首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Etsuo Kokufuta 《Bioseparation》1998,7(4-5):241-252
Polyelectrolyte-coated microcapsules can be prepared by adsorption of polyions onto microcapsule surfaces in aqueous solutions under appropriate pH and ionic conditions. The resulting polyelectrolyte-coated microcapsules provide a promising tool for studying pH-induced configurational changes in polyions adsorbed onto hydrophobic membranes (capsule walls). An interesting application of polyelectrolyte-coated microcapsules is the pH-sensitive on/off control of microencapsulated enzyme reactions through alterations in the substrate permeability of the capsule wall by pH-conditioned configurational changes in the adsorbed polyion layer. This paper presents an overview of pH-induced conformational changes of polyelectrolytes in solutions, preparation of polyelectrolyte-coated microcapsules with an immobilized enzyme, and on/off control of the respective enzyme reactions by pH adjustment. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The structural characteristics and the activity of a hyperthermophilic endoglucanase were investigated upon adsorption. Silica (hydrophilic) and Teflon (hydrophobic) surfaces were selected for the study. The materials were specially designed so that the interaction of the particles with light was negligible, and the enzyme conformation in the adsorbed state was monitored in situ. The adsorption isotherms were determined, and the adsorbed endoglucanase was studied using a number of spectroscopic techniques, enzymatic activity tests, and dynamic light scattering. Experiments were performed at pH values below, at, and above the isoelectric point of the enzyme. It was shown that the enzyme adsorbed on the hydrophobic surface of Teflon with higher affinity as compared to the hydrophilic silica nanoparticles. In all cases, adsorption was followed by (slight) changes in the secondary structure resulting in decreased beta-structural content. The changes were more profound upon adsorption on Teflon. The adsorbed enzyme remained active in the adsorbed state in spite of the structural changes induced when interacting with the surfaces.  相似文献   

3.
Malate dehydrogenase was adsorbed onto monomolecular lipid films, using a multicompartment trough. The quantity of adsorbed protein and its enzymatic activity were studied with monolayers of various electrical charge densities and subphases of various electrolyte compositions. A closely packed layer of enzyme molecules was adsorbed onto negatively charged films, whereas considerably less protein was adsorbed onto neutral and positively charged monolayers. Electrolytes reduce the quantity of adsorbed protein. The adsorption was found to be irreversible even at high ionic strength. When adsorbed to uncharged lipid films the enzyme is nearly inactive, whereas negatively charged lipid headgroups enhance the specific activity of the enzyme.  相似文献   

4.
A kinetic framework is developed to describe enzyme activity and stability in two-phase liquid-liquid systems. In particular, the model is applied to the enzymatic production of benzaldehyde from mandelonitrile by Prunus amygdalus hydroxynitrile lyase (pa-Hnl) adsorbed at the diisopropyl ether (DIPE)/aqueous buffer interface (pH = 5.5). We quantitatively describe our previously obtained experimental kinetic results (Hickel et al., 1999; 2001), and we successfully account for the aqueous-phase enzyme concentration dependence of product formation rates and the observed reaction rates at early times. Multilayer growth explains the early time reversibility of enzyme adsorption at the DIPE/buffer interface observed by both enzyme-activity and dynamic-interfacial-tension washout experiments that replace the aqueous enzyme solution with a buffer solution. The postulated explanation for the unusual stability of pa-Hnl adsorbed at the DIPE/buffer interface is attributed to a two-layer adsorption mechanism. In the first layer, slow conformational change from the native state leads to irreversible attachment and partial loss of catalytic activity. In the second layer, pa-Hnl is reversibly adsorbed without loss in catalytic activity. The measured catalytic activity is the combined effect of the deactivation kinetics of the first layer and of the adsorption kinetics of each layer. For the specific case of pa-Hnl adsorbed at the DIPE/buffer interface, this combined effect is nearly constant for several hours resulting in no apparent loss of catalytic activity. Our proposed kinetic model can be extended to other interfacially active enzymes and other organic solvents. Finally, we indicate how interfacial-tension lag times provide a powerful tool for rational solvent selection and enzyme engineering.  相似文献   

