首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutaredoxins (Grxs) are small oxidoreductases that reduce disulphide bonds or protein-glutathione mixed disulphides. More than 30 distinct grx genes are expressed in higher plants, but little is currently known concerning their functional diversity. This study presents biochemical and spectroscopic evidence for incorporation of a [2Fe-2S] cluster in two heterologously expressed chloroplastic Grxs, GrxS14 and GrxS16, and in vitro cysteine desulphurase-mediated assembly of an identical [2Fe-2S] cluster in apo-GrxS14. These Grxs possess the same monothiol CGFS active site as yeast Grx5 and both were able to complement a yeast grx5 mutant defective in Fe-S cluster assembly. In vitro kinetic studies monitored by CD spectroscopy indicate that [2Fe-2S] clusters on GrxS14 are rapidly and quantitatively transferred to apo chloroplast ferredoxin. These data demonstrate that chloroplast CGFS Grxs have the potential to function as scaffold proteins for the assembly of [2Fe-2S] clusters that can be transferred intact to physiologically relevant acceptor proteins. Alternatively, they may function in the storage and/or delivery of preformed Fe-S clusters or in the regulation of the chloroplastic Fe-S cluster assembly machinery.  相似文献   

2.
Holo glutaredoxin (Grx) is a homo-dimer that bridges a [2Fe-2S] cluster with two glutathione (GSH) ligands. In this study, both monothiol and dithiol holo Grxs are found capable of transferring their iron-sulfur (FeS) cluster to an apo ferredoxin (Fdx) through direct interaction, regardless of FeS cluster stability in holo Grxs. The ligand GSH molecules in holo Grxs are unstable and can be exchanged with free GSH, which inhibits the FeS cluster transfer from holo Grxs to apo Fdx. This phenomenon suggests a novel role of GSH in FeS cluster trafficking.  相似文献   

3.
Members of the monothiol glutaredoxin family and members of the BolA-like protein family have recently emerged as specific interacting partners involved in iron-sulfur protein maturation and redox regulation pathways. It is known that human mitochondrial BOLA1 and BOLA3 form [2Fe-2S] cluster-bridged dimeric heterocomplexes with the monothiol glutaredoxin GRX5. The structure and cluster coordination of the two [2Fe-2S] heterocomplexes as well as their molecular function are, however, not defined yet. Experimentally-driven structural models of the two [2Fe-2S] cluster-bridged dimeric heterocomplexes, the relative stability of the two complexes and the redox properties of the [2Fe-2S] cluster bound to these complexes are here presented on the basis of UV/vis, CD, EPR and NMR spectroscopies and computational protein-protein docking. While the BOLA1-GRX5 complex coordinates a reduced, Rieske-type [2Fe-2S]1+ cluster, an oxidized, ferredoxin-like [2Fe-2S]2+ cluster is present in the BOLA3-GRX5 complex. The [2Fe-2S] BOLA1-GRX5 complex is preferentially formed over the [2Fe-2S] BOLA3-GRX5 complex, as a result of a higher cluster binding affinity. All these observed differences provide the first indications discriminating the molecular function of the two [2Fe-2S] heterocomplexes.  相似文献   

4.
5.
Cheng NH  Zhang W  Chen WQ  Jin J  Cui X  Butte NF  Chan L  Hirschi KD 《The FEBS journal》2011,278(14):2525-2539
Glutaredoxins (Grxs) have been shown to be critical in maintaining redox homeostasis in living cells. Recently, an emerging subgroup of Grxs with one cysteine residue in the putative active motif (monothiol Grxs) has been identified. However, the biological and physiological functions of this group of proteins have not been well characterized. Here, we characterize a mammalian monothiol Grx (Grx3, also termed TXNL2/PICOT) with high similarity to yeast ScGrx3/ScGrx4. In yeast expression assays, mammalian Grx3s were localized to the nuclei and able to rescue growth defects of grx3grx4 cells. Furthermore, Grx3 inhibited iron accumulation in yeast grx3gxr4 cells and suppressed the sensitivity of mutant cells to exogenous oxidants. In mice, Grx3 mRNA was ubiquitously expressed in developing embryos, adult tissues and organs, and was induced during oxidative stress. Mouse embryos absent of Grx3 grew smaller with morphological defects and eventually died at 12.5 days of gestation. Analysis in mouse embryonic fibroblasts revealed that Grx3(-/-) cells had impaired growth and cell cycle progression at the G(2) /M phase, whereas the DNA replication during the S phase was not affected by Grx3 deletion. Furthermore, Grx3-knockdown HeLa cells displayed a significant delay in mitotic exit and had a higher percentage of binucleated cells. Therefore, our findings suggest that the mammalian Grx3 has conserved functions in protecting cells against oxidative stress and deletion of Grx3 in mice causes early embryonic lethality which could be due to defective cell cycle progression during late mitosis.  相似文献   

