首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cultured cells of tobacco (Nicotiana tabacum L. cv Petit Havana) were used to investigate signals regulating the expression of the model nuclear gene encoding the alternative oxidase (AOX) (AOX1), the terminal oxidase of the mitochondrial alternative respiratory pathway. Several conditions shown to induce AOX1 mRNA accumulation also result in an increase in cellular citrate concentrations, suggesting that citrate and/or other tricarboxylic acid (TCA) cycle intermediates may be important signal metabolites. In addition, mitochondrial reactive oxygen species (ROS) production has recently been shown to be a factor mediating mitochondria-to-nucleus signaling for the expression of AOX1. We found that the exogenously supplied TCA cycle organic acids citrate, malate and 2-oxoglutarate caused rapid and dramatic increases in the steady-state level of AOX1 mRNA at low, near physiological concentrations (0.1 mM). Furthermore, an increase in AOX1 induced by the addition of organic acids occurs independently of mitochondrial ROS formation. Our results demonstrate that two separate pathways for mitochondria-to-nucleus signaling of AOX1 may exist, one involving ROS and the other organic acids.  相似文献   

2.
Proanthocyanidins (PAs) are the end products of the flavonoid biosynthetic pathway in many seeds, but their biological function is rarely unknown during seed germination. In the present study, we observed that PAs pretreatment accelerated cucumber seeds germination with maximum efficiency at 0.15% by measuring germination percentage and radical length. Using inhibitors of abscisic acid (ABA), gibberellins (GA) and alternative oxidase (AOX) and H2O2 scavenger pretreatment and gene expression analysis, we found that the accelerated effect of 0.15% PAs on seed germination was due to the decreased ABA biogenesis and enhanced GA production. ROS are induced by PAs pretreatment. Then, the enhanced ROS contributed to GA and ethylene accumulation and ABA decrease in seeds. Moreover, the improvement of GA was involved in the further induction of antioxidant enzymes activities. Therefore, our findings uncover a novel role of PAs in seed germination and clarify the relationships between ROS, ABA, GA and ethylene during seed germination.  相似文献   

3.
Aluminum (Al) stress represses mitochondrial respiration and produces reactive oxygen species (ROS) in plants. Mitochondrial alternative oxidase (AOX) uncouples respiration from mitochondrial ATP production and may improve plant performance under Al stress by preventing excess accumulation of ROS. We tested respiratory changes and ROS production in isolated mitochondria and whole cell of tobacco (SL, ALT 301) under Al stress. Higher capacities of AOX pathways relative to cytochrome pathways were observed in both isolated mitochondria and whole cells of ALT301 under Al stress. AOX1 when studied showed higher AOX1 expression in ALT 301 than SL cells under stress. In order to study the function of tobacco AOX gene under Al stress, we produced transformed tobacco cell lines by introducing NtAOX1 expressed under the control of the cauliflower mosaic virus (CaMV) 35 S promoter in sensitive (SL) Nicotiana tabacum L. cell lines. The enhancement of endogenous AOX1 expression and AOX protein with or without Al stress was in the order of transformed tobacco cell lines > ALT301 > wild type (SL). A decreased respiratory inhibition and reduced ROS production with a better growth capability were the significant features that characterized AOX1 transformed cell lines under Al stress. These results demonstrated that AOX plays a critical role in Al stress tolerance with an enhanced respiratory capacity, reducing mitochondrial oxidative stress burden and improving the growth capability in tobacco cells.  相似文献   

4.
The effects of potassium cyanide (KCN) pretreatment on the response of cucumber (Cucumis sativus L.) plants to salt, polyethylene glycol (PEG) and cold stress were investigated in the present study. Here, we found that KCN pretreatment improved cucumber seedlings tolerance to stress conditions with maximum efficiency at a concentration of 20 µM. The results showed that pretreatment with 20 µM KCN alleviated stress‐induced oxidative damage in plant cells and clearly induced the activity of alternative oxidase (AOX) and the ethylene production. Furthermore, the structures of thylakoids and mitochondria in the KCN‐pretreated seedlings were less damaged by the stress conditions, which maintained higher total chlorophyll content, photosynthetic rate and photosystem II (PSII) proteins levels than the control. Importantly, the addition of the AOX inhibitor salicylhydroxamic acid (1 mm ; SHAM) decreased plant resistance to environmental stress and even compromised the cyanide (CN)‐enhanced stress tolerance. Therefore, our findings provide a novel role of CN in plant against environmental stress and indicate that the CN‐enhanced AOX might contribute to the reactive oxygen species (ROS) scavenging and the protection of photosystem by maintaining energy charge homoeostasis from chloroplast to mitochondria.  相似文献   

