首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chiral pesticide enantiomers often show different bioactivity and toxicity; however, this property is usually ignored when evaluating their environmental and public health risks. Hexaconazole is a chiral fungicide used on a variety of crops for the control of many fungal diseases. This use provides opportunities for the pollution of food and soil. In this study, a sensitive and convenient chiral liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS) method was developed and validated for measuring hexaconazole enantiomers in tomato, cucumber, and soil. Separation was by a reversed‐phase Chiralcel OD‐RH column, under isocratic conditions using a mixture of acetonitrile‐2 mM ammonium acetate in water (60/40, v/v) as the mobile phase at a flow rate of 0.4 mL/min. Parameters including the matrix effect, linearity, precision, accuracy and stability were undertaken. Then the proposed method was successfully applied to investigate the possible enantioselective degradation of rac‐hexaconazole in plants (tomato and cucumber) and soil under field conditions. The degradation of the two enantiomers of hexaconazole proved to be enantioselective and dependent on the media: The (+)‐enantiomer showed a faster degradation in plants, while the (?)‐enantiomer dissipated faster than the (+)‐form in field soil, resulting in relative enrichment of the opposite enantiomer. The results of this work demonstrate that both the environmental media and environmental conditions influenced the direction and rate of enantioselective degradation of hexaconazole. Chirality 25:160–169, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Oxcarbazepine is a second‐generation antiepileptic drug indicated as monotherapy or adjunctive therapy in the treatment of partial seizures or generalized tonic–clonic seizures in adults and children. It undergoes rapid presystemic reduction with formation of the active metabolite 10‐hydroxycarbazepine (MHD), which has a chiral center at position 10, with the enantiomers (S)‐(+)‐ and R‐(?)‐MHD showing similar antiepileptic effects. This study presents the development and validation of a method of sequential analysis of oxcarbazepine and MHD enantiomers in plasma using liquid chromatography with tandem mass spectrometry (LC‐MS/MS). Aliquots of 100 μL of plasma were extracted with a mixture of methyl tert‐butyl ether: dichloromethane (2:1). The separation of oxcarbazepine and the MHD enantiomers was obtained on a chiral phase Chiralcel OD‐H column, using a mixture of hexane:ethanol:isopropanol (80:15:5, v/v/v) as mobile phase at a flow rate of 1.3 mL/min with a split ratio of 1:5, and quantification was performed by LC‐MS/MS. The limit of quantification was 12.5 ng oxcarbazepine and 31.25 ng of each MHD enantiomer/mL of plasma. The method was applied in the study of kinetic disposition of oxcarbazepine and the MHD enantiomers in the steady state after oral administration of 300 mg/12 h oxcarbazepine in a healthy volunteer. The maximum plasma concentration of oxcarbazepine was 1.2 µg/mL at 0.75 h. The kinetic disposition of MHD is enantioselective, with a higher proportion of the S‐(+)‐MHD enantiomer compared to R‐(?)‐MHD and an AUC0‐12 S‐(+)/R‐(?) ratio of 5.44. Chirality 25:897–903, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
A sensitive method for the separation and determination of amlodipine enantiomers in plasma has been developed based on solid-phase extraction (SPE) with disposable extraction cartridges (DECs) in combination with chiral liquid chromatography (LC). The SPE technique is used to isolate the drug from the biological matrix and to prepare a cleaner sample before injection and analysis by HPLC coupled to mass spectrometry. The DEC is filled with ethyl silica (50 mg) and is first conditioned with a 2.5% ammonia in methanol solution and then with ammonium acetate buffer. A 1.0-ml volume of plasma is then applied on the DEC. The washing step is first performed with ammonium acetate buffer and secondly with a mixture of water and methanol (65:35, v/v), while the final elution step is obtained by dispensing methanol containing 2.5% of ammonia. The eluate is then collected and evaporated to dryness before being dissolved in the LC mobile phase and injected into the LC system. The stereoselective analysis of amlodipine is achieved on a Chiral AGP column containing alpha(1)-acid glycoprotein as chiral selector by using a mobile phase consisting of a 10-mM acetate buffer (pH 4.5) and 1-propanol (99:1, v/v). The LC system is coupled to tandem mass spectrometry with an APCI interface in the positive-ion mode. The chromatographed analytes are detected in the selected reaction monitoring mode (SRM). The MS/MS ion transitions monitored are 409 to 238 for amlodipine, and 260 to 116 for S-(-)-propranolol used as internal standard (IS). The method was validated considering different parameters, such as linearity, precision and accuracy. The limit of quantitation was found to be 0.1 ng/ml for each amlodipine enantiomer.  相似文献   

