首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cellulose/silica hybrid biomaterials are prepared by sol–gel covalent crosslinking process. The tetraethoxysilane (TEOS) as precursor, γ-aminopropyltriethoxylsilane (APTES) as couple agent, and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) as crosslinking agent, are used in the sol–gel crosslinking process. The chemical and morphological structures of cellulose/silica covalent crosslinking hybrids are investigated with micro-FT-IR spectra, nitrogen element analysis, X-ray diffraction, SEM, AFM, and DSC. The results show that the cellulose/silica hybrids form new macromolecular structures. In sol–gel process, inorganic particles are dispersed at the nanometer scale in the cellulose host matrix, bounding to the cellulose through covalent bonds. The cellulose/silica covalent crosslinking hybrid can form good and smooth film on the cellulose. The thermal properties of organic/inorganic hybrids are improved.  相似文献   

2.
Although the role of polycationic macromolecules in catalyzing the synthesis of silica structures is well established, detailed understanding of the mechanisms behind the production of silica structures of controlled morphologies remains unclear. In this study, we have used both poly-L-lysine (PLL) and/or poly-D-lysine (PDL) for silica synthesis to investigate mechanisms controlling inorganic morphologies. The formation of both spherical silica particles and hexagonal plates was observed. The formation of hexagonal plates was suggested, via circular dichroic spectroscopy (CD), to result from the assembly of helical polylysine molecules. We confirm that the formation of PLL helices is a prerequisite to the hexagonal silica synthesis. In addition, we present for the first time that the handedness of the helicity of the macromolecule does not affect the formation of hexagonal silica. We also show, by using two different silica precursors, that the precursor does not have a direct effect on the formation of hexagonal silica plates. Furthermore, when polylysine helices were converted to beta-sheet structure, only silica particles were obtained, thus suggesting that the adoption of a helical conformation by PLL is required for the formation of hexagonally organized silica. These results demonstrate that the change in polylysine conformation can act as a "switch" in silica structure formation and suggest the potential for controlling morphologies and structures of inorganic materials via control of the conformation of soft macromolecular templates.  相似文献   

3.
Four poly(phenylacetylene)s ( PPA-1 , PPA-2 , PPA-3 , PPA-4 ) bearing phenylcarbamate residues of L ‐phenylglycinol and amide linkage as pendants were prepared to be used as chiral stationary phases (CSPs) for high‐performance liquid chromatography (HPLC), and the influences of coating solvents, dimethylformamide (DMF) and tetrahydrofuran (THF), which were used for coating the polymers on silica gel, on the helical structure of the polymers and their chiral recognition abilities were investigated. The structure analysis of PPA-1 , PPA-2 , PPA-3 , PPA-4 by 1H nuclear magnetic resonance (NMR), size exclusion chromatography (SEC), optical rotation, and circular dichroism (CD) spectra indicated that the polymers possess the cis‐transoidal structure with dynamic helical conformation. The polymers in THF seem to have shorter conjugated helical main chains along with a tighter twist conformation than those in DMF. The chiral recognition abilities of PPA-1 , PPA-2 , PPA-3 , PPA-4 with the different helical structures induced by the coating solvents were evaluated as the CSPs in HPLC. The helical structures of PPA-1 , PPA-2 , PPA-3 , PPA-4 induced with THF are preferable for chiral recognition for some racemates compared to those induced with DMF, and higher chiral recognition abilities of PPA-1 , PPA-2 , PPA-3 , PPA-4 were achieved using THF. Chirality 27:500–506, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
Although the preparation of single‐handed helical inorganic and hybrid organic‐inorganic nanotubes is well developed, approaches to the formation of single‐handed organopolymeric nanotubes are limited. Here, left‐handed helical m‐phenylenediamine‐formaldehyde resin and 3‐aminophenol‐formaldehyde resin nanotubes were prepared by using N‐palmitoyl glucosamine that can self‐assemble into left‐handed twisted nanoribbons in a mixture of methanol and water. In the reaction mixture, the helical pitch of the nanoribbons decreased with increasing reaction time. The resin nanotubes were obtained after removing the N‐palmitoyl glucosamine template, and circular dichroism spectroscopy indicated that the organopolymeric nanotubes had optical activity. Carbonaceous nanotubes were then prepared by carbonization of the 3‐aminophenol‐formaldehyde resin nanotubes.  相似文献   