5.
Mitochondria recently have emerged as important sites in controlling NO levels within the cell. In this study, the synthesis of nitric oxide (NO) from nitrite and its degradation by mitochondria isolated from Arabidopsis thaliana were examined. Oxygen and NO concentrations in the reaction medium were measured with specific electrodes. Nitrite inhibited the respiration of isolated A. thaliana mitochondria, in competition with oxygen, an effect that was abolished or potentiated when electron flow occurred via alternative oxidase (AOX) or cytochrome c oxidase (COX), respectively. The production of NO from nitrite was detected electrochemically only under anaerobiosis because of a superoxide-dependent process of NO degradation. Electron leakage from external NAD(P)H dehydrogenases contributed the most to NO degradation as higher rates of Amplex Red-detected H2O2 production and NO consumption were observed in NAD(P)H-energized mitochondria. Conversely, the NO-insensitive AOX diminished electron leakage from the respiratory chain, allowing the increase of NO half-life without interrupting oxygen consumption. These results show that the accumulation of nitric oxide derived from nitrite reduction and the superoxide-dependent mechanism of NO degradation in isolated A. thaliana mitochondria are influenced by the external NAD(P)H dehydrogenases and AOX, revealing a role for these alternative proteins of the mitochondrial respiratory chain in the control of NO levels in plant cells.  相似文献   

6.
The activity of alternative oxidase (AOX) and generation of reactive oxygen species (ROS) in mitochondria of winter wheat Triticum aestivum L. isolated from seedlings subjected to one (7-day exposure to 2–3°C) and two (7-day exposure to 2–3°C and 2-day exposure to −2°C) phases of a cold hardening has been studied. The antioxidant role of AOX in the first phase of the cold hardening has been determined using inhibitors of respiratory chain. Exposure to low temperature was shown to lead to inhibition of cytochrome pathway in mitochondria, increase of ROS production, and switching of the electron transport to the alternative pathway. Decrease in succinate- and antimycin A-induced ROS generation was found during two phases of cold hardening. This fact may point out to functioning of uncoupling proteins under these conditions. Thus, antioxidant function of AOX during the first phase of cold hardening may be an important component of the cold adaptation mechanism in winter crops. The data suggest that ROS and free fatty acids may be signal molecules regulating the activity of two energy-dissipation systems (AOX and uncoupling proteins).  相似文献   

7.
Mitochondrial alternative oxidase is an important protein involved in maintaining cellular metabolic and energy balance, especially under stress conditions. AOX genes knockout is aimed at revealing the functions of AOX genes. Under unfavourable conditions, AOX-suppressed plants (mainly based on Arabidopsis AOX1a-knockout lines) usually experience strong oxidative stress. However, a compensation effect, which consists of the absence of AOX1a leading to an increase in defence response mechanisms, concomitant with a decrease in ROS content, has also been demonstrated. This review briefly describes the possible mechanisms underlying the compensation effect upon the suppression of AOX1a. Information about mitochondrial retrograde regulation of AOX is given. The importance of ROS and mitochondrial membrane potential in triggering the signal transmission from mitochondria in the absence of AOX or disturbance of mitochondrial electron transport chain functions is indicated. The few available data on the response of the cell to the absence of AOX at the level of changes in the hormonal balance and the reactions of chloroplasts are presented. The decrease in the relative amount of reduced ascorbate at stable ROS levels as a result of compensation in AOX1a-suppressed plants is proposed as a sign of stress development. Obtaining direct evidence on the mechanisms and signalling pathways involved in AOX modulation in the genome should facilitate a deeper understanding of the role of AOX in the integration of cellular signalling pathways.  相似文献   

8.
9.
10.
Alternative respiratory pathway was investigated in rice seedlings grown under total darkness, light/dark cycle, or continuous light. The capacity of the alternative pathway was relatively higher in leaves that had longer light exposure. An analysis of rice AOX1 multigene family revealed that AOX1c, but not AOX1a and AOX1b, had a light-independent expression. The alternative oxidase (AOX) inhibitor, salicylhydroxamic acid (SHAM, 1mM), inhibited nearly 68% of the capacity of the alternative pathway in leaves grown under different light conditions. The plants grown under different light periods were treated with SHAM and then were exposed to illumination for 4h. The transition from dark to 4h of light stimulated the capacity of alternative pathway in etiolated rice seedlings and in those grown under light/dark cycle, whereas the capacity of the alternative pathway was constant in seedlings grown under continuous light with additional 4h of illumination. Etiolated leaves did not show any CO(2) fixation after 4h of illumination, and the increase in chlorophyll content was delayed by the SHAM pretreatment. When seedlings grown under light/dark cycle were moved from dark and exposed to 4h of light, increases in chlorophyll content and CO(2) fixation rate were reduced by SHAM. Although these parameters were stable in plants grown under continuous light, SHAM decreased CO(2) fixation rate but not the chlorophyll content. These results indicate that the role and regulation of AOX in light are determined by the developmental stage of plant photosynthetic apparatus.  相似文献   

