-type cytochromes in alpha- and gamma-proteobacteria requires the function of a set of orthologous genes (ccm genes) that encode specific maturation factors. The Escherichia coli CcmE protein is a periplasmic heme chaperone. The membrane protein CcmC is required for loading CcmE with heme. By expressing CcmE (CycJ) from Bradyrhizobium japonicum in E. coli we demonstrated that heme is bound covalently to this protein at a strictly conserved histidine residue. The B. japonicum homologue can transfer heme to apocytochrome c in E. coli, suggesting that it functions as a heme chaperone. CcmC (CycZ) from B. japonicum expressed in E. coli was capable of inserting heme into CcmE.  相似文献   

5.
6.
大肠杆菌分泌蛋白二硫键的形成是一系列蛋白协同作用的结果,主要是Dsb家族蛋白,迄今为止共发现了DsbA、DsbB、DsbC、DsbD、DsbE和DsbG。在体内,DsbA负责氧化两个巯基形成二硫键,DsbB则负责DsbA的再氧化。DsbC和DsbG负责校正DsbA导入的异常二硫键,DsbD则负责对DsbC和DsbG进行再还原,DsbE的功能与DsbD类似。除了直接和二硫键的形成相关外,DsbA、DsbC和DsbG都有分子伴侣功能。它们的分子伴侣功能独立于二硫键形成酶的活性并且对二硫键形成酶活性具有明显的促进作用。基于Dsb蛋白的功能特性,利用它们以大肠杆菌为宿主表达外源蛋白,特别是含有二硫键的蛋白,取得了很多成功的例子。本文简要介绍了这方面的进展,显示Dsb蛋白在促进外源蛋白在大肠杆菌中以可溶形式表达方面具有广阔的应用前景。  相似文献   

7.
Hsc70 is the constitutively expressed mammalian heat shock 70 kDa (Hsp70) cytosolic chaperone. It plays a central role in cellular proteostasis and protein trafficking. Here, we present the backbone and methyl group assignments for the 386-residue nucleotide binding domain of the human protein. This domain controls the chaperone’s allostery, binds multiple co-chaperones and is the target of several classes of known chemical Hsp70 inhibitors. The NMR assignments are based on common triple resonance experiments with triple labeled protein, and on several 15N and 13C-resolved 3D NOE experiments with methyl-reprotonated samples. A combination of computer and manual data interpretation was used.  相似文献   

8.
As the aging population grows, the need to understand age‐related changes in health is vital. Two prominent behavioral changes that occur with age are disrupted sleep and impaired cognition. Sleep disruptions lead to perturbations in proteostasis and endoplasmic reticulum (ER) stress in mice. Further, consolidated sleep and protein synthesis are necessary for memory formation. With age, the molecular mechanisms that relieve cellular stress and ensure proper protein folding become less efficient. It is unclear if a causal relationship links proteostasis, sleep quality, and cognition in aging. Here, we used a mouse model of aging to determine if supplementing chaperone levels reduces ER stress and improves sleep quality and memory. We administered the chemical chaperone 4‐phenyl butyrate (PBA) to aged and young mice, and monitored sleep and cognitive behavior. We found that chaperone treatment consolidates sleep and wake, and improves learning in aged mice. These data correlate with reduced ER stress in the cortex and hippocampus of aged mice. Chaperone treatment increased p‐CREB, which is involved in memory formation and synaptic plasticity, in hippocampi of chaperone‐treated aged mice. Hippocampal overexpression of the endogenous chaperone, binding immunoglobulin protein (BiP), improved cognition, reduced ER stress, and increased p‐CREB in aged mice, suggesting that supplementing BiP levels are sufficient to restore some cognitive function. Together, these results indicate that restoring proteostasis improves sleep and cognition in a wild‐type mouse model of aging. The implications of these results could have an impact on the development of therapies to improve health span across the aging population.  相似文献   

9.
The efficient export of proteins through the cytoplasmic membrane of Escherichia coli requires chaperones to maintain protein precursors in a translocation-competent conformation. In addition to SecB, the major chaperone facilitating export of particular precursors, heat shock-induced chaperones DnaK-DnaJ and GroEL-GroES are also involved in this process. By use of secB'-lacZ gene fusions and immunoprecipitation experiments, SecB production was studied in E. coli strains containing conditional lethal mutations in chaperone or sec genes. While the loss of heat shock chaperones resulted in an increased production of SecB, mutations in sec genes showed only minor effects on SecB synthesis. Neither the plasmid-mediated overexpression of precursors of exoproteins nor the overexpression of secB altered the synthesis of SecB. These results suggest that under conditions where chaperones become depleted, E. coli responds by raising the expression of secB. These data confirm the supposed synergy of different chaperones involved in protein export.  相似文献   