6.
7.
8.
Two novel monothiol glutaredoxins from yeast (ScGrx6 and ScGrx7) were identified and analyzed in vitro. Both proteins are highly suited to study structure-function relationships of glutaredoxin subclasses because they differ from all monothiol glutaredoxins investigated so far and share features with dithiol glutaredoxins. ScGrx6 and ScGrx7 are, for example, the first monothiol glutaredoxins showing an activity in the standard glutaredoxin transhydrogenase assay with glutathione and bis-(2-hydroxyethyl)-disulfide. Steady-state kinetics of ScGrx7 with glutathione and cysteine-glutathione disulfide are similar to dithiol glutaredoxins and are consistent with a ping-pong mechanism. In contrast to most other glutaredoxins, ScGrx7 and ScGrx6 are able to dimerize noncovalently. Furthermore, ScGrx6 is the first monothiol glutaredoxin shown to directly bind an iron-sulfur cluster. The cluster can be stabilized by reduced glutathione, and its loss results in the conversion of tetramers to dimers. ScGrx7 does not bind metal ions but can be covalently modified in Escherichia coli leading to a mass shift of 1090 +/- 14 Da. What might be the structural requirements that cause the different properties? We hypothesize that a G(S/T)x3 insertion between a highly conserved lysine residue and the active site cysteine residue could be responsible for the abrogated transhydrogenase activity of many monothiol glutaredoxins. In addition, we suggest an active site motif without proline residues that could lead to the identification of further metal binding glutaredoxins. Such different properties presumably reflect diverse functions in vivo and might therefore explain why there are at least seven glutaredoxins in yeast.  相似文献   

9.
We describe the insertion of an iron-sulfur center into a designed four alpha-helix model protein. The model protein was re-engineered by introducing four cysteine ligands required for the coordination of the mulinucleate cluster into positions in the main-chain directly analogous to the domain predicted to ligand the interpeptide [4Fe-4S (S-cys)4] cluster, Fx, from PsaA and PsaB of the Photosystem I reaction center. This was achieved by inserting the sequence, CDGPGRGGTC, which is conserved in PsaA and PsaB, into interhelical loops 1 and 3 of the four alpha-helix model. The holoprotein was characterized spectroscopically after insertion of the iron-sulfur center in vitro. EPR spectra confirmed the cluster is a [4Fe-4S] type, indicating that the cysteine thiolate ligands were positioned as designed. The midpoint potential of the iron-sulfur center in the model holoprotein was determined via redox titration and shown to be -422 mV (pH 8.3, n = 1). The results support proposals advanced for the structure of the domain of the [4Fe-4S] Fx cluster in Photosystem I based upon sequence predictions and molecular modeling. We suggest that the lower potential of the Fx cluster is most likely due to factors in the protein environment of Fx rather than the identity of the residues proximal to the coordinating ligands.  相似文献   