5.
H Quiquampoix 《Biochimie》1987,69(6-7):765-771
A previous study has shown the effect of individual mineral surfaces on the activity of sweet almond beta-D-glucosidase. We now consider more complex situations likely to occur in soil, such as adsorption onto mixtures of different mineral surfaces, and the effect on enzyme activity of mineral surfaces with organic coatings. The effect of the order of addition of the minerals to enzyme suggests that the rate of adsorption is limited by the diffusion of the protein towards the interface and is not influenced by the magnitude of attractive forces between the protein and the surface. Adsorption is found to be quasi-irreversible. A study of the effect of artificial coatings of montmorillonite on enzyme activity led to the conclusion that an exchange of the enzyme with molecules of the coating occurs. This exchange is dependent upon the adsorption energy of the molecules of the coating and the electric charge of beta-D-glucosidase. This model is used for the interpretation of the effect of natural clay-humic complexes on enzyme activity.  相似文献   

6.
Common-type acylphosphatase is a small cytosolic enzyme whose catalytic properties and three-dimensional structure are known in detail. All the acidic residues of the enzyme have been replaced by noncharged residues in order to assess their contributions to the conformational stability of acylphosphatase. The enzymatic activity parameters and the conformational free energy of each mutant were determined by enzymatic activity assays and chemically induced unfolding, respectively. Some mutants exhibit very similar conformational stability, DeltaG(H2O), and specific activity values as compared to the wild-type enzyme. By contrast, six mutants show a significant reduction of conformational stability and two mutants are more stable than the wild-type protein. Although none of the mutated acidic residues is directly involved in the catalytic mechanism of the enzyme, our results indicate that mutations of residues located on the surface of the protein are responsible for a structural distortion which propagate up to the active site. We found a good correlation between the free energy of unfolding and the enzymatic activity of acylphosphatase. This suggests that enzymatic activity measurements can provide valuable indications on the conformational stability of acylphosphatase mutants, provided the mutated residue lies far apart from the active site. Moreover, our results indicate that the distortion of hydrogen bonds rather than the loss of electrostatic interactions, contributes to the decrease of the conformational stability of the protein.  相似文献   

7.
Binding of ligands to the catalytic center of mammalian triosephosphate isomerase (TPI) induces a conformational change(s) that enhances the specific deamidation of Asn71 at the subunit interface. Deamidation initiates dissociation and degradation of the enzyme in vivo and in vitro. We have utilized circular dichroism spectroscopy to examine the conformational changes in the enzyme upon ligand binding and subunit dissociation/reassociation. Native TPI from rabbit, chicken, and yeast exhibit similar spectra at pH 7.5, but are substantially different at pH 9.5. Covalent reaction of the active site Glu 165 with the substrate analogue 3-chloroacetol phosphate results in a conformational change (decrease in beta-sheet) which is similar in TPI from all three species. Reversible dissociation of the dimeric enzyme in guanidine followed by dialysis, although permitting full recovery of catalytic activity, results in refolded dimers with decreased alpha-helix. These conformational changes induced by ligand binding, pH, or reversible dissociation explain, in part, the differences in the chemical and physical properties of the enzyme from the three species at alkaline pH, the increased lability of the dissociated/reassociated enzyme, and corroborate 31P NMR data on substrate-induced conformational changes. These studies also support the concept of molecular wear and tear whereby ligand binding at the catalytic center induces conformational changes that increase the probability of covalent modification and ultimate degradation of the protein.  相似文献   

8.
pH is one of the key parameters that affect the stability and function of proteins. We have studied the effect of pH on the pyridoxal-5'-phosphate-dependent enzyme phosphoserine aminotransferase produced by the facultative alkaliphile Bacillus circulans ssp. alkalophilus using thermodynamic and crystallographic analysis. Enzymatic activity assay showed that the enzyme has maximum activity at pH 9.0 and relative activity less than 10% at pH 7.0. Differential scanning calorimetry and circular dichroism experiments revealed variations in the stability and denaturation profiles of the enzyme at different pHs. Most importantly, release of pyridoxal-5'-phosphate and protein thermal denaturation were found to occur simultaneously at pH 6.0 in contrast to pH 8.5 where denaturation preceded cofactor's release by approximately 3 degrees C. To correlate the observed differences in thermal denaturation with structural features, the crystal structure of phosphoserine aminotransferase was determined at 1.2 and 1.5 A resolution at two different pHs (8.5 and 4.6, respectively). Analysis of the two structures revealed changes in the vicinity of the active site and in surface residues. A conformational change in a loop involved in substrate binding at the entrance of the active site has been identified upon pH change. Moreover, the number of intramolecular ion pairs was found reduced in the pH 4.6 structure. Taken together, the presented kinetics, thermal denaturation, and crystallographic data demonstrate a potential role of the active site in unfolding and suggest that subtle but structurally significant conformational rearrangements are involved in the stability and integrity of phosphoserine aminotransferase in response to pH changes.  相似文献   