10.
Archaea are prokaryotes but some of their chaperoning systems resemble those of eukaryotes. Also, not all archaea possess the stress protein Hsp70(DnaK), in contrast with bacteria and eukaryotes, which possess it without any known exception. Further, the primary structure of the archaeal DnaK resembles more the bacterial than the eukaryotic homologues. The work reported here addresses two questions: Is the archaeal Hsp70 protein a chaperone, like its homologues in the other two phylogenetic domains? And, if so, is the chaperoning mechanism of bacterial or eukaryotic type? The data have shown that the DnaK protein of the archaeon Methanosarcina mazei functions efficiently as a chaperone in luciferase renaturation in vitro, and that it requires DnaJ, and the other bacterial-type chaperone, GrpE, to perform its function. The M. mazei DnaK chaperone activity was enhanced by interaction with the bacterial co-chaperone DnaJ, but not by the eukaryotic homologue HDJ-2. Both the bacterial GrpE and DnaJ stimulated the ATPase activity of the M. mazei DnaK. The M. mazei DnaK-dependent chaperoning pathway in vitro is similar to that of the bacterium Escherichia coli used for comparison. However, in vivo analyses indicate that there are also significant differences. The M. mazei dnaJ and grpE genes rescued E.coli mutants lacking these genes, but E.coli dnaK mutants were not complemented by the M. mazei dnaK gene. Thus, while the data from in vitro tests demonstrate functional similarities between the M. mazei and E.coli DnaK proteins, in vivo results indicate that, intracellularly, the chaperones from the two species differ.  相似文献   

11.
12.
Molecular chaperones are essential to maintain proteostasis. While the functions of intracellular molecular chaperones that oversee protein synthesis, folding and aggregation, are established, those specialized to work in the extracellular environment are less understood. Extracellular proteins reside in a considerably more oxidizing milieu than cytoplasmic proteins and are stabilized by abundant disulfide bonds. Hence, extracellular proteins are potentially destabilized and sensitive to aggregation under reducing conditions. We combine biochemical and mass spectrometry experiments and elucidate that the molecular chaperone functions of the extracellular protein domain Bri2 BRICHOS only appear under reducing conditions, through the assembly of monomers into large polydisperse oligomers by an intra‐ to intermolecular disulfide bond relay mechanism. Chaperone‐active assemblies of the Bri2 BRICHOS domain are efficiently generated by physiological thiol‐containing compounds and proteins, and appear in parallel with reduction‐induced aggregation of extracellular proteins. Our results give insights into how potent chaperone activity can be generated from inactive precursors under conditions that are destabilizing to most extracellular proteins and thereby support protein stability/folding in the extracellular space.SignificanceChaperones are essential to cells as they counteract toxic consequences of protein misfolding particularly under stress conditions. Our work describes a novel activation mechanism of an extracellular molecular chaperone domain, called Bri2 BRICHOS. This mechanism is based on reducing conditions that initiate small subunits to assemble into large oligomers via a disulfide relay mechanism. Activated Bri2 BRICHOS inhibits reduction‐induced aggregation of extracellular proteins and could be a means to boost proteostasis in the extracellular environment upon reductive stress.  相似文献   

13.
Plasmodium falciparum heat shock protein (PfHsp70) has been proposed to be involved in the cytoprotection of the malaria parasite through its action as a molecular chaperone. However, the biochemical and chaperone properties of PfHsp70 have not been elucidated. The heterologous overproduction of P. falciparum proteins in Escherichia coli is problematic because of its AT-rich genome and the usage of codons that are rarely used in E. coli. In this paper, we describe the successful overproduction of (His)(6)-PfHsp70 in E. coli using the pQE30 expression vector system. Initial experiments with E. coli [pQE30/PfHsp70] resulted in the overproduction of the full-length protein and truncated derivatives. The RIG plasmid, which encodes tRNAs for rare codons, was engineered into the E. coli [pQE30/PfHsp70] strain, resulting in significant reduction of the truncated (His)(6)-PfHsp70 derivatives and improved yields of the full-length protein. (His)(6)-PfHsp70 was successfully purified using nickel-chelating Sepharose affinity chromatography and its biochemical properties were determined. The V(max), K(m), and k(cat) for the basal ATPase activity of (His)(6)-PfHsp70 were found to be 14.6 nmol/min/mg, 616.5 microM, and 1.03 min(-1), respectively. Gel filtration studies indicated that (His)(6)-PfHsp70 existed largely as a monomer in solution. This is the first study to biochemically describe PfHsp70 and establishes a foundation for future studies on its chaperone properties.  相似文献   

14.
蛋白质的折叠问题一直是生物学研究的前沿之一,蛋白质稳态平衡的破坏与衰老及很多神经退行性疾病的发病机理密切相关,而蛋白质的正确折叠与蛋白质稳态在很大程度上取决于分子伴侣参与构建的复杂网络。许多研究表明,抗体可以作为分子伴侣促进蛋白质的正确折叠,并阻止蛋白质的异常聚集,抗体所具有的严格底物特异性使其具备了治疗特定蛋白质折叠病、帮助包涵体复性等应用潜力。本文简要介绍了分子伴侣的研究进展,详细阐述了具有分子伴侣功能的抗体及单链抗体的研究进展,最后重点讨论了可抑制蛋白质聚集的抗体的研究近况。  相似文献   