10.
Biotin synthase (BioB) converts dethiobiotin into biotin by inserting a sulfur atom between C6 and C9 of dethiobiotin in an S-adenosylmethionine (SAM)-dependent reaction. The as-purified recombinant BioB from Escherichia coli is a homodimeric molecule containing one [2Fe-2S](2+) cluster per monomer. It is inactive in vitro without the addition of exogenous Fe. Anaerobic reconstitution of the as-purified [2Fe-2S]-containing BioB with Fe(2+) and S(2)(-) produces a form of BioB that contains approximately one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per monomer ([2Fe-2S]/[4Fe-4S] BioB). In the absence of added Fe, the [2Fe-2S]/[4Fe-4S] BioB is active and can produce up to approximately 0.7 equiv of biotin per monomer. To better define the roles of the Fe-S clusters in the BioB reaction, M?ssbauer and electron paramagnetic resonance (EPR) spectroscopy have been used to monitor the states of the Fe-S clusters during the conversion of dethiobiotin to biotin. The results show that the [4Fe-4S](2+) cluster is stable during the reaction and present in the SAM-bound form, supporting the current consensus that the functional role of the [4Fe-4S] cluster is to bind SAM and facilitate the reductive cleavage of SAM to generate the catalytically essential 5'-deoxyadenosyl radical. The results also demonstrate that approximately (2)/(3) of the [2Fe-2S] clusters are degraded by the end of the turnover experiment (24 h at 25 degrees C). A transient species with spectroscopic properties consistent with a [2Fe-2S](+) cluster is observed during turnover, suggesting that the degradation of the [2Fe-2S](2+) cluster is initiated by reduction of the cluster. This observed degradation of the [2Fe-2S] cluster during biotin formation is consistent with the proposed sacrificial S-donating function of the [2Fe-2S] cluster put forth by Jarrett and co-workers (Ugulava et al. (2001) Biochemistry 40, 8352-8358). Interestingly, degradation of the [2Fe-2S](2+) cluster was found not to parallel biotin formation. The initial decay rate of the [2Fe-2S](2+) cluster is about 1 order of magnitude faster than the initial formation rate of biotin, indicating that if the [2Fe-2S] cluster is the immediate S donor for biotin synthesis, insertion of S into dethiobiotin would not be the rate-limiting step. Alternatively, the [2Fe-2S] cluster may not be the immediate S donor. Instead, degradation of the [2Fe-2S] cluster may generate a protein-bound polysulfide or persulfide that serves as the immediate S donor for biotin production.  相似文献   

11.
The reversible dehydration of (R)-2-hydroxyglutaryl-CoA to (E)-glutaconyl-CoA is catalysed by the combined action of two oxygen-sensitive enzymes from Acidaminococcus fermentans, the homodimeric component A (2 x 27 kDa) and the heterodimeric component D (45 and 50 kDa). Component A was purified to homogeneity (specific activity 25-30 s-1) using streptavidin-tag affinity chromatography. In the presence of 5 mM MgCl2 and 1 mM ADP or ATP, component A could be stabilized and stored for 4-5 days at 4 degrees C without loss of activity. The purification of component D from A. fermentans was also improved as indicated by the 1.5-fold higher specific activity (15 s-1). The content of 1.0 riboflavin 5'-phosphate (FMN) per heterodimer could be confirmed, whereas in contrast to an earlier report only trace amounts of riboflavin (< 0.1) could be detected. Each active component contains an oxygen sensitive diamagnetic [4Fe-4S]2+ cluster as revealed by UV-visible, EPR and M?ssbauer spectroscopy. Reduction of the [4Fe-4S]2+ cluster in component A with dithionite yields a paramagnetic [4Fe-4S]1+ cluster with the unusual electron spin ground state S = 3/2 as indicated by strong absorption type EPR signals at high g values, g = 4-6. Spin-Hamiltonian simulations of the EPR spectra and of magnetic M?ssbauer spectra were performed to determine the zero field splitting (ZFS) parameters of the cluster and the 57Fe hyperfine interaction parameters. The electronic properties of the [4Fe-4S]2+, 1+ clusters of component A are similar to those of the nitrogenase iron protein in which a [4Fe-4S]2+ cluster bridges the two subunits of the homodimeric protein. Under air component A looses its activity within seconds due to irreversible degradation of its [4Fe-4S]2+ cluster to a [2Fe-2S]2+ cluster. The [4Fe-4S]2+ cluster of component D could not be reduced to a [4Fe-4S]1+ cluster, even with excess of Ti(III)citrate or dithionite. Exposure to oxic conditions slowly converts the diamagnetic [4Fe-4S]2+ cluster of component D to a paramagnetic [3Fe-4S]+ cluster concomitant with loss of activity (30% within 24 h at 4 degrees C).  相似文献   