4.
Ammuxetine (AMT), a novel chiral antidepressant candidate compound, exhibits better antidepression effects than duloxetine in different animal models. In this article, a chiral derivatization method, combined with online solid phase extraction (online SPE) and liquid chromatography–tandem mass spectrometry (LC–MS/MS), was developed for the chiral separation of AMT enantiomers after administration of racemic AMT to dogs. The derivatization reaction employed 2,3,4,6‐tetra‐O‐acetyl‐b‐glucopyr‐anosyl isothiocyanate (GITC) as a precolumn chiral derivatization reagent. A SPE column Retain PEP Javelin (10 × 2.1 mm) was used to remove proteins and other impurities in plasma samples. The enantiomeric derivatives were separated on a ZORBAX SB‐C18 column (50 × 2.1 mm × 3.5 μm) with an isocratic elution procedure. The selected multiple reaction monitoring mode of the positive ion was performed and the parent to the product transitions m/z 681.0/543.1 and m/z 687.4/543.1 were used to measure the derivatives of AMT and duloxetine (internal standard) with electrospray ionization. The method was validated in terms of specificity, linearity, sensitivity, precision, accuracy, matrix effect, and stability. The method was applied to a pharmacokinetics study of AMT racemate in dogs. The results suggested that the pharmacokinetic of AMT enantiomers might be stereoselective in dogs.  相似文献   

5.
8‐Prenylnaringenin (8PN) is a naturally occurring bioactive chiral prenylflavonoid found most commonly in the female flowers of hops (Humulus lupulus L.). A stereospecific method of analysis for 8PN in biological fluids is necessary to study the pharmacokinetic disposition of each enantiomer. A novel and simple liquid chromatographic‐electrospray ionization‐mass spectrometry (LC‐ESI‐MS) method was developed for the simultaneous determination of R‐ and S‐8PN in rat serum and urine. Carbamazepine was used as the internal standard (IS). Enantiomeric resolution of 8PN was achieved on a Chiralpak® AD‐RH column with an isocratic mobile phase consisting of 2‐propanol and 10 mM ammonium formate (pH 8.5) (40:60, v/v) and a flow rate of 0.7 mL/min. Detection was achieved using negative selective ion monitoring (SIM) of 8PN at m/z 339.15 for both enantiomers and positive SIM m/z at 237.15 for the IS. The calibration curves for urine were linear over a range of 0.01–75 µg/mL and 0.05–75 µg/mL for serum with a limit of quantification of 0.05 µg/mL in serum and 0.01 µg/mL in urine. The method was successfully validated showing that it was sensitive, reproducible, and accurate for enantiospecific quantification of 8PN in biological matrices. The assay was successfully applied to a preliminary study of 8PN enantiomers in rat. Chirality 26:419–426, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
A sensitive and enantioselective vancomycin chiral stationary phase high‐performance liquid chromatography–tandem mass spectrometry method was developed for the determination of trantinterol enantiomers in human plasma. Baseline resolution was achieved using the vancomycin chiral stationary phase known as Chirobiotic V with polar ionic mobile phase consisting of acetonitrile–methanol (60:40, v/v) containing 0.01% ammonia and 0.02% acetic acid at a flow rate of 1.0 mL/min. Waters Oasis HLB C18 solid phase extraction cartridges were used in the sample preparation of trantinterol samples from plasma. The detection was performed on a triple‐quadrupole tandem mass spectrometer by multiple reaction monitoring mode via electrospray ionization. The calibration curve was linear in a concentration range from 0.0606 to 30.3 ng/mL in plasma, with the lower limit of quantification of 0.0606 ng/mL. The intra‐ and interday precision (relative standard deviation) values were within 9.7% and the accuracy (relative error) was from ?6.6 to 7.2% at all quality control levels. The method was successfully applied to a study of stereoselective pharmacokinetics in human. Chirality 27:327–331, 2015.© 2015 Wiley Periodicals, Inc.  相似文献   