5.
Wang Y  Chen H  Xiao Y  Ng CH  Oh TS  Tan TT  Ng SC 《Nature protocols》2011,6(7):935-942
We describe an effective and simple protocol that uses click chemistry to attach native β-cyclodextrin (β-CD) to silica particles, resulting in a chiral stationary phase (CCNCSP) that can be used for the enantioseparation of chiral drugs by high-performance liquid chromatography (HPLC). Starting from β-CD, the CCNCSP is prepared in several steps: (i) reaction of β-CD with 1-(p-toluenesulfonyl)-imidazole to afford mono-6-toluenesulfonyl-β-CD; (ii) azidolysis of mono-6-toluenesulfonyl-β-CD in dimethylformamide to give mono-6-azido-β-CD (N(3)-CD); (iii) reaction of cuprous iodide with triphenylphosphine to form an organic soluble catalyst CuI(PPh(3)); (iv) preparation of alkynyl-modified silica particles; and (v) click chemistry immobilization of N(3)-CD onto alkynyl-modified silica to afford the desired chiral stationary phase. Synthesis of the stationary phase and column packing takes ~1 week.  相似文献   

6.
Brunet E 《Chirality》2002,14(2-3):135-143
Confinement may efficiently condition the stereochemical outcome of a reaction through space constriction and molecular close contact. This article briefly reviews recent approaches of supramolecular chemistry to achieve chiral confinement. Crystallization is not always possible and the use of chiral crystals or clathrates lacks generality. The construction of solid supramolecular assemblies circumvents some of the problems of the crystal chemistry. In this regard, molecular imprinting of polymeric matrices with orifices mimicking the transition state of an enantioselective process is a very young, promising technique. Zeolites provide porous, rigid environments to host molecules without the need of lucky crystallizations, yet zeolites are not chiral per se and must be chirally modified. Besides, the limited dimension of their pores restricts the size of the guest molecules. Despite these problems, useful asymmetric photochemical reactions have been performed on zeolites. Finally, the formation of pillared lamellar structures, from inorganic salts of tetravalent transition metals covalently grafted with organic chains, is considered. The adequate selection of functionality and chirality of the organic pillars would afford custom-made, highly porous, 3D hybrid organo-inorganic scaffolds. However, the production of asymmetric processes within these layered materials still remains to be seen.  相似文献   

7.
Most members of the tumor necrosis factor (TNF) ligand family occur in both a membrane-bound and a soluble form, which can possess differential bioactivities. The aim of this work was the construction of a synthetic-biological hybrid system consisting of chemically nanostructured core-shell particles with a diameter of 100 nm, 1 microm, or 10 microm and the cytokine TNF to obtain a tool that mimics the bioactivity of naturally occurring membrane-bound TNF. Synthetic core-shell nanoparticles consisting of an inorganic silica core and an ultrathin organic shell bearing a maleimide group at the shell surface which allowed for a covalent and site-directed coupling of CysHisTNF mutants were prepared. The TNF mutants were modified at the N-terminus by PCR cloning by introducing a His-Tag for purification and a free cysteine group for reaction with the particle-attached maleimide group. The resulting nanostructured hybrid particles initiated strong TNF receptor type 2 specific responses, otherwise only seen for the membrane-bound form of TNF, but not the soluble cytokine, thus clearly demonstrating new and membrane TNF-like properties of the bioconjugated soluble TNF.  相似文献   

8.
A novel route to synthesize an organic/inorganic hybrid material containing short peptide chains attached on the surface (e.g., oligo(S-benzyl-L-cysteine)) was developed. Poly[N-(beta-aminoethylene)acrylamide] (PAEA) adsorbed onto silica particles surface (main diameter between 15 and 40 microm) was irreversibly fixed by the reaction between the accessible primary amino groups of the PAEA and 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTCDA). After the deposition of PAEA from a salt-free aqueous solution onto microporous silica particles and stabilization by a cross-linking reaction with BTCDA, five repeated coupling reactions of boc-S-benzyl-L-cysteine were performed. Changes in surface charges during the polyelectrolyte adsorption were studied by electrokinetic measurements. The cross-linking degree was a tool to control the surface charge of the PAEA/silica hybrid particles. X-ray photoelectron spectroscopy (XPS) was employed to obtain information about the amount of the adsorbed polyelectrolyte as well as the amount of the amino acid S-benzyl-L-cysteine that was covalently bound to the hybrid particle surface and polycondensed there. In the XPS spectra, the sulfur peaks (S 2p3/2, S 2p1/2, and S 2s) qualitatively and quantitatively indicated the presence of the amino acid on the hybrid material surface. After each step of coupling, the intensity of the S 2s peak was increased by a constant value. This indicates the oligopeptide growth. The novel hybrid material offers possibilities for subsequent derivatization reactions such as coupling other amino acids, peptides, obtaining hybrid ion exchange resins, and so forth.  相似文献   

