首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Polydnaviridae (PDV), including the Bracovirus (BV) and Ichnovirus genera, originated from the integration of unrelated viruses in the genomes of two parasitoid wasp lineages, in a remarkable example of convergent evolution. Functionally active PDVs represent the most compelling evolutionary success among endogenous viral elements (EVEs). BV evolved from the domestication by braconid wasps of a nudivirus 100 Ma. The nudivirus genome has become an EVE involved in BV particle production but is not encapsidated. Instead, BV genomes have co-opted virulence genes, used by the wasps to control the immunity and development of their hosts. Gene transfers and duplications have shaped BV genomes, now encoding hundreds of genes. Phylogenomic studies suggest that BVs contribute largely to wasp diversification and adaptation to their hosts. A genome evolution model explains how multidirectional wasp adaptation to different host species could have fostered PDV genome extension. Integrative studies linking ecological data on the wasp to genomic analyses should provide new insights into the adaptive role of particular BV genes. Forthcoming genomic advances should also indicate if the associations between endoparasitoid wasps and symbiotic viruses evolved because of their particularly intimate interactions with their hosts, or if similar domesticated EVEs could be uncovered in other parasites.  相似文献   

2.
Extant genomes are the result of repeated duplications and subsequent divergence of primordial genes that assembled the genomes of the first living beings. Increased information on genome maps of different species is revealing conserved syntenies among different vertebrate taxa, which allow to trace back the history of current chromosomes. However, inferring neighboring relationships between genes of more primitive genomes has proven to be very difficult. Most often, the ancestral arrangements of genes have been lost by multiple histories of internal duplications, chromosomal breaks, and large-scale genomic rearrangements. Here we describe a gene arrangement of nonrelated genes that seems to have endured evolution, at least from the separation of the two major clades of bilateria: deuterostomia and protostomia, approximately 1 billion years ago. In its simplest conception, this gene cluster, named EVG, groups the genes for a glucose transporter, an enolase, and a vesicle-associated membrane protein (VAMP). EVG might represent the evolutionary remnants of the gene organization of an ancient bilaterian genome.  相似文献   

3.
4.
Abstract

Despite the rapid mutational change that is typical of positive-strand RNA viruses, enzymes mediating the replication and expression of virus genomes contain arrays of conserved sequence motifs. Proteins with such motifs include RNA-dependent RNA polymerase, putative RNA helicase, chymotrypsin-like and papain-like proteases, and methyltransferases. The genes for these proteins form partially conserved modules in large subsets of viruses. A concept of the virus genome as a relatively evolutionarily stable “core” of housekeeping genes accompanied by a much more flexible “shell” consisting mostly of genes coding for virion components and various accessory proteins is discussed. Shuffling of the “shell” genes including genome reorganization and recombination between remote groups of viruses is considered to be one of the major factors of virus evolution.

Multiple alignments for the conserved viral proteins were constructed and used to generate the respective phylogenetic trees. Based primarily on the tentative phylogeny for the RNA-dependent RNA polymerase, which is the only universally conserved protein of positive-strand RNA viruses, three large classes of viruses, each consisting of distinct smaller divisions, were delineated. A strong correlation was observed between this grouping and the tentative phylogenies for the other conserved proteins as well as the arrangement of genes encoding these proteins in the virus genome. A comparable correlation with the polymerase phylogeny was not found for genes encoding virion components or for genome expression strategies. It is surmised that several types of arrangement of the “shell” genes as well as basic mechanisms of expression could have evolved independently in different evolutionary lineages.

The grouping revealed by phylogenetic analysis may provide the basis for revision of virus classification, and phylogenetic taxonomy of positive-strand RNA viruses is outlined. Some of the phylogenetically derived divisions of positive-strand RNA viruses also include double-stranded RNA viruses, indicating that in certain cases the type of genome nucleic acid may not be a reliable taxonomic criterion for viruses.

Hypothetical evolutionary scenarios for positive-strand RNA viruses are proposed. It is hypothesized that all positive-strand RNA viruses and some related double-stranded RNA viruses could have evolved from a common ancestor virus that contained genes for RNA-dependent RNA polymerase, a chymotrypsin-related protease that also functioned as the capsid protein, and possibly an RNA helicase.  相似文献   