9.
AIMS: To investigate the formation of fructosyltransferase (FTF) complexes on hydroxyapatite (HA) surfaces. METHODS AND RESULTS: Cell-free extracellular FTF from Streptococcus mutans, purified from hyperproducing strain V-1995, was adsorbed onto HA and then eluted from the surface by means of a concentration gradient of potassium phosphate buffer. The FTF monomers loaded onto HA formed, upon adsorption, various complexes ranging from 200 to 700 kDa as demonstrated using native PAGE. All these complexes exhibited enzymatic activity. CONCLUSIONS: Adsorption of FTF onto HA induced the formation of stable and enzymatically-active complexes. SIGNIFICANCE AND IMPACT OF THE STUDY: The formation of these complexes may explain the change of FTF catalytic properties after adsorption onto HA. This study is another step in determining the properties of a-cellular constituents of the oral biofilm.  相似文献   

10.
Whey proteins adsorbed on fat globule surfaces during emulsification with coconut oil at pH 3 ~ 9 were examined. The amount of proteins adsorbed on the fat surface was dependent on the pH during emulsification. At any pH examined here, however, tightly-adsorbed proteins which were not extracted from the fat surface with urea or guanidine-HCl were 2 ~ 3 mg/m2. Marked selectivities in the adsorption of individual whey proteins were observed at any pH. No correlation between the adsorbabilities and the surface hydrophobicities of individual whey proteins was observed. Whey proteins adsorbed on the emulsified fat were much more easily digested with proteases compared to the native whey proteins, indicating that conformational changes of whey proteins occurred at the fat surface. The results suggested that conformational properties, such as flexibility of the structure, of whey proteins are important in the adsorption and possibly affect their emulsifying ability.  相似文献   

11.
Myoglobin has been immobilized onto different ordered mesoporous silicates. The effect of the pH on the adsorption, leaching and activity was studied. The results showed that the maximum amount of protein was adsorbed at a pH 6.5, just below the protein isoelectric point (7–7.3). There was no effect of increasing ionic strength on the adsorption profile at different pH values. The adsorption is rationalized in terms of local electrostatic forces acting between the enzyme and the silica surface as well as hydrophobic interactions close to the protein isoelectric point, whereas at low pH the global charges give rise to protein–protein repulsion and at high pH enzyme–silica repulsion. Higher amounts of immobilized myoglobin were leached at a pH 4, while lower amounts were leached at pH 6.5. The catalytic activity of myoglobin immobilized onto SBA-15 showed optimal activity at a pH 6.5 in comparison to a pH of 5 for the free form.  相似文献   

12.
T Tsujita  H L Brockman 《Biochemistry》1987,26(25):8423-8429
The chemical specificity of the adsorption of porcine pancreatic carboxyl ester lipase to pure lipid surfaces was examined. Adsorption of native and catalytically inactivated enzyme was measured at the argon-buffer interface by using lipid films near the point of collapse. Protein adsorbed readily to films of triolein, 1,3-diolein, methyl oleate, oleonitrile, oleyl alcohol, and 13,16-docosadienoic acid. However, recovery of enzyme activity was variable. These differences and the changes in surface pressure accompanying adsorption indicated the occurrence of enzyme denaturation at the interface. Denaturation was controlled largely by surface free energy but showed some chemical specificity at high surface pressures. Adsorption of protein to the lipids was comparable when measured under either equilibrium or initial rate conditions. Together with surface pressure changes that accompany adsorption, the data indicate a relative lack of specificity for the enzyme-surface interaction. Adsorption to 13,16-docosadienoic acid and 1,3-diolein obeyed the Langmuir adsorption isotherm. Dissociation constants ranged from 10 to 50 nM, depending on enzyme form, ionic strength, and pH. With both lipids, a monolayer of enzyme was adsorbed at saturation. In contrast to these results, adsorption of enzyme activity and protein to films of 1-palmitoyl-2-oleoyl-phosphatidylcholine was less than or equal to 5% of that observed with the other lipids under all conditions. Comparison of rate constants for adsorption to 13,16-docosadienoic and 1,3-diolein as a function of subphase pH indicated a marked dependence on the ionization state of the fatty acid. Overall, the data suggest that the presence of zwitterionic and anionic lipids may regulate the interaction of the enzyme with substrate-containing surfaces in vivo.  相似文献   