7.
Pregabalin (Lyrica) is the first compound approved to treat the neural pain associated with fibromyalgia. Pregabalin is the S-enantiomer of a gamma-amino acid analogue and chiral separation from its R-enantiomer must be achieved to support metabolic studies. The direct chiral separation of pregabalin from its R-enantiomer has been developed and HPLC/MS/MS assays have been validated to support isolated perfused rat kidney studies. The separation was developed through serial coupling of various macrocyclic glycopeptide stationary phases until partial separation of the enantiomers was achieved. Identification of the resolving stationary phase followed by optimization of the mobile phase enabled the baseline resolution of the enantiomers using mass spectrometry compatible solvents and modifiers. Assays were developed and validated for quantitation of the enantiomers from rat urine, isolated rat kidney perfusate, and isolated rat kidney perfusate ultrafiltrate to support pregabalin metabolic studies.  相似文献   

8.
Enantiomers of nine K-region and one non-K-region epoxides of polycyclic aromatic hydrocarbons have been resolved by high-performance liquid chromatography with chiral stationary phases either ionically or covalently bonded to gamma-aminopropylsilanized silica. Resolution of enantiomers was confirmed by ultraviolet-visible absorption, circular dichroism, and mass spectral analyses. This method has been applied to the determination of optical purity and absolute configuration of the K-region epoxides formed in the metabolism of 1-methylbenz[a]anthracene, 7-methylbenz[a]anthracene, and 12-methylbenz[a]anthracene by rat liver microsomes.  相似文献   

9.
A convenient and precise chiral method was developed and validated for measuring indoxacarb enantiomers in cucumber and tomato using liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) with a reversed‐phase Chiralpak AD‐RH column. The target analytes were extracted by acetonitrile and then purified by solid phase extraction (SPE) using NH2/Carb combined‐cartridge. Parameters including the matrix effect, linearity, precision, accuracy, and stability were used. Then the proposed method was successfully applied to investigate the possible enantioselective degradation of rac‐indoxacarb in cucumber and tomato under open conditions. The results indicated that the degradation of indoxacarb enantiomers followed first‐order kinetics in cucumber and tomato. The half‐lives of (+)‐S‐indoxacarb in cucumber and tomato were 3.0 and 5.9 days, respectively; while the (–)‐R‐indoxacarb were 7.3 and 12.2 days, respectively. The data of the half‐lives showed that (+)‐S‐indoxacarb was preferentially degraded in cucumber and tomato. Moreover, indoxacarb degraded faster in cucumber than in tomato. Chirality 25:350–354:, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Zeying He  Yi Peng  Lu Wang  Ming Luo  Xiaowei Liu 《Chirality》2015,27(12):958-964
In this research, 10 chiral pesticides in fruits and vegetables were simultaneously determined using chiral liquid chromatography triple quadrupole‐linear ion trap hybrid mass spectrometry (LC‐QqLIT). The QuEChERS method was applied for sample preparation, and an enhanced product ion (EPI) scan was used to acquire tandem mass spectrometry (MS/MS) spectra for the library search. Parameters including limit of detection (LOD), limit of quantification (LOQ), linearity, relative standard deviation (RSD), and matrix effects were evaluated in five representative matrices (strawberry, leek, cowpea, tomato, and eggplant). Good linearity with coefficient of determination (r2) ≥0.997 was obtained for all 20 enantiomers in these five matrices over the range from 1.0 to 250 µg L‐1. All the recoveries at 5 and 50 µg kg‐1 (n = 5) ranged between 70% and 120% with RSD below 20%, indicating satisfactory precision. The LOQ for the enantiomers ranged between 0.05 and 1 µg kg‐1. Based on the proposed method, 135 commonly consumed fruits and vegetables taken from markets in Guizhou province, China, were analyzed. Enantioselective degradation for the selected chiral pesticides was observed in most of the positive samples. Chirality 27:958–964, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Microdialysis sampling coupled with liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS) was used to observe in vitro 11beta-hydroxysteroid dehydrogenase type 1 (HSD1) enzyme-catalyzed conversion of stable-isotope-labeled cortisone to cortisol in liver microsomes from dog, monkey, and human. Experimental conditions that would affect the microdialysis sampling approach including probe length, perfusion fluid flow rate, extraction efficiency (E(d)), substrate concentration, and enzyme reaction conditions were evaluated. Dialysates containing high salt concentrations (>150 mM) were directly assayed using LC/MS/MS without additional sample cleanup. The sensitivity (with lower level of quantitation at 0.1 ng/mL) and selectivity of this assay allowed detection of the enzyme reactants at physiologically relevant levels. The interconversion from M+4 cortisone to M+4 cortisol was detected in dog, human, and monkey liver microsomes. Results show species-specific reaction profiles, with a five times higher conversion rate in dog liver microsomes than in human and monkey liver microsomes. Based on M+4 cortisol production rate obtained using a microdialysis infusion of M+4 cortisone to the microsomes coincubated with a proprietary 11beta-HSD1 inhibitor of different concentrations, the degrees of enzyme inhibition were found to be 40 and 85%, consistent with values obtained by a traditional in vitro incubation method. The microdialysis sampling methodology with LC/MS/MS provided extensive information about 11beta-HSD1 activities in microsomes from different mammalian species.  相似文献   