5.
6.
Mammalian G protein-coupled receptor (GPCR) genes are characterised by a large proportion of intronless genes or a lower density of introns when compared with GPCRs of invertebrates. It is unclear which mechanisms have influenced intron density in this protein family, which is one of the largest in the mammalian genomes. We used a combination of Hidden Markov Models (HMM) and BLAST searches to establish the comprehensive repertoire of Rhodopsin GPCRs from seven species and performed overall alignments and phylogenetic analysis using the maximum parsimony method for over 1400 receptors in 12 subgroups. We identified 14 different Ancestral Receptor Groups (ARGs) that have members in both vertebrate and invertebrate species. We found that there exists a remarkable difference in the intron density among ancestral and new Rhodopsin GPCRs. The intron density among ARGs members was more than 3.5-fold higher than that within non-ARG members and more than 2-fold higher when considering only the 7TM region. This suggests that the new GPCR genes have been predominantly formed intronless while the ancestral receptors likely accumulated introns during their evolution. Many of the intron positions found in mammalian ARG receptor sequences were found to be present in orthologue invertebrate receptors suggesting that these intron positions are ancient. This analysis also revealed that one intron position is much more frequent than any other position and it is common for a number of phylogenetically different Rhodopsin GPCR groups. This intron position lies within a functionally important, conserved, DRY motif which may form a proto-splice site that could contribute to positional intron insertion. Moreover, we have found that other receptor motifs, similar to DRY, also contain introns between the second and third nucleotide of the arginine codon which also forms a proto-splice site. Our analysis presents compelling evidence that there was not a major loss of introns in mammalian GPCRs and formation of new GPCRs among mammals explains why these have fewer introns compared to invertebrate GPCRs. We also discuss and speculate about the possible role of different RNA- and DNA-based mechanisms of intron insertion and loss.  相似文献   

7.
Banana streak virus (BSV) is a plant dsDNA pararetrovirus (family Caulimoviridae, genus badnavirus). Although integration is not an essential step in the BSV replication cycle, the nuclear genome of banana (Musa sp.) contains BSV endogenous pararetrovirus sequences (BSV EPRVs). Some BSV EPRVs are infectious by reconstituting a functional viral genome. Recent studies revealed a large molecular diversity of episomal BSV viruses (i.e., nonintegrated) while others focused on BSV EPRV sequences only. In this study, the evolutionary history of badnavirus integration in banana was inferred from phylogenetic relationships between BSV and BSV EPRVs. The relative evolution rates and selective pressures (dN/dS ratio) were also compared between endogenous and episomal viral sequences. At least 27 recent independent integration events occurred after the divergence of three banana species, indicating that viral integration is a recent and frequent phenomenon. Relaxation of selective pressure on badnaviral sequences that experienced neutral evolution after integration in the plant genome was recorded. Additionally, a significant decrease (35%) in the EPRV evolution rate was observed compared to BSV, reflecting the difference in the evolution rate between episomal dsDNA viruses and plant genome. The comparison of our results with the evolution rate of the Musa genome and other reverse-transcribing viruses suggests that EPRVs play an active role in episomal BSV diversity and evolution.  相似文献   

8.
9.
Manipulation of viral genomes is essential for studying viral gene function and utilizing viruses for therapy. Several techniques for viral genome engineering have been developed. Homologous recombination in virus‐infected cells has traditionally been used to edit viral genomes; however, the frequency of the expected recombination is quite low. Alternatively, large viral genomes have been edited using a bacterial artificial chromosome (BAC) plasmid system. However, cloning of large viral genomes into BAC plasmids is both laborious and time‐consuming. In addition, because it is possible for insertion into the viral genome of drug selection markers or parts of BAC plasmids to affect viral function, artificial genes sometimes need to be removed from edited viruses. Herpes simplex virus (HSV), a common DNA virus with a genome length of 152 kbp, causes labialis, genital herpes and encephalitis. Mutant HSV is a candidate for oncotherapy, in which HSV is used to kill tumor cells. In this study, the clustered regularly interspaced short palindromic repeat‐Cas9 system was used to very efficiently engineer HSV without inserting artificial genes into viral genomes. Not only gene‐ablated HSV but also gene knock‐in HSV were generated using this method. Furthermore, selection with phenotypes of edited genes promotes the isolation efficiencies of expectedly mutated viral clones. Because our method can be applied to other DNA viruses such as Epstein–Barr virus, cytomegaloviruses, vaccinia virus and baculovirus, our system will be useful for studying various types of viruses, including clinical isolates.  相似文献   