13.
In order to determine the effect of various soil components on the activity of proteins, we monitored the fluorescence and the enzymatic activity of, respectively, green fluorescent protein (GFP) and β-glucosidase adsorbed on fine soil particles. We also monitored the activity of these proteins in the presence of components that are representative of soil colloids: a montmorillonite clay, goethite and organic matter extracted from soil. Upon adsorption on clay and goethite, GFP lost its fluorescence properties while β-glucosidase suffered only a partial loss of its catalytic activity. Extractable organic matter had an inactivating role on GFP while it did not cause inactivation of β-glucosidase. When GFP and β-glucosidase adsorbed on particles from natural soil samples, their behaviour was consistent with the behaviour observed for these proteins in the presence of the separate components, suggesting that the macroscopic activity of proteins adsorbed on soil particles corresponds to an average of the activities of proteins adsorbed on a mixture of surfaces. The monitoring of the proteins on soil particles with different organic matter contents has also shown that organic matter can have different effects (protecting or inactivating) on different proteins.  相似文献   

14.
The effect of fibronectin protein (Fn) coating onto polysaccharide layers of hyaluronic acid (Hyal) and its sulfated derivative (HyalS) on fibroblast cell adhesion was analyzed. The Hyal or HyalS were coated and grafted on the glass substrate by a photolithographic method. The Fn coating was achieved by two different routes: the immobilization of Fn by covalent bond to the polysaccharide layers and the simple adsorption of Fn onto Hyal and HyalS surfaces. AFM, SEM, and ATR-FTIR techniques were used for the chemical and topographical characterization of the surfaces. According to AFM and SEM data, the surface topography was dependent on the method used to cover the polysaccharide layers with the protein. ATR-FTIR analysis supplied information about the rearrangement of Fn after the interaction (adsorption or binding) with the Hyal and the HyalS. The conformational changes of the Fn were minimal when it was simply adsorbed on HyalS surfaces and larger once bound, whereas on the Hyal layer the protein underwent a bigger conformational change once adsorbed and covalently grafted. Then, the biological characterization was carried out by analyzing the human diploid skin fibroblasts adhesion on these surfaces. The morphology of fibroblasts was evaluated by SEM, whereas the dynamics of fibroblasts movement were recorded by a time-lapse system. Cell variations in area, perimeter, and length were analyzed at 2, 4, and 6 h. It was found that the addition of Fn (covalently bound or merely adsorbed) was fundamental in the promotion of fibroblasts adhesion and spreading. The greatest adhesion occurred onto HyalS layers covered by the adsorbed Fn.  相似文献   

15.
草酸对土壤胶体与矿物表面酶的吸附及活性影响   总被引:2,自引:0,他引:2  
采用平衡批处理法,研究了模拟根系分泌物--草酸溶液的浓度、pH对酸性磷酸酶在针铁矿、高岭石及黄棕壤和砖红壤胶体(<2μm)上的吸附及比活的影响.结果表明,针铁矿对磷酸酶的吸附量受草酸浓度的影响较小,其它供试胶体对蛋白的吸附量随草酸浓度的升高,一般表现为先急剧降低(0~5mmol·L-1),之后逐渐升高到与对照相当或略低.这与草酸在土壤胶体和矿物表面的配位形态及其对载体表面的电荷改变、溶解有关.草酸体系中,供试胶体对磷酸酶的吸附顺序为针铁矿>黄棕壤>高岭石>砖红壤.酶在草酸体系中的最大吸附点位一般出现在蛋白的等电点(IEP)和供试胶体的PZC之间,而酶在草酸体系中被固定到供试胶体上之后,其最适比活点随胶体类型的不同而没有变化或有所高移.  相似文献   

16.
Malate dehydrogenase was adsorbed onto monomolecular lipid films, using a multicompartment trough. The quantity of adsorbed protein and its enzymatic activity were studied with monolayers of various electrical charge densities and subphases of various electrolyte compositions. A closely packed layer of enzyme molecules was adsorbed onto negatively charged films, whereas considerably less protein was adsorbed onto neutral and positively charged monolayers. Electrolytes reduce the quantity of adsorbed protein. The adsorption was found to be irreversible even at high ionic strength. When adsorbed to uncharged lipid films the enzyme is nearly inactive, whereas negatively charged lipid headgroups enhance the specific activity of the enzyme.  相似文献   