9.
Enantioselective segregation has been attained in the Bx phase of a novel substituted oxadiazole achiral banana-shaped liquid crystal (LC) without introducing any chiral species. This bent-core molecule exhibits LC polymorphism; the higher temperature nematic (N) phase and the lower temperature banana smectic phase (Bx phase), in which spontaneous chiral segregation with (+) and (-) chiral domains occurs with equal probabilities. In twisted cell geometries, extrinsically induced twisted N structures are formed and result in intrinsically chiral conglomerate when the temperature is decreased from N to Bx. The observed optical activity in homochiral Bx phase is comparable to those theoretically predicted and is proportional to the cell thickness.  相似文献   

10.
Platinum(II) octaethylporphyrin (PtOEP)-loaded organic–inorganic hybrids were obtained via the microwave-assisted sol–gel condensation with methyltrimethoxysilane and poly(vinylpyrrolidone). From transparent and homogeneous hybrid films, the strong phosphorescence from PtOEP was observed. Next, the resulting hybrids were immersed in the aqueous buffer, and the emission intensity was monitored by changing the dissolved oxygen level in the buffer. When the hybrid with relatively-higher amount of the silica element, the strong phosphorescence was observed even under the aerobic conditions. In contrast, the emission from the hybrids with lower amounts of the silica element was quenched under the hypoxic conditions. This is, to the best of our knowledge, the first example to demonstrate that the responsiveness of the phosphorescence intensity of PtOEP in hybrid films to the dissolved oxygen concentration in water can be modulated by changing the percentage of the contents in the material.  相似文献   

11.
Plasmonic nanoparticles (NPs) adsorbing onto helical bacteria can lead to formation of NP helicoids with micron scale pitch. Associated chiroptical effects can be utilized as bioanalytical tool for bacterial detection and better understanding of the spectral behavior of helical self-assembled structures with different scales. Here, we report that enantiomerically pure helices with micron scale of chirality can be assembled on Campylobacter jejuni, a helical bacterium known for severe stomach infections. These organisms have right-handed helical shapes with a pitch of 1–2 microns and can serve as versatile templates for a variety of NPs. The bacteria itself shows no observable rotatory activity in the visible, red, and near-IR ranges of electromagnetic spectrum. The bacterial dispersion acquires chiroptical activity at 500–750 nm upon plasmonic functionalization with Au NPs. Finite-difference time-domain simulations confirmed the attribution of the chiroptical activity to the helical assembly of gold nanoparticles. The position of the circular dichroism peaks observed for these chiral structures overlaps with those obtained before for Au NPs and their constructs with molecular and nanoscale chirality. This work provides an experimental and computational pathway to utilize chiroplasmonic particles assembled on bacteria for bioanalytical purposes.  相似文献   

12.
Dynamic hybrid materials based on Müller’s porous Keplerate type molybdenum-oxide based nanocapsules are described. The present efforts involve the preparation and properties of hybrid materials formed between lipophilic MCM41-mesoporous or octadecyldimethylsilica with Keplerate type molybdenum-oxide based Mo132 nanocapsules - designed by encapsulation into DODA - dimethyldioctadecylammonium cationic surfactants (DODA)40Mo132. In particular, the use of a “dynamic reversible hydrophobic interface” between (DODA)40Mo132 and lipophilic silica can render the emerging hybrid mesophases self-adaptive. The reversible hydrophobic interactions allow to both capsule and inorganic silica components to mutually (synergistically) adapt their spatial constitution during simultaneous (collective) formation of self-organized hybrid domains. This might provide new insights into the features that control the design of novel complex materials.  相似文献   