10.
Complete genome sequence of the shrimp white spot bacilliform virus.   总被引:76,自引:0,他引:76       下载免费PDF全文
F Yang  J He  X Lin  Q Li  D Pan  X Zhang  X Xu 《Journal of virology》2001,75(23):11811-11820
We report the first complete genome sequence of a marine invertebrate virus. White spot bacilliform virus (WSBV; or white spot syndrome virus) is a major shrimp pathogen with a high mortality rate and a wide host range. Its double-stranded circular DNA genome of 305,107 bp contains 181 open reading frames (ORFs). Nine homologous regions containing 47 repeated minifragments that include direct repeats, atypical inverted repeat sequences, and imperfect palindromes were identified. This is the largest animal virus that has been completely sequenced. Although WSBV is morphologically similar to insect baculovirus, the two viruses are not detectably related at the amino acid level. Rather, some WSBV genes are more homologous to eukaryotic genes than viral genes. In fact, sequence analysis indicates that WSBV differs from all known viruses, although a few genes display a weak homology to herpesvirus genes. Most of the ORFs encode proteins that bear no homology to any known proteins, either suggesting that WSBV represents a novel class of viruses or perhaps implying a significant evolutionary distance between marine and terrestrial viruses. The most unique feature of WSBV is the presence of an intact collagen gene, a gene encoding an extracellular matrix protein of animal cells that has never been found in any viruses. Determination of the genome of WSBV will facilitate a better understanding of the molecular mechanism underlying the pathogenesis of the WSBV virus and will also provide useful information concerning the evolution and divergence of marine and terrestrial animal viruses at the molecular level.  相似文献   

11.
In order to determine the homologous regions shared by the cultivated Brassica genomes, linkage maps of the diploid cultivated B. rapa (A genome, n = 10), B. nigra (B genome, n = 8) and B. oleracea (C genome, n = 9), were compared. We found intergenomic conserved regions but with extensitve reordering among the genomes. Eighteen linkage groups from all three species could be associated on the basis of homologous segments based on at least three common markers. Intragenomic homologous conservation was also observed for some of the chromosomes of the A, B and C genomes. A possible chromosome phylogenetic pathway based on an ancestral genome of at least five, and no more than seven chromosomes, was drawn from the chromosomal inter-relationships observed. These results demonstrate that extensive duplication and rearrangement have been involved in the formation of the Brassica genomes from a smaller ancestral genome.  相似文献   

12.
Viruses evolve rapidly and continuously threaten animal health and economy, posing a great demand for rapid and efficient genome editing technologies to study virulence mechanism and develop effective vaccine. We present a highly efficient viral genome manipulation method using CRISPR-guided cytidine deaminase. We cloned pseudorabies virus genome into bacterial artificial chromosome, and used CRISPR-guided cytidine deaminase to directly convert cytidine(C) to uridine(U) to induce premature stop mutagenesis in viral genes. The editing efficiencies were 100%. Comprehensive bioinformatic analysis revealed that a large number of editable sites exist in pseudorabies virus(PRV) genomes. Notably, in our study viral genome exists as a plasmid in E. coli, suggesting that this method is virus species-independent. This application of base-editing provided an alternative approach to generate mutant virus and might accelerate study on virulence and vaccine development.  相似文献   

13.
In the life cycle of plus-strand RNA viruses, the genome initially serves as the template for both translation of the viral replicase gene and synthesis of minus-strand RNA and is ultimately packaged into progeny virions. These various processes must be properly balanced to ensure efficient viral proliferation. To achieve this, higher-order RNA structures near the termini of a variety of RNA virus genomes are thought to play a key role in regulating the specificity and efficiency of viral RNA synthesis. In this study, we have analyzed the signals for minus-strand RNA synthesis in the prototype of the arterivirus family, equine arteritis virus (EAV). Using site-directed mutagenesis and an EAV reverse genetics system, we have demonstrated that a stem-loop structure near the 3' terminus of the EAV genome is required for RNA synthesis. We have also obtained evidence for an essential pseudoknot interaction between the loop region of this stem-loop structure and an upstream hairpin residing in the gene encoding the nucleocapsid protein. We propose that the formation of this pseudoknot interaction may constitute a molecular switch that could regulate the specificity or timing of viral RNA synthesis. This hypothesis is supported by the fact that phylogenetic analysis predicted the formation of similar pseudoknot interactions near the 3' end of all known arterivirus genomes, suggesting that this interaction has been conserved in evolution.  相似文献   