15.
16.
The endoplasmic reticulum (ER) resident Hsp70 chaperone, BiP, docks to the Sec translocon and interacts co-translationally with polypeptides entering the ER to encourage proper folding. In order to recreate this interaction in Escherichia coli cell-free protein synthesis (CFPS) reactions, a fusion protein was formed between the ribosome-binding portion of the E. coli protein trigger factor (TF) and BiP. The biophysical affinity to ribosomes as well as the characteristic Hsp70 ATPase activity were both verified for the fusion protein. When added to E. coli-based CFPS reactions, the TF-BiP fusion chaperone increased soluble yields of several protein fragments that are normally secreted through the ER and have poor solubility in typical CFPS reactions. For comparison, a fusion between TF and the native E. coli Hsp70, DnaK, was also constructed. This fusion was also biologically active and increased soluble yields of certain protein targets in CFPS. The TF-BiP fusion described in this study can be seen as a first step in reconstituting and better understanding ER folding pathways in the prokaryotic environment of E. coli CFPS.  相似文献   

17.
Molecular chaperones reside in nearly every organelle within a eukaryotic cell, and in each of these compartments, they ensure that protein homeostasis (or proteostasis) is maintained. In this issue, Wiseman and colleagues find that an ER lumenal chaperone escapes this compartment when a specific stress pathway is activated. The chaperone, an Hsp40 homolog known as ERdj3, transits through the secretory pathway to the extracellular space. During this journey, ERdj3 can escort an aggregation‐prone protein or it can identify aggregation‐prone proteins extracellularly, thereby functioning outside of its normal environment.  相似文献   

18.
Protein nanoparticles such as virus‐like particles (VLPs) can be obtained by recombinant protein production of viral capsid proteins and spontaneous self‐assembling in cell factories. Contrarily to infective viral particles, VLPs lack infective viral genome while retaining important viral properties like cellular tropism and intracellular delivery of internalized molecules. These properties make VLPs promising and fully biocompatible nanovehicles for drug delivery. VLPs of human JC virus (hJCV) VP1 capsid protein produced in Escherichia coli elicit variable hemagglutination properties when incubated at different NaCl concentrations and pH conditions, being optimal at 200 mM NaCl and at pH range between 5.8 and 7.5. In addition, the presence or absence of chaperone DnaK in E. coli cells influence the solubility of recombinant VP1 and the conformational quality of this protein in the VLPs. The hemagglutination ability of hJCV VP1 VLPs contained in E. coli cell extracts can be modulated by buffer composition in the hemagglutination assay. It has been also determined that the production of recombinant hJCV VP1 in E. coli is favored by the absence of chaperone DnaK as observed by Western Blot analysis in different E. coli genetic backgrounds, indicating a proteolysis targeting role for DnaK. However, solubility is highly compromised in a DnaK? E. coli strain suggesting an important role of this chaperone in reduction of protein aggregates. Finally, hemagglutination efficiency of recombinant VP1 is directly related to the presence of DnaK in the producing cells. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:744–748, 2014  相似文献   

19.
Folding enzymes often use distinct domains for the binding of substrate proteins ("chaperone domains") and for the catalysis of slow folding reactions such as disulfide formation or prolyl isomerization. The human prolyl isomerase FKBP12 is a small single-domain protein without a chaperone domain. Its very low folding activity could previously be increased by inserting the chaperone domain from the homolog SlyD (sensitive-to-lysis protein D) of Escherichia coli. We now inserted three unrelated chaperone domains into human FKBP12: the apical domain of the chaperonin GroEL from E. coli, the chaperone domain of protein disulfide isomerase from yeast, or the chaperone domain of SurA from the periplasm of E. coli. All three conveyed FKBP12 with a high affinity for unfolded proteins and increased its folding activity. Substrate binding and release of the chimeric folding enzymes were found to be very fast. This allows rapid substrate transfer from the chaperone domain to the catalytic domain and ensures efficient rebinding of protein chains that were unable to complete folding. The advantage of having separate sites, first for generic protein binding and then for specific catalysis, explains why our construction of the artificial folding enzymes with foreign chaperone domains was successful.  相似文献   

20.
Organisms use molecular chaperones to combat the unfolding and aggregation of proteins. While protein chaperones have been widely studied, here we demonstrate that DNA and RNA exhibit potent chaperone activity in vitro. Nucleic acids suppress the aggregation of classic chaperone substrates up to 300-fold more effectively than the protein chaperone GroEL. Additionally, RNA cooperates with the DnaK chaperone system to refold purified luciferase. Our findings reveal a possible new role for nucleic acids within the cell: that nucleic acids directly participate in maintaining proteostasis by preventing protein aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号