13.
The giant basal spicules of the siliceous sponges Monorhaphis chuni and Monorhaphis intermedia (Hexactinellida) represent the largest biosilica structures on earth (up to 3m long). Here we describe the construction (lamellar organization) of these spicules and of the comitalia and highlight their organic matrix in order to understand their mechanical properties. The spicules display three distinct regions built of biosilica: (i) the outer lamellar zone (radius: >300 microm), (ii) the bulky axial cylinder (radius: <75 microm), and (iii) the central axial canal (diameter: <2 microm) with its organic axial filament. The spicules are loosely covered with a collagen net which is regularly perforated by 7-10 microm large holes; the net can be silicified. The silica layers forming the lamellar zone are approximately 5 microm thick; the central axial cylinder appears to be composed of almost solid silica which becomes porous after etching with hydrofluoric acid (HF). Dissolution of a complete spicule discloses its complex structure with distinct lamellae in the outer zone (lamellar coating) and a more resistant central part (axial barrel). Rapidly after the release of the organic coating from the lamellar zone the protein layers disintegrate to form irregular clumps/aggregates. In contrast, the proteinaceous axial barrel, hidden in the siliceous axial cylinder, is set up by rope-like filaments. Biochemical analysis revealed that the (dominant) molecule of the lamellar coating is a 27-kDa protein which displays catalytic, proteolytic activity. High resolution electron microscopic analysis showed that this protein is arranged within the lamellae and stabilizes these surfaces by palisade-like pillars. The mechanical behavior of the spicules was analyzed by a 3-point bending assay, coupled with scanning electron microscopy. The load-extension curve of the spicule shows a biphasic breakage/cracking pattern. The outer lamellar zone cracks in several distinct steps showing high resistance in concert with comparably low elasticity, while the axial cylinder breaks with high elasticity and lower stiffness. The complex bioorganic/inorganic hybrid composition and structure of the Monorhaphis spicules might provide the blueprint for the synthesis of bio-inspired material, with unusual mechanical properties (strength, stiffness) without losing the exceptional properties of optical transmission.  相似文献   

14.
The nature of chiral interactions among chiral biopolymers, such as DNA, protein alpha-helices, and rodlike virus particles, remains elusive. In particular, a satisfactory model connecting molecular chiral interactions and the pitch of the resulting chiral mesophases is lacking. We report the measurement of short-fragment (146-bp) DNA cholesteric spherulite pitch as a function of osmotic pressure, average DNA interaxial spacing, and salt concentration. We determined cholesteric pitch and interaxial spacing by polarizing optical microscopy and x-ray scattering, respectively, from which the twist-angle between DNA molecules can be calculated. Surprisingly, we found that decreasing ionic strength resulted in weaker chiral interactions between DNA chains, as evidenced by the decrease in the twist-angle, and consequent increase in the cholesteric pitch, for a fixed interaxial spacing. We propose that this behavior can be explained by increased smearing-out of the helical charge pattern along DNA as the Debye screening length is increased.  相似文献   

15.
To prepare an immobilized protease with a high activity for transesterification of vinyl n-butyrate with 3-methyl-1-butanol (isoamyl alcohol) in organic media, a protease was entrapped into organic–inorganic hybrid silica gel on Celite 545 by the sol-gel method. When propyltrimethoxysilane was used as the organic silane precursor mixed with tetramethoxysilane at a molar ratio of 16:1, the hybrid gel-entrapped protease on Celite 545 had 8 times the activity of the protease deposited on Celite 545 from 35 to 85°C.  相似文献   

16.
Biogenetic silica displays intricate patterns assembling from nano- to microsize level and interesting non-spherical structures differentiating in specific directions. Several model systems have been proposed to explain the formation of biosilica nanostructures. Of them, phase separation based on the physicochemical properties of organic amines was considered to be responsible for the pattern formation of biosilica. In this paper, using tetraethyl orthosilicate (TEOS, Si(OCH2CH3)4) as silica precursor, phospholipid (PL) and dodecylamine (DA) were introduced to initiate phase separation of organic components and influence silica precipitation. Morphology, structure and composition of the mineralized products were characterized using a range of techniques including field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), infrared spectra (IR), and nitrogen physisorption. The results demonstrate that the phase separation process of the organic components leads to the formation of asymmetrically non-spherical silica structures, and the aspect ratios of the asymmetrical structures can be well controlled by varying the concentration of PL and DA. On the basis of the time-dependent experiments, a tentative mechanism is also proposed to illustrate the asymmetrical morphogenesis. Therefore, our results imply that in addition to explaining the hierarchical porous nanopatterning of biosilica, the phase separation process may also be responsible for the growth differentiation of siliceous structures in specific directions. Because organic amine (e.g., long-chair polyamines), phospholipids (e.g., silicalemma) and the phase separation process are associated with the biosilicification of diatoms, our results may provide a new insight into the mechanism of biosilicification.  相似文献   

