首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
《FEBS letters》2014,588(8):1259-1270
Neuronal signaling in the CNS depends on the microenvironment around synapses and axons. To prevent fluctuations in blood composition affecting the interstitial fluid and CSF, two barriers, the blood–brain barrier (BBB) and blood–CSF barrier (BCSFB), are interposed between the blood and the brain/CSF compartment. Brain capillary endothelial cells (ECs) constitute the BBB whereas choroid plexus epithelial (CPE) cells form the BCSFB. The anatomical basis of these barriers is located at the level of an intercellular junctional complex that impedes paracellular diffusion. Tight and adherens junctions are known as the principal constituents of this junctional complex. Transmembrane connexins (Cxs) are the prime building blocks of plasma membrane hemichannels that combine to form intercellular gap junctions (GJ). Although Cxs co-exist within the junctional complex, their influence on tight/adherens junctions and their role in barrier function of BBB ECs and CPE has been mostly ignored. Here, we review current knowledge on the role of Cxs in the BBB, BCSFB and other interfaces that subside within the CNS. We conclude that Cxs are a rather unexplored but promising target for influencing CNS barrier function.  相似文献   

5.
The detailed chemistry of nitric oxide (*NO) and regulation of this potent signal molecule through interactions with cellular components are complex and not clearly understood. In the vasculature, *NO plays a crucial role in vessel dilation by activating soluble guanylyl cyclase (sGC) in vascular smooth muscle cells (VSMC). *NO is responsible for maintaining coronary blood flow and normal cardiac function. However, *NO is a highly reactive molecule and this reactivity toward a range of alternate substrates may interfere with the activation of its preferred molecular target within VSMC. Interestingly, marked changes to *NO homeostasis are linked to disease progression. Thus, the physiological concentration of *NO is carefully regulated. Myoglobin is a haem-containing protein that is present in relatively high concentration in cardiac and skeletal muscle. Recently, the presence of myoglobin has been confirmed in human smooth muscle. The role of intracellular myoglobin is generally accepted as that of a passive di-oxygen storage protein. However, oxygenated myoglobin readily reacts with *NO to yield higher order N-oxides such as nitrate, while both the ferrous and ferric forms of the protein form a stable complex with *NO. Together, these two reactions effectively eliminate *NO on the physiological time-scale and strongly support the idea that myoglobin plays a role in maintaining *NO homeostasis in tissues that contain the protein. Interestingly, human myoglobin contains a sulfhydryl group and forms an S-nitroso-adduct similar to haemoglobin. In this article we discuss the potential for human myoglobin to actively participate in the regulation of *NO by three distinct mechanisms, namely oxidation, ligand binding, and through formation of biologically active S-nitroso-myoglobin.  相似文献   

6.
7.
Fever is a fundamental response to infection and a hallmark of inflammatory disease, which has been conserved and shaped through millions of years of natural selection. Although fever is able to stimulate both innate and adaptive immune responses, the very nature of all the molecular thermosensors, the timing and the detailed mechanisms translating a physical trigger into a fundamental biological response are incompletely understood. Here we discuss the consequence of hyperthermic stress in dendritic cells (DCs), and how the sole physical input is sensed as an alert stimulus triggering a complex transition in a very narrow temporal window. Importantly, we review recent findings demonstrating the significant and specific changes discovered in gene expression and in the metabolic phenotype associated with hyperthermia in DCs. Furthermore, we discuss the results that support a model based on a thermally induced autocrine signalling, which rewires and sets a metabolism checkpoint linked to immune activation of dendritic cells. Importantly, in this context, we highlight the novel regulatory functions discovered for IGFBP‐6 protein: induction of chemotaxis; capacity to increase oxidative burst and degranulation of neutrophils, ability to induce metabolic changes in DCs. Finally, we discuss the role of IGFBP‐6 in autoimmune disease and how novel mechanistic insights could lead to exploit thermal stress‐related mechanisms in the context of cancer therapy.  相似文献   

8.
《FEBS letters》2014,588(8):1244-1248
Cardiac conduction is the process by which electrical excitation is communicated from cell to cell within the heart, triggering synchronous contraction of the myocardium. The role of conduction defects in precipitating life-threatening arrhythmias in various disease states has spurred scientific interest in the phenomenon. While the understanding of conduction has evolved greatly over the last century, the process has largely been thought to occur via movement of charge between cells via gap junctions. However, it has long been hypothesized that electrical coupling between cardiac myocytes could also occur ephaptically, without direct transfer of ions between cells. This review will focus on recent insights into cardiac myocyte intercalated disk ultrastructure and their implications for conduction research, particularly the ephaptic coupling hypothesis.  相似文献   