14.
The origin, evolution and relationships of viruses are all fascinating topics. Current thinking in these areas is strongly influenced by the tailed double-stranded (ds) DNA bacteriophages. These viruses have mosaic genomes produced by genetic exchange and so new natural isolates are quite dissimilar to each other, and to laboratory strains. Consequently, they are not amenable to study by current tools for phylogenetic analysis. Less attention has been paid to the Tectiviridae family, which embraces icosahedral dsDNA bacterial viruses with an internal lipid membrane. It includes viruses, such as PRD1, that infect Gram-negative bacteria, as well as viruses like Bam35 with Gram-positive hosts. Although PRD1 and Bam35 have closely related virion morphology and genome organization, they have no detectable sequence similarity. There is strong evidence that the Bam35 coat protein has the "double-barrel trimer" arrangement of PRD1 that was first observed in adenovirus and is predicted to occur in other viruses with large facets. It is very likely that a single ancestral virus gave rise to this very large group of viruses. The unprecedented degree of conservation recently observed for two Bam35-like tectiviruses made it important to investigate those infecting Gram-negative bacteria. The DNA sequences for six PRD1-like isolates (PRD1, PR3, PR4, PR5, L17, PR772) have now been determined. Remarkably, these bacteriophages, isolated at distinctly different dates and global locations, have almost identical genomes. The discovery of almost invariant genomes for the two main Tectiviridae groups contrasts sharply with the situation in the tailed dsDNA bacteriophages. Notably, it permits a sequence analysis of the isolates revealing that the tectiviral proteins can be dissected into a slowly evolving group descended from the ancestor, the viral self, and a more rapidly changing group reflecting interactions with the host.  相似文献   

15.
Comparing chromosomal gene order in two or more related species is an important approach to studying the forces that guide genome organization and evolution. Linked clusters of similar genes found in related genomes are often used to support arguments of evolutionary relatedness or functional selection. However, as the gene order and the gene complement of sister genomes diverge progressively due to large scale rearrangements, horizontal gene transfer, gene duplication and gene loss, it becomes increasingly difficult to determine whether observed similarities in local genomic structure are indeed remnants of common ancestral gene order, or are merely coincidences. A rigorous comparative genomics requires principled methods for distinguishing chance commonalities, within or between genomes, from genuine historical or functional relationships. In this paper, we construct tests for significant groupings against null hypotheses of random gene order, taking incomplete clusters, multiple genomes, and gene families into account. We consider both the significance of individual clusters of prespecified genes and the overall degree of clustering in whole genomes.  相似文献   

16.
Tailed double-stranded DNA viruses (order Caudovirales) represent the dominant morphotype among viruses infecting bacteria. Analysis and comparison of complete genome sequences of tailed bacterial viruses provided insights into their origin and evolution. Structural and genomic studies have unexpectedly revealed that tailed bacterial viruses are evolutionarily related to eukaryotic herpesviruses. Organisms from the third domain of life, Archaea, are also infected by viruses that, in their overall morphology, resemble tailed viruses of bacteria. However, high-resolution structural information is currently unavailable for any of these viruses, and only a few complete genomes have been sequenced so far. Here we identified nine proviruses that are clearly related to tailed bacterial viruses and integrated into chromosomes of species belonging to four different taxonomic orders of the Archaea. This more than doubled the number of genome sequences available for comparative studies. Our analyses indicate that highly mosaic tailed archaeal virus genomes evolve by homologous and illegitimate recombination with genomes of other viruses, by diversification, and by acquisition of cellular genes. Comparative genomics of these viruses and related proviruses revealed a set of conserved genes encoding putative proteins similar to virion assembly and maturation, as well as genome packaging proteins of tailed bacterial viruses and herpesviruses. Furthermore, fold prediction and structural modeling experiments suggest that the major capsid proteins of tailed archaeal viruses adopt the same topology as the corresponding proteins of tailed bacterial viruses and eukaryotic herpesviruses. Data presented in this study strongly support the hypothesis that tailed viruses infecting archaea share a common ancestry with tailed bacterial viruses and herpesviruses.  相似文献   

17.
Nine different regions totaling 9.7 Mb of the 4.02 Gb Aegilops tauschii genome were sequenced using the Sanger sequencing technology and compared with orthologous Brachypodium distachyon, Oryza sativa (rice), and Sorghum bicolor (sorghum) genomic sequences. The ancestral gene content in these regions was inferred and used to estimate gene deletion and gene duplication rates along each branch of the phylogenetic tree relating the four species. The total gene number in the extant Ae. tauschii genome was estimated to be 36,371. The gene deletion and gene duplication rates and total gene numbers in the four genomes were used to estimate the total gene number in each node of the phylogenetic tree. The common ancestor of the Brachypodieae and Triticeae lineages was estimated to have had 28,558 genes, and the common ancestor of the Panicoideae, Ehrhartoideae, and Pooideae subfamilies was estimated to have had 27,152 or 28,350 genes, depending on the ancestral gene scenario. Relative to the Brachypodieae and Triticeae common ancestor, the gene number was reduced in B. distachyon by 3,026 genes and increased in Ae. tauschii by 7,813 genes. The sum of gene deletion and gene duplication rates, which reflects the rate of gene synteny loss, was correlated with the rate of structural chromosome rearrangements and was highest in the Ae. tauschii lineage and lowest in the rice lineage. The high rate of gene space evolution in the Ae. tauschii lineage accounts for the fact that, contrary to the expectations, the level of synteny between the phylogenetically more related Ae. tauschii and B. distachyon genomes is similar to the level of synteny between the Ae. tauschii genome and the genomes of the less related rice and sorghum. The ratio of gene duplication to gene deletion rates in these four grass species closely parallels both the total number of genes in a species and the overall genome size. Because the overall genome size is to a large extent a function of the repeated sequence content in a genome, we suggest that the amount and activity of repeated sequences are important factors determining the number of genes in a genome.  相似文献   