17.
In the context, 2-thiosalicylic acid (TSA) is modified with two crosslinking reagents (3-chloropropyltrimethoxysilane (CTPMS), 3-(triethoxysilyl)-propyl isocyanate (TESPIC)) to achieve two kinds of sulfide bridges (abbreviated as TSA-CSi and TSA-TSi, respectively). And two organic polymers (poly acrylamide (PAM) and poly ethylene glycol (PEG)) are also functionalized with TESPIC to form their polymeric silane derivatives PAMSi and PEGSi. Then series of multi-component Eu3+/Tb3+ hybrid material have been assembled with inorganic silica covalently linking organic polymer through the sulfide bridges after co-hydrolysis and co-polycondensation with the above inorganic or organic alkoxyl compounds (TSA-CSi(TSi), PAMSi(PEGSi)) and tetraethoxysilane (TEOS). These hybrid material are characterized in details to compare with the binary hybrid material without organic polymer unit, whose results reveal that the photoluminescence properties of the hybrid system are improved with the introduction of the polymer unit.  相似文献   

18.
The application of organic polymers and inorganic/organic hybrid systems in numerous fields of biotechnology has seen a considerable growth in recent years. Typically, organic polymers with diverse structures, compositional variations and differing molecular weights have been utilized to assemble polymeric nanosystems such as polymeric micelles, polymersomes, and nanohydrogels with unique features and structural properties. The architecture of these polymeric nanosystems involves the use of both hydrophobic and hydrophilic polymeric blocks, making them suitable as vehicles for diagnostic and therapeutic applications. Recently, “smart” or “intelligent” polymers have attracted significant attention in the biomedical field wherein careful introduction of specific polymeric modalities changes a banal polymeric nanosystem to an advanced stimuli-responsive nanosystem capable of performing extraordinary functions in response to an internal or external trigger such as pH, temperature, redox, enzymes, light, magnetic, or ultrasound. Further, incorporation of inorganic nanoparticles such as gold, silica, or iron oxide with surface-bound stimuli-responsive polymers offers additional advantages and multifunctionality in the field of nanomedicine. This review covers the physical properties and applications of both organic and organic/inorganic hybrid nanosystems with specific recent breakthroughs in drug delivery, imaging, tissue engineering, and separations and provides a brief discussion on the future direction.  相似文献   

19.
A novel, optically active, cis-transoidal poly(phenylacetylene) bearing an L-proline residue as the pendant group (poly-1) was prepared by the polymerization of the corresponding monomer using a rhodium catalyst in water, and its chiroptical property was investigated using circular dichroism spectroscopy. Poly-1 showed intense Cotton effects in the UV-visible region of the polymer backbone in water, resulting from the prevailing one-handed helical conformation induced by the covalent-bonded chiral L-proline pendants and exhibited a unique helix-sense inversion in response to external, achiral, and chiral stimuli, such as the solvent and interactions with chiral small molecules. We found that poly-1 could enantioselectively trap 1,1'-2-binaphthol within its hydrophobic helical cavity inside the polymer in aqueous media and underwent an inversion of its helical sense in the presence of one of the enantiomers. The effect of the optical purity of 1,1'-2-binaphthol on the chiroptical properties of poly-1 was also investigated.  相似文献   

20.
Over 25% efficiencies have been achieved by organic–inorganic hybrid perovskite solar cells (PSCs). However, their practical applications are limited by the instability of the hybrid perovskite materials. Replacing hybrid perovskites with inorganic CsPbX3 perovskites shows great promise to address the above issue and much progress has been made. To achieve high efficiency and stable inorganic CsPbX3 PSCs, organic molecular engineering has been playing a vital role. Herein, the progress of the organic molecular engineering in inorganic CsPbX3 PSCs is systematically reviewed. First, structure evolution induced by organic molecular engineering for inorganic CsPbX3 perovskites is demonstrated. Then, organic molecular engineering in CsPbX3 PSCs is categorized and reviewed (alloying in perovskite structures, as sacrificial agents, forming 2D structures, and modifying surfaces and interfaces). Finally, future research directions are suggested to further improve the performance of inorganic PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号