12.
A new simple, rapid, sensitive and accurate quantitative detection method using liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) for the measurement of formononetin (FMN) and daidzein (DZN) levels in rat plasma is described. Analytes were separated on a Supelco Discovery C18 (4.6 × 50 mm, 5.0 μm) column with acetonitrile: methanol (50:50, v/v) and 0.1% acetic acid in the ratio of 90:10 (v/v) as a mobile phase. The method was proved to be accurate and precise at linearity range of 5–100 ng/mL with a correlation coefficient (r) of ≥0.996. The intra- and inter-day assay precision ranged from 1.66–6.82% and 1.87–6.75%, respectively; and intra- and inter-day assay accuracy was between 89.98–107.56% and 90.54–105.63%, respectively for both the analytes. The lowest quantitation limit for FMN and DZN was 5.0 ng/mL in 0.1 mL of rat plasma. Practical utility of this new LC–MS/MS method was demonstrated in a pharmacokinetic study in rats following intravenous administration of FMN.  相似文献   

13.
The present work firstly described the enantioseparation and determination of flumequine enantiomers in milk, yogurt, chicken, beef, egg, and honey samples by chiral liquid chromatography‐tandem mass spectrometry. The enantioseparation was performed under reversed‐phase conditions on a Chiralpak IC column at 20°C. The effects of chiral stationary phase, mobile phase components, and column temperature on the separation of flumequine enantiomers have been studied in detail. Target compounds were extracted from six different matrices with individual extraction procedure followed by cleanup using Cleanert C18 solid phase extraction cartridge. Good linearity (R2>0.9913) was obtained over the concentration range of 0.125 to 12.5 ng g‐1 for each enantiomer in matrix‐matched standard calibration curves. The limits of detection and limits of quantification of two flumequine enantiomers were 0.015‐0.024 and 0.045‐0.063 ng g‐1, respectively. The average recoveries of the targeted compounds varied from 82.3 to 110.5%, with relative standard deviation less than 11.7%. The method was successfully applied to the determination of flumequine enantiomers in multiple food matrices, providing a reliable method for evaluating the potential risk in animal productions.  相似文献   