11.
Mitochondrial alternative oxidase (AOX), the unique respiratory terminal oxidase in plants, catalyzes energy wasteful cyanide (CN)-resistant respiration and plays a role in optimizing photosynthesis. Recent studies from our group indicated that AOX plays a crucial role in chloroplast protection under extreme environments, such as high light (HL). Genetic data suggest that AOX is upregulated by light that was mediated by photoreceptors (phytochromes, phototropins and cryptochromes), and it also might have a particular role in relieving the overreduction of chloroplasts. Physiological analyses further suggest that AOX is essential for the dark-tolight transition, especially in the course of de-etiolation. In this mini-review, we highlight recent progress in understanding the beneficial interaction between photosynthesis and mitochondria metabolism and discuss the possible role and mechanism of AOX in dissipation of excess reduced equivalents for chloroplasts under high light condition.Key words: alternative oxidase (AOX), excess light, NAD(P)H dehydrogenases (NDs), photoreceptors, reactive oxygen species (ROS)  相似文献   

12.
13.
Mitochondrial alternative oxidase (AOX), the unique respiratory terminal oxidase in plants, catalyzes the energy wasteful cyanide (CN)‐resistant respiration and plays a role in optimizing photosynthesis. Although it has been demonstrated that leaf AOX is upregulated after illumination, the in vivo mechanism of AOX upregulation by light and its physiological significance are still unknown. In this report, red light and blue light‐induced AOX (especially AOX1a) expressions were characterized. Phytochromes, phototropins and cryptochromes, all these photoreceptors mediate the light‐response of AOX1a gene. When aox1a mutant seedlings were grown under a high‐light (HL) condition, photobleaching was more evident in the mutant than the wild‐type plants. More reactive oxygen species (ROS) accumulation and inefficient dissipation of chloroplast reducing‐equivalents in aox1a mutant may account for its worse adaptation to HL stress. When etiolated seedlings were exposed to illumination for 4 h, chlorophyll accumulation was largely delayed in aox1a plants. We first suggest that more reduction of the photosynthetic electron transport chain and more accumulation of reducing‐equivalents in the mutant during de‐etiolation might be the main reasons.  相似文献   

14.
Nitrogen (N) availability is widely known as a determinant of plant growth and respiration rate. However, less attention has been paid to the effect of the type of N source (nitrate, nitrite or ammonium) on the respiratory system. This review summarizes the latest findings on this topic, with an emphasis on the effect of ammonium and nitric oxide (NO) on the respiratory system, and the physiological role of alternative oxidase (AOX). First, concentrated ammonium has been found to increase plant respiration rate (ammonium-dependent respiratory increase, ARI). We will introduce two hypotheses to explain ARI, futile ammonium cycling and excess reducing equivalents, and verify the validity of each hypothesis. We suggest that these two hypotheses are not necessarily mutually exclusive. Second, gene expression of AOX is suppressed when N is predominately available as nitrate instead of ammonium. We will discuss possible signaling pathways leading to this expression pattern. Third, while AOX expression is induced by NO, AOX activity itself is insensitive to NO. In contrast, activity of cytochrome c oxidase (COX) is sensitive to NO. We outline the NO production pathway, focusing on nitrite-dependent NO production, and discuss the physiological significance of the fact that AOX activity is insensitive to NO. Finally, this review aims to build an integrated scheme of the respiratory response to the type of N source, considering leaves in high light conditions or hypoxic roots.  相似文献   