12.
Glutaredoxins (GRXs) are small, ubiquitous, multifunctional, heat-stable and glutathione-dependent thiol-disulphide oxidoreductases, classified under thioredoxin-fold superfamily. In the green lineage, GRXs constitute a complex family of proteins. Based on their active site, GRXs are classified into two subfamilies: dithiol and monothiol. Monothiol GRXs contain 'CGFS' as a redox active motif and assist in maintaining redox state and iron homeostasis within the cell. Using RACE strategy, a full length cDNA of chickpea (Cicer arietinum) glutaredoxin 3 (CarGRX3) was cloned and sequenced. The cDNA contains open reading frame of 537 bp encoding 178 amino acids and exhibits features of other known 'CGFS' type GRXs. Based on the multiple sequence alignment among CarGRX3 and monothiol GRXs of other photosynthetic organisms, the characteristic motif (KGX4PXCGFSX([29/30/32])KX4WPTXPQX4GX3GGXDI) with 18 invariant residues was observed. The proposed structure of CarGRX3 was compared with structurally resolved monothiol GRXs of other organisms. The CarGRX3 and nearest Arabidopsis homolog (AtGRXcp) shares 76% sequence identity which was reflected by their 3D-structure conservation. The structure of chickpea monothiol GRX (CarGRX3) coordinates glutathione ligated [2Fe-2S] cluster in a homodimeric form, highlighting the structural basis for iron-sulfur cluster (ISC) assembly and delivery to acceptor proteins. The present study on CarGRX3 model highlighted the utility of the theoretical approaches to understand complex biological phenomena such as glutathione docking and incorporation of GSH-ligated [2Fe-2S] cluster.  相似文献   

13.
Desulfovibrio africanus ferredoxin III is a protein (Mr 6585) containing one [3Fe-4S]1+,0 and one [4Fe-4S]2+,1+ core cluster when aerobically isolated. The amino acid sequence contains only seven cysteine residues, the minimum required to ligand these two clusters. Cyclic voltammery by means of direct electrochemistry at a pyrolytic-graphite-'edge' electrode promoted by neomycin shows that, when reduced, the [3Fe-4S]0 centre reacts rapidly with Fe(II) ion to form a [4Fe-4S]2+ cluster. The latter, which can be reduced at a redox potential similar to that of the other [4Fe-4S] cluster, must include non-thiolate ligation. We propose that the carboxylate side chain of aspartic acid-14 is the most likely candidate, since this amino acid occupies the position of a cysteine residue in the sequence typical of an 8Fe ferredoxin. The magnetic properties at liquid-He temperature of this novel cluster, studied by low-temperature magnetic-c.d. and e.p.r. spectroscopy, are diamagnetic in the oxidized state and S = 3/2 in the one-electron-reduced state. This cluster provides a plausible model for the ligation states of the [4Fe-4S]1+ core in the S = 3/2 cluster of the iron protein of nitrogenase and in Bacillus subtilis glutamine:phosphoribosyl pyrophosphate amidotransferase.  相似文献   

14.
Human glutaredoxin 3 (Glrx3) is an essential [2Fe-2S]-binding protein with ill-defined roles in immune cell response, embryogenesis, cancer cell growth, and regulation of cardiac hypertrophy. Similar to other members of the CGFS monothiol glutaredoxin (Grx) family, human Glrx3 forms homodimers bridged by two [2Fe-2S] clusters that are ligated by the conserved CGFS motifs and glutathione (GSH). We recently demonstrated that the yeast homologues of human Glrx3 and the yeast BolA-like protein Fra2 form [2Fe-2S]-bridged heterodimers that play a key role in signaling intracellular iron availability. Herein, we provide biophysical and biochemical evidence that the two tandem Grx-like domains in human Glrx3 form similar [2Fe-2S]-bridged complexes with human BolA2. UV-visible absorption and circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic analyses of recombinant [2Fe-2S] Glrx3 homodimers and [2Fe-2S] Glrx3-BolA2 complexes indicate that the Fe-S coordination environments in these complexes are virtually identical to those of the analogous complexes in yeast. Furthermore, we demonstrate that apo BolA2 binds to each Grx domain in the [2Fe-2S] Glrx3 homodimer forming a [2Fe-2S] BolA2-Glrx3 heterotrimer. Taken together, these results suggest that the unusual [2Fe-2S]-bridging Grx-BolA interaction is conserved in higher eukaryotes and may play a role in signaling cellular iron status in humans.  相似文献   