14.
A chiral liquid chromatography/mass spectrometry (LC/MS) bioanalytical procedure has been developed for the analysis of the antimalaric agent Fenozan B07 in dog plasma. Normal-phase chromatography involving a phenylcarbamate derivative of cellulose coated on silica gel as the chiral stationary phase was used to resolve (-)-(S,S)-B07 from (+)-(R,R)-B07. The enantiomers were detected by a mass spectrometer equipped with an atmospheric pressure chemical ionization (APCI) interface operated in the negative ion mode. A mass spectrum, characterized by a base peak of m/z 285, was obtained for each enantiomer. The m/z 285 ion was very specific for the analysis of both enantiomers in the plasma. The selected ion monitoring analysis of the plasma samples was therefore performed at m/z 285 for quantitative purposes. The enantiomers were extracted from the plasma in a basic medium and purified by solid-phase extraction using a hydrophilic-lipophilic balanced sorbent. A lower limit of quantification of 2 ng/mL in plasma was achieved for both enantiomers. The quantitative procedure reported in this study was highly specific and sensitive, and was validated according to the FDA guidance on bioanalytical method validation.  相似文献   

15.
Benalaxyl (BX), methyl‐N‐phenylacetyl‐N‐2,6‐xylyl alaninate, is a potent acylanilide fungicide and consist of a pair of enantiomers. The stereoselective metabolism of BX was investigated in rat and rabbit microsomes in vitro. The degradation kinetics and the enantiomer fraction (EF) were determined using normal high‐performance liquid chromatography with diode array detection and a cellulose‐tris‐(3,5‐dimethylphenylcarbamate)‐based chiral stationary phase (CDMPC‐CSP). The t1/2 of (?)‐R‐BX and (+)‐S‐BX in rat liver microsomes were 22.35 and 10.66 min of rac‐BX and 5.42 and 4.03 of BX enantiomers. However, the t1/2 of (?)‐R‐BX and (+)‐S‐BX in rabbit liver microsomes were 11.75 and 15.26 min of rac‐BX and 5.66 and 9.63 of BX enantiomers. The consequence was consistent with the stereoselective toxicokinetics of BX in vitro. There was no chiral inversion from the (?)‐R‐BX to (+)‐S‐BX or inversion from (+)‐S‐BX to (?)‐R‐BX in both rabbit and rat microsomes. These results suggested metabolism of BX enantiomers was stereoselective in rat and rabbit liver microsomes. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Myclobutanil, (RS)‐2‐(4‐chlorophenyl)‐2‐(1H‐1, 2, 4‐triazol‐1‐ylmethyl)hexanenitrile is a broad‐spectrum systemic triazole fungicide which consists of a pair of enantiomers. The stereoselective degradation of myclobutanil was investigated in rat liver microsomes. The concentrations of myclobutanil enantiomers were determined by high‐performance liquid chromatography (HPLC) with a cellulose‐tris‐(3,5‐dimethyl‐phenylcarbamate)‐based chiral stationary phase (CDMPC‐CSP) under reversed phase condition. The t1/2 of (+)‐myclobutanil is 8.49 min, while the t1/2 of (–)‐myclobutanil is 96.27 min. Such consequences clearly indicated that the degradation of myclobutanil in rat liver microsomes was stereoselective and the degradation rate of (+)‐myclobutanil was much faster than (–)‐myclobutanil. In addition, significant differences between two enantiomers were also observed in enzyme kinetic parameters. The Vmax of (+)‐myclobutanil was about 4‐fold of (–)‐myclobutanil and the CLint of (+)‐myclobutanil was three times as much as (–)‐myclobutanil after incubation in rat liver microsomes. Corresponding consequences may shed light on the environmental and ecological risk assessment for myclobutanil and may improve human health. Chirality 26:51–55, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Wang Z  Wang S  Zhu F  Chen Z  Yu L  Zeng S 《Chirality》2012,24(7):526-531
Besifloxacin hydrochloride is a novel chiral broad-spectrum fluoroquinolone developed for the treatment of bacterial conjunctivitis. R-besifloxacin hydrochloride is used in clinics as a consequence of its higher antibacterial activity. To establish an enantiomeric impurity determination method, some chiral stationary phases (CSPs) were screened. Besifloxacin enantiomers can be separated to a certain extent on Chiral CD-Ph (Shiseido Co., Ltd., Japan), Chiral AGP, and Crownpak CR (+) (Daicel Chemical IND., Ltd., Japan). However, the selectivity and sensitivity were both unsatisfactory on these three CSPs. Therefore, Chiral AGP, Chiral CD-Ph, and Crownpak CR (+) were not used in the enantiomeric impurity determination of besifloxacin hydrochloride. The separation of enantiomers of besifloxacin was further performed using a precolumn derivatization chiral high-performance liquid chromatography method. 2,3,4,6-Tetra-O-acetyl-beta-D-glucopyranosyl isothiocyanate was used as the derivatization reagent. Besifloxacin enantiomer derivates were well separated on a C(18) column (250 × 4.6 mm, 5 μm) with a mobile phase that consisted of methanol-KH(2)PO(4) buffer solution (20 mM; pH 3.0) (50:50, v/v). Selectivity, sensitivity, linearity, accuracy, precision, stability, and robustness of this method were all satisfied with the method validation requirement. The method was suitable for the quality control of enantiomeric impurity in besifloxacin hydrochloride.  相似文献   