15.
Mitochondria of Metarhizium anisopliae contain an alternative oxidase (AOX), which reduces oxygen to water by accepting electrons directly from ubiquinol. AOX activity is demonstrated in situ as a constitutive enzyme. Greatest activity of AOX appears at the beginning and at the end of the fungal developmental cycle, germination of aerial conidia and the formation of submerged conidia, respectively. Changes in nutritional conditions, e.g., the presence of host insect cuticle or nutrient starvation had no effect on the induction of AOX activity. Antimycin A, an electron transport chain inhibitor, induced AOX activity. Cloning of the AOX DNA and the alignment of the deduced amino acid sequence of a segment of the AOX gene from M. anisopliae shows structural similarities with other AOX sequences with differing levels of variation when compared with homologous sequences from plants, yeasts, and filamentous fungi. Alternative oxidase in entomopathogenic fungi may have a positive contribution to ecological fitness.  相似文献   

16.
17.
18.
Phytopathogen infection alters primary metabolism status and plant development. The alternative oxidase (AOX) has been hypothesized to increase under pathogen attack preventing reductions, thus optimizing photosynthesis and growth. In this study, two genotypes of Medicago truncatula, one relatively resistant (Jemalong A17) and one susceptible (TN1.11), were infected with Fusarium oxysporum and Rhizoctonia solani. The in vivo foliar respiratory activities of the cytochrome oxidase pathway (COP) and the alternative oxidase pathway (AOP) were measured using the oxygen isotope fractionation. Gas exchange and photosynthesis-related parameters were measured and calculated together with antioxidant enzymes activities and organic acids contents. Our results show that the in vivo activity of AOX (valt) plays a role under fungal infection. When infected with R. solani, the increase of valt in A17 was concomitant to an increase in net assimilation, in mesophyll conductance, to an improvement in the maximum velocity of Rubisco carboxylation and to unchanged malate content. However, under F. oxysporum infection, the induced valt was accompanied by an enhancement in the antioxidant enzymes, superoxide dismutase (SOD; EC1.15.1.1), catalase (CAT; EC1.11.1.6) and guaiacol peroxidase (GPX; EC1.11.1.7), activities and to an unchanged tricarboxylic acid cycle intermediates. These results provide new insight into the role of the in vivo activity of AOX in coordinating primary metabolism interactions that, partly, modulate the relative resistance of M. truncatula to diseases caused by soil-borne pathogenic fungi.  相似文献   

19.
The objective of this work was to elucidate a possible adaptive role of lipid biosynthesis and unsaturated fatty acids (FAs), esterified to lipids, as terminal acceptors of electrons, alternative to molecular oxygen, in the shoots of rice seedlings (Oryza sativa L.) under conditions of strict anoxia. Biosynthesis of lipids and their accumulation, as well as the reduction of double bonds in unsaturated FAs, were studied by electron microscopic observation of the accumulation of lipid bodies in the cytoplasm and by the biochemical analysis of FAs in shoot lipids before and after anaerobic incubation of the shoots. The experiments were carried out with intact coleoptiles after 5 and 8 days of anaerobic germination of seeds (primary anoxia) and with detached shoots, preliminarily grown in air and then subjected to anoxia in the presence of 2% glucose for 48 h (secondary anoxia). In these experiments, lipid bodies did not accumulate in the cytoplasm under anoxic conditions. Lipid bodies appeared only during 48-h anaerobic incubation of detached coleoptiles in the absence of exogenous glucose, when mitochondria degraded. There was no change either in the double bond index of FAs, or in the qualitative and quantitative composition of FAs during shoot anaerobic incubation. We conclude that neither lipids synthesized under anaerobic conditions nor esterified unsaturated FAs are involved in plant adaptation to anaerobiosis as terminal acceptors of electrons, alternative to molecular oxygen. Lipid biosynthesis under anoxic conditions, which was demonstrated for anoxia-tolerant seedlings of Oryza sativa and Echinochloa phyllopogon in experiments with radioactive precursors, 14C-acetate and 3H-glycerol, is only the manifestation of a turnover of saturated FAs and various classes of lipids, which stabilizes cell membranes under adverse conditions of strict anoxia.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 540–548.Original Russian Text Copyright © 2005 by Generosova, Vartapetian.  相似文献   

20.
In this study we show that mitochondria of Dictyostelium discoideum contain both alternative oxidase (AOX) and uncoupling protein (UCP). AOX was stimulated by purine mononucleoside and was monomeric. UCP was stimulated by free fatty acids and was poorly sensitive to GTP. Both proteins collaborated in energy dissipation when activated together. AOX expression in free-living ameboid cells decreased strongly from exponential to stationary phase of growth but much less during starvation-induced aggregation. In contrast, UCP expression was constant in all conditions indicating permanent need. Our results suggest that AOX could play a role in cell differentiation, mainly by protecting prespore cells from programmed cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号