15.
Li H  Outten CE 《Biochemistry》2012,51(22):4377-4389
Monothiol glutaredoxins (Grxs) with a signature CGFS active site and BolA-like proteins have recently emerged as novel players in iron homeostasis. Elegant genetic and biochemical studies examining the functional and physical interactions of CGFS Grxs in the fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe have unveiled their essential roles in intracellular iron signaling, iron trafficking, and the maturation of Fe-S cluster proteins. Biophysical and biochemical analyses of the [2Fe-2S] bridging interaction between CGFS Grxs and a BolA-like protein in S. cerevisiae provided the first molecular-level understanding of the iron regulation mechanism in this model eukaryote and established the ubiquitous CGFS Grxs and BolA-like proteins as novel Fe-S cluster-binding regulatory partners. Parallel studies focused on Escherichia coli and human homologues for CGFS Grxs and BolA-like proteins have supported the studies in yeast and provided additional clues about their involvement in cellular iron metabolism. Herein, we review recent progress in uncovering the cellular and molecular mechanisms by which CGFS Grxs and BolA-like proteins help regulate iron metabolism in both eukaryotic and prokaryotic organisms.  相似文献   

16.
Human GLRX5 (glutaredoxin 5) is an evolutionarily conserved thiol-disulfide oxidoreductase that has a direct role in the maintenance of normal cytosolic and mitochondrial iron homoeostasis, and its expression affects haem biosynthesis and erythropoiesis. We have crystallized the human GLRX5 bound to two [2Fe-2S] clusters and four GSH molecules. The crystal structure revealed a tetrameric organization with the [2Fe-2S] clusters buried in the interior and shielded from the solvent by the conserved β1-α2 loop, Phe?? and the GSH molecules. Each [2Fe-2S] cluster is ligated by the N-terminal activesite cysteine (Cys??) thiols contributed by two protomers and two cysteine thiols from two GSH. The two subunits co-ordinating the cluster are in a more extended conformation compared with iron-sulfur-bound human GLRX2, and the intersubunit interactions are more extensive and involve conserved residues among monothiol GLRXs. Gel-filtration chromatography and analytical ultracentrifugation support a tetrameric organization of holo-GLRX5, whereas the apoprotein is monomeric. MS analyses revealed glutathionylation of the cysteine residues in the absence of the [2Fe-2S] cluster, which would protect them from further oxidation and possibly facilitate cluster transfer/acceptance. Apo-GLRX5 reduced glutathione mixed disulfides with a rate 100 times lower than did GLRX2 and was active as a glutathione-dependent electron donor for mammalian ribonucleotide reductase.  相似文献   

17.
Unlike thioredoxins, glutaredoxins are involved in iron-sulfur cluster assembly and in reduction of specific disulfides (i.e. protein-glutathione adducts), and thus they are also important redox regulators of chloroplast metabolism. Using GFP fusion, AtGrxC5 isoform, present exclusively in Brassicaceae, was shown to be localized in chloroplasts. A comparison of the biochemical, structural, and spectroscopic properties of Arabidopsis GrxC5 (WCSYC active site) with poplar GrxS12 (WCSYS active site), a chloroplastic paralog, indicated that, contrary to the solely apomonomeric GrxS12 isoform, AtGrxC5 exists as two forms when expressed in Escherichia coli. The monomeric apoprotein possesses deglutathionylation activity mediating the recycling of plastidial methionine sulfoxide reductase B1 and peroxiredoxin IIE, whereas the dimeric holoprotein incorporates a [2Fe-2S] cluster. Site-directed mutagenesis experiments and resolution of the x-ray crystal structure of AtGrxC5 in its holoform revealed that, although not involved in its ligation, the presence of the second active site cysteine (Cys(32)) is required for cluster formation. In addition, thiol titrations, fluorescence measurements, and mass spectrometry analyses showed that, despite the presence of a dithiol active site, AtGrxC5 does not form any inter- or intramolecular disulfide bond and that its activity exclusively relies on a monothiol mechanism.  相似文献   