9.
10.
Proclaimed “International Year of Biodiversity”, will 2010 hold all its promises? Reminder: initiated by the Convention on Biological Diversity ratified after the global summit in Rio de Janeiro, delegations from more than one hundred countries gathered in Johannesburg in 2002 and committed themselves to slowing the erosion of biodiversity by 2010. The European Union was more ambitious (or reckless?) and even spoke about halting this erosion (European Environment Agency, Progress towards the European 2010 biodiversity target, 2009) [1]! Well, that date has come and the overall appraisal that has been made formally in Nagoya in October this year was not so brilliant (see Leadley et al., 2010) [2]–but the same slogan has been launched for 2020! The aim here is not to repeat that appraisal, but, after considering the broad outlines, to evoke some of the issues and challenges that inevitably result from the great question of the protection and management of global biodiversity.  相似文献   

11.
Plant lipid droplets are found in seeds and in post-embryonic tissues. Lipid droplets in seeds have been intensively studied, but those in post-embryonic tissues are less well characterised. Although known by a variety of names, here we will refer to all of them as lipid bodies (LBs). LBs are unique spherical organelles which bud off from the endoplasmic reticulum, and are composed of a single phospholipid (PL) layer enclosing a core of triacylglycerides. The PL monolayer is coated with oleosin, a structural protein that stabilizes the LB, restricts its size, and prevents fusion with adjacent LBs. Oleosin is uniquely present at LBs and is regarded as a LB marker. Although initially viewed as simple stores for energy and carbon, the emerging view is that LBs also function in cytoplasmic signalling, with the minor LB proteins caleosin and steroleosin in a prominent role. Apart from seeds, a variety of vegetative and floral structures contain LBs. Recently, it was found that numerous LBs emerge in the shoot apex of perennial plants during seasonal growth arrest and bud formation. They appear to function in dormancy release by reconstituting cell-cell signalling paths in the apex. As apices and orthodox seeds proceed through comparable cycles of dormancy and dehydration, the question arises to what degree LBs in apices share functions with those in seeds. We here review what is known about LBs, particularly in seeds, and speculate about possible unique functions of LBs in post-embryonic tissues in general and in apices in particular.  相似文献   

12.
The Arizona Health Sciences Library has collaborated with clinical faculty to develop a federated search engine that is useful for meeting real-time clinical information needs. This article proposes a technology mediation role for the reference librarian that was inspired by the project, and describes the collaborative model used for developing technology-mediated services for targeted users.  相似文献   

13.
14.
15.
16.
17.
It was found that pike parvalbumins pI 4.2 and 5.0 bind amphiphilic peptide melittin extracted from bee venom in an extraordinary Ca-dependent manner: in apo-state the protein forms a tight equimolar complex with melittin (Ka = 10(6) M-1 at 18 degrees C); in Ca- (and Mg-) loaded state it does not take place. Heating of the protein up to temperatures above the denaturation temperature of apo-parvalbumin does not change the stoichiometry of the complex but increases its association constant by an order of magnitude (Ka = 1.2.10(7) M-1 at 44 degrees C). Isolated Ca-binding domain of parvalbumin, 38-108, retains the ability for Ca-inhibited binding of equimolar quantities of melittin. The possible function of parvalbumin in vivo is suggested: Ca-inhibited interactions with some intracellular components.  相似文献   

18.
Cholecystokinin (CCK) peptides are involved in the control of multiple functions both in the central nervous system (CNS) and in the gastrointestinal tract where they act as neurotransmitters and regulate digestive functions. This review deals with the role of CCK peptides as vasoactive mediators. Recent work from our group demonstrates that CCK peptides induce neurogenic vasodilatation both in cerebral and mesenteric vessels. Such an effect is mediated by nitric oxide and seems to be presynaptic. These findings suggest that endogenous CCK peptides could be relevant vasodilatory agents involved in regulating both cerebral and splanchnic blood flow. We hypothesize here how such an effect could be useful in the interpretation of, in a new conceptual frame, the eventual contribution of CCK to some physiological and physiopathological events, such as splanchnic postprandial hyperaemia, panic attack or migraine.  相似文献   

19.
Ubiquitination is a protein modification generally used by cells to tag proteins that are destined for proteasomal degradation. In a recent article, Perrin et al. reported that the ubiquitination system has a role in the recognition of bacterial pathogens in the cytosol of mammalian cells. They showed that polyubiquitinated proteins accumulate on the surface of cytosolic Salmonella typhimurium. In macrophages, but not epithelial cells, proteasomes become associated with the surface of cytosolic bacteria. The authors proposed that the ubiquitin-proteasome machinery might be implicated indirectly in bacterial clearance.  相似文献   

20.
BB Land  RJ Dileone 《Neuron》2012,75(3):360-362
A recent paper in Nature (Lim et?al., 2012) describes the effects of melanocortin receptors in the nucleus accumbens. The studies connect a hypothalamic peptide system with brain reward centers and show effects on specific neuronal populations and behavioral components of mood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号