18.
Relationships between viruses and their human host are traditionally described from the point of view taking into consideration hosts as victims of viral aggression, which results in infectious diseases. However, these relations are in fact two-sided and involve modifications of both the virus and host genomes. Mutations that accumulate in the populations of viruses and hosts may provide them advantages such as the ability to overcome defense barriers of host cells or to create more efficient barriers to deal with the attack of the viral agent. One of the most common ways of reinforcing anti-viral barriers is the horizontal transfer of viral genes into the host genome. Within the host genome, these genes may be modified and extensively expressed to compete with viral copies and inhibit the synthesis of their products or modulate their functions in other ways. This review summarizes the available data on the horizontal gene transfer between viral and human genomes and discusses related problems.  相似文献   

19.
It is well known that the dinucleotide CpG is under-represented in the genomic DNA of many vertebrates. This is commonly thought to be due to the methylation of cytosine residues in this dinucleotide and the corresponding high rate of deamination of 5-methycytosine, which lowers the frequency of this dinucleotide in DNA. Surprisingly, many single-stranded RNA viruses that replicate in these vertebrate hosts also have a very low presence of CpG dinucleotides in their genomes. Viruses are obligate intracellular parasites and the evolution of a virus is inexorably linked to the nature and fate of its host. One therefore expects that virus and host genomes should have common features. In this work, we compare evolutionary patterns in the genomes of ssRNA viruses and their hosts. In particular, we have analyzed dinucleotide patterns and found that the same patterns are pervasively over- or under-represented in many RNA viruses and their hosts suggesting that many RNA viruses evolve by mimicking some of the features of their host's genes (DNA) and likely also their corresponding mRNAs. When a virus crosses a species barrier into a different host, the pressure to replicate, survive and adapt, leaves a footprint in dinucleotide frequencies. For instance, since human genes seem to be under higher pressure to eliminate CpG dinucleotide motifs than avian genes, this pressure might be reflected in the genomes of human viruses (DNA and RNA viruses) when compared to those of the same viruses replicating in avian hosts. To test this idea we have analyzed the evolution of the influenza virus since 1918. We find that the influenza A virus, which originated from an avian reservoir and has been replicating in humans over many generations, evolves in a direction strongly selected to reduce the frequency of CpG dinucleotides in its genome. Consistent with this observation, we find that the influenza B virus, which has spent much more time in the human population, has adapted to its human host and exhibits an extremely low CpG dinucleotide content. We believe that these observations directly show that the evolution of RNA viral genomes can be shaped by pressures observed in the host genome. As a possible explanation, we suggest that the strong selection pressures acting on these RNA viruses are most likely related to the innate immune response and to nucleotide motifs in the host DNA and RNAs.  相似文献   

20.
We report here the complete sequence of the mitochondrial genome of the brown alga Laminaria digitata (Hudson) J.V. Lamouroux. L. digitata mtDNA is a circular molecule of 38,007?bp (64.9% A?+?T), encoding 63 genes and 3 ORFs and with only 6.7% of non-coding sequences. Based on gene content and order, its overall organization is very similar to that of the mitochondrial genome of Pylaiella littoralis, another brown alga belonging to a different sublineage of the Phaeophyceae. In particular, the two genomes share unusual features, which hence could be unique to brown algae among the heterokont lineage, namely the presence of a rn5 gene, a short nad11 gene, a cox2 gene with a large in-frame insertion and α-proteobacterial-like promoter sequences. On the other hand, L. digitata lacks the sequences which are thought to have been transmitted horizontally to the P. littoralis genome, that is, the group-II introns in the rnl and cox1 genes, and it features only traces of an ancestral T7-like RNA polymerase. Distance phylogenetic trees inferred from concatenated mitochondrial genes confirm that speciation of brown algae occurred recently compared to other heterokonts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号