18.
The NADH-quinone oxidoreductase from Paracoccus denitrificans consists of 14 subunits (Nqo1-14) and contains one FMN and eight iron-sulfur clusters. The Nqo3 subunit possesses fully conserved 11 Cys and 1 His in its N-terminal region and is considered to harbor three iron-sulfur clusters; however, only one binuclear (N1b) and one tetranuclear (N4) were previously identified. In this study, the Nqo3 subunit containing 1x[2Fe-2S] and 2x[4Fe-4S] clusters was expressed in Escherichia coli. The second [4Fe-4S](1+) cluster is detected by EPR spectroscopy below 6 K, exhibiting very fast spin relaxation. The resolved EPR spectrum of this cluster is broad and nearly axial. The subunit exhibits an absorption-type EPR signal around g approximately 5 region below 6 K, most likely arising from an S = 3/2 ground state of the fast-relaxing [4Fe-4S](1+) species. The substitution of the conserved His(106) with Cys specifically affected the fast-relaxing [4Fe-4S](1+) cluster, suggesting that this cluster is coordinated by His(106). In the cholate-treated NDH-1-enriched P. denitrificans membranes, we observed EPR signals arising from a [4Fe-4S] cluster below 6 K, exhibiting properties similar to those of cluster N5 detected in other complex I/NDH-1 and of the fast-relaxing [4Fe-4S](1+) cluster in the expressed Nqo3 subunit. Hence, we propose that the His-coordinated [4Fe-4S] cluster corresponds to cluster N5.  相似文献   

19.
Glutathione-coordinated [2Fe-2S] complex is a non-protein-bound [2Fe-2S] cluster that is capable of reconstituting the human iron-sulfur cluster scaffold protein IscU. This complex demonstrates physiologically relevant solution chemistry and is a viable substrate for iron-sulfur cluster transport by Atm1p exporter protein. Herein, we report on some of the possible functional and physiological roles for this novel [2Fe-2S](GS4) complex in iron-sulfur cluster biosynthesis and quantitatively characterize its role in the broader network of Fe–S cluster transfer reactions. UV–vis and circular dichroism spectroscopy have been used in kinetic studies to determine second-order rate constants for [2Fe-2S] cluster transfer from [2Fe-2S](GS4) complex to acceptor proteins, such as human IscU, Schizosaccharomyces pombe Isa1, human and yeast glutaredoxins (human Grx2 and Saccharomyces cerevisiae Grx3), and human ferredoxins. Second-order rate constants for cluster extraction from these holo proteins were also determined by varying the concentration of glutathione, and a likely common mechanism for cluster uptake was determined by kinetic analysis. The results indicate that the [2Fe-2S](GS4) complex is stable under physiological conditions, and demonstrates reversible cluster exchange with a wide range of Fe–S cluster proteins, thereby supporting a possible physiological role for such centers.  相似文献   

20.
Boll M  Fuchs G  Tilley G  Armstrong FA  Lowe DJ 《Biochemistry》2000,39(16):4929-4938
A reduced ferredoxin serves as the natural electron donor for key enzymes of the anaerobic aromatic metabolism in the denitrifying bacterium Thauera aromatica. It contains two [4Fe-4S] clusters and belongs to the Chromatium vinosum type of ferredoxins (CvFd) which differ from the "clostridial" type by a six-amino acid insertion between two successive cysteines and a C-terminal alpha-helical amino acid extension. The electrochemical and electron paramagnetic resonance (EPR) spectroscopic properties of both [4Fe-4S] clusters from T. aromatica ferredoxin have been investigated using cyclic voltammetry and multifrequency EPR. Results obtained from cyclic voltammetry revealed the presence of two redox transitions at -431 and -587 mV versus SHE. X-band EPR spectra recorded at potentials where only one cluster was reduced (greater than -500 mV) indicated the presence of a spin mixture of S = (3)/(2) and (5)/(2) spin states of one reduced [4Fe-4S] cluster. No typical S = (1)/(2) EPR signals were observed. At lower potentials (less than -500 mV), the more negative [4Fe-4S] cluster displayed Q-, X-, and S-band EPR spectra at 20 K which were typical of a single S = (1)/(2) low-spin [4Fe-4S] cluster with a g(av) of 1.94. However, when the temperature was decreased stepwise to 4 K, a magnetic interaction between the two clusters gradually became observable as a temperature-dependent splitting of both the S = (1)/(2) and S = (5)/(2) EPR signals. At potentials where both clusters were reduced, additional low-field EPR signals were observed which can only be assigned to spin states with spins of >(5)/(2). The results that were obtained establish that the common typical amino acid sequence features of CvFd-type ferredoxins determine the unusual electrochemical properties of the [4Fe-4S] clusters. The observation of different spin states in T. aromatica ferredoxin is novel among CvFd-type ferredoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号