17.
It was shown that one of the cellulase components, i.e. cellobiase, can be adsorbed on cellulose surface with the concomitant decrease of activity (by 10 times and more). The specific activity of the adsorbed cellobiase depends on the enzyme concentration in the adsorption layer and is increased with the increase in the surface concentration of cellobiase. It was found that variations in the amount of non-soluble cellulose and the corresponding changes in cellobiase activity in the system (as a result of the adsorption) can lead to a certain alteration in the shape of the kinetic curves for formation of intermediate cellobiose, which in its turn controls the rate of formation of the end product, i.e. glucose. Thus, the substrate surface causes a regulatory effect on the rate and kinetic mechanism of the enzymatic conversion of cellulose to glucose due to the adsorption effects.  相似文献   

18.
《Biophysical journal》2022,121(11):2027-2034
Single-molecule-enzymology (SME) methods have enabled the observation of heterogeneous catalytic activities within a single enzyme population. Heterogeneous activity is hypothesized to originate from conformational changes in the enzyme that result from changes in the local environment leading to catalytically active substates. Here, we use SME to investigate the mechanisms of heterogeneous activity exhibited by tissue nonspecific alkaline phosphatase (TNSALP), which reveals two subpopulations with different catalytic activities. We show the effect of pH and temperature on the distribution of TNSALP activity and confirm the presence of two subpopulations attributed to half- and fully active TNSALP substates. We provide mechanistic insight about protein structure using molecular dynamic simulations and show pH- and temperature-dependent conformational transitions that corroborate experimentally observed changes in TNSALP activity. These results show the utility of SME to understand heterogeneous enzyme activity and demonstrate a simple approach using pH and temperature to tune catalytic activity within an enzyme population.  相似文献   

19.
The effect of denaturants such as urea, sodium dodecylsulphate (SDS), guanidinium hydrochloride (Gu.HCl) on the structure of enzyme 3-hydroxybenzoate-6-hydroxylase was studied using intrinsic fluorescence and far and near-UV-CD spectroscopic techniques. Also, activity profiles of the enzyme, as a function of increasing concentrations of denaturants were studied. The far-UV CD spectrum of the enzyme did not show appreciable alterations in the presence of urea, SDS or Gu.HCl, thereby suggesting that the protein does not undergo gross conformational changes in its alpha-helical secondary structure. The treatment of enzyme with 2 M urea resulted in almost complete loss of catalytic activity, accompanied by the reduction of emission fluorescence of enzyme. Similarly, treatment with 0.01% SDS also caused almost complete loss of activity and quenching of enzyme fluorescence as well as a red shift in the emission peak. In addition, reduction in the intensity of near-UV-CD spectrum, especially at 280 nm was observed. About 70% of the activity was lost by treatment with 20 mM Gu.HCl, accompanied by quenching of intrinsic fluorescence of the enzyme. The change in intrinsic fluorescence of the enzyme in the presence of 5 mM-100 mM Gu.HCI could be correlated to progressive loss of catalytic activity. Thus, intrinsic fluorescence (due to tryptophan residues) could be used as an effective probe to provide an insight into the relation between the activity and subtle conformational changes of the enzyme. The results suggested that denaturants caused very slight conformational changes in the enzyme that perturbed the microenvironment of aromatic amino acid residues such as tryptophan accompanied by reduction or loss of catalytic activity.  相似文献   

20.
Glucose oxidase, horseradish peroxidase, xanthine oxidase, and carbonic anhydrase have been adsorbed to colloidal gold sols with good retention of enzymatic activity. Adsorption of xanthine oxidase on colloidal gold did not result in a change in enzymatic activity as determined by active site titration with the stoichiometric inhibitor pterin aldehyde and by measurement of the apparent Michaelis constant (K'(M)). Gold sols with adsorbed glucose oxidase, horseradish peroxidase, and xanthine oxidase have also been electrodeposited onto conducting matrices (platinum gauze and/or glassy carbon) to make enzyme electrodes. These electrodes retained enzymatic activity and, more importantly, gave an electrochemical response to the enzyme substrate in the presence of an appropriate electron transfer mediator. Our results demonstrate the utility of colloidal gold as a biocompatible enzyme imobilization matrix suitable for the fabrication of enzyme electrodes. (c) 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号