18.
Due to our interest in drugs with a glutarimide structure, we reinvestigated the stereoselectivity of the in vitro biotransformation of the chiral hypnotic-sedative drug glutethimide. Glutethimide enantiomers were separated on a preparative scale by HPLC on cellulose tris(4-methylbenzoate) as chiral stationary phase. The enantiometric purity was higher than 99%. A reversed-phase HPLC method was developed to determine the metabolites of glutethimide. After incubations with rat liver microsomes both enantiomers formed 5-hydroxyglutethimide as the main metabolite, as well as additional metabolites, of which some were formed stereoselectivity. Mass spectrometry of the unknown metabolites indicated a hydroxylation in the ethyl side chain for two of the metabolites. A third metabolite was tentatively identified as desethylgutethimide.  相似文献   

19.
A high performance liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed for the simultaneous determination of each of esmolol's enantiomers at the 25–1000 ng/ml concentrations observed in human plasma upon intravenous administration of this rapidly metabolized beta-adrenergic receptor blocking agent. Alternatively, a high performance liquid chromatography (HPLC) UV detection method has been developed for the simultaneous determination of each of the enantiomers for esmolol's metabolite which, in turn, achieve 2.5–50 μg/ml concentrations in human plasma. Utilizing chiral columns, these methods do not require a precolumn asymmetric derivatization step. Linearity in all cases was >0.99. Precision and accuracy at all but the lowest concentrations were within ±6% for the esmolol enantiomers and within ±2.5% for the esmolol metabolite enantiomers. These values should be suitable for performing thorough pharmacokinetic studies for all of the stereoisomers of this prototypical soft drug and its corresponding metabolite.  相似文献   

20.
Malathion is a widely used chiral phosphorus insecticide, which has a more toxic chiral metabolite malaoxon. In this work, the enantiomers of malathion and malaoxon were separated by high-performance liquid chromatography-mass/mass (HPLC-MS/MS) with chiral columns using acetonitrile/water or methanol/water as mobile phase, and the chromatographic conditions were optimized. Based on the chiral separation, the chiral residue analysis methods for the enantiomers in soil, fruit, and vegetables were set up. Two pairs of the enantiomers were better separated on CHIRALPAK IC chiral column, and baseline simultaneous separations of malathion and malaoxon enantiomers were achieved with acetonitrile/water (40/60, v/v) as mobile phase at a flow rate of 0.5 mL/min. The elution orders were −/+ for both malathion and malaoxon measured by an optical rotation detector. The chiral residue analysis in soil, fruit, and vegetables was validated by linearity, recovery, precision, limit of detection (LOD), and limit of quantification (LOQ). The LODs and LOQs for the enantiomers of malathion were 1 μg/kg and 3–5 μg/kg and 0.08 μg/kg and 0.20–0.25 μg/kg for malaoxon enantiomers. Good linear calibration curves for each enantiomer in the matrices were obtained within the concentration range of 0.02–12 mg/L. The mean recoveries of the enantiomers of malathion and malaoxon ranged from 82.26% to 109.04%, with RSDs of 0.71–8.63%.The results confirmed that this method was capable of simultaneously determining the residue of malathion and malaoxon in food and environmental matrix on an enantiomeric level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号