共查询到20条相似文献,搜索用时 15 毫秒
1.
de Bruyne M Warr CG 《BioEssays : news and reviews in molecular, cellular and developmental biology》2006,28(1):23-34
Animals use their chemosensory systems to detect and discriminate among chemical cues in the environment. Remarkable progress has recently been made in our knowledge of the molecular and cellular basis of chemosensory perception in insects, based largely on studies in Drosophila. This progress has been possible due to the identification of gene families for olfactory and gustatory receptors, the use of electro-physiological recording techniques on sensory neurons, the multitude of genetic manipulations that are available in this species, and insights from several insect model systems. Recent studies show that the superfamily of chemoreceptor proteins represent the essential elements in chemosensory coding, endowing chemosensory neurons with their abilities to respond to specific sets of odorants, tastants or pheromones. Investigating how insects detect chemicals in their environment can show us how receptor protein structures relate to ligand binding, how nervous systems process complex information, and how chemosensory systems and genes evolve. 相似文献
2.
Figs and fig wasps form one of the best known examples of species-specific mutualism and coevolution. Recent experiments and observations have led to a better understanding of the evolutionary processes involved in the origin and maintenance of species interactions. The observed fine-tuned traits involve not only coevolution but also selection acting on only one of the partners. Furthermore, some of the 'fine-tuned traits' appear to be be preadaptions - traits that existed before the mutalism was establised. 相似文献
3.
Origin and evolution of polydnaviruses by symbiogenesis of insect DNA viruses in endoparasitic wasps 总被引:7,自引:0,他引:7
During oviposition, many endoparasitic wasps inject virus-like particles into their insect hosts that enable these parasitoids to evade or directly suppress their hosts' immune system, especially encapsulation by hemocytes. These particles are defined as virions that belong to viruses of the two genera that comprise the family Polydnaviridae, bracoviruses (genus Bracovirus) transmitted by braconid wasps, and ichnoviruses (genus Ichnovirus) transmitted by ichneumonid wasps. Structurally, bracovirus virions resemble nudivirus and baculovirus virions (family Baculoviridae), and ichnovirus virions resemble those of ascoviruses (family Ascoviridae). Whereas nudiviruses, baculoviruses and ascoviruses replicate their DNA and produce progeny virions, polydnavirus DNA is integrated into and replicated from the wasp genome, which also directs virion synthesis. The structural similarity of polydnavirus virions to those of viruses that attack the wasps' lepidopteran hosts, along with polydnavirus transmission and replication biology, suggest that these viruses evolved from insect DNA viruses by symbiogenesis, the same process by which mitochondia and chloroplasts evolved from bacteria. Molecular evidence supporting this hypothesis comes from similarities among structural proteins of ascoviruses and the Campoletis sonorensis ichnovirus. Implications of this hypothesis are that polydnaviruses evolved from viruses, but are no longer viruses, and that DNA packaged into polydnavirus virions is not viral genomic DNA per se, but rather wasp genomic DNA consisting primarily of wasp genes and non-coding DNA. Thus, we suggest that a better understanding of polydnaviruses would result by viewing these not as viruses, but rather as a wasp organelle system that evolved to shuttle wasp genes and proteins into hosts to evade and suppress their immune response. 相似文献
4.
Yves Bigot Sylvie Samain Corinne Augé-Gouillou Brian A Federici 《BMC evolutionary biology》2008,8(1):253
Background
Female endoparasitic ichneumonid wasps inject virus-like particles into their caterpillar hosts to suppress immunity. These particles are classified as ichnovirus virions and resemble ascovirus virions, which are also transmitted by parasitic wasps and attack caterpillars. Ascoviruses replicate DNA and produce virions. Polydnavirus DNA consists of wasp DNA replicated by the wasp from its genome, which also directs particle synthesis. Structural similarities between ascovirus and ichnovirus particles and the biology of their transmission suggest that ichnoviruses evolved from ascoviruses, although molecular evidence for this hypothesis is lacking. 相似文献5.
Tulub AA 《Biofizika》2005,50(1):62-68
Quantum chemistry calculations [DFT-B3LYP QM/MM method, 6-31G** basis set, + ab initio molecular dynamics] were used to study the action of Mg2+ on tubulin properties. It was shown that the hydration of the guanosine triphosphate-tubulin forms a protein zone structure, which includes a electron-occupied zone and a conductivity zone. The binding of Mg2+ to guanosine triphosphate-tubulin results in the unpairing of electrons in the occupied zone (triplet state formation) followed by their transition to the conductivity zone in which the inversion of spin occurs (singlet state formation). The formation of triplet state is the initial step in the subsequent protein dynamics in the picosecond range of time. The dynamics shows up as a coherent oscillating transition of tubulin between the triplet and singlet states, which is evidence of a simultaneous adjustment between nuclear and electron configurations of the protein (ab initio molecular dynamics calculations). The barrier between the triplet and singlet states does not exceed 0.60 kcal x mol(-1). The barrier overcome is considered as electron tunneling through the Fermi surface, which separates the occupied and conductivity zones. Zone formation occurs in the presence of the shell of biological water surrounding the protein. 相似文献
6.
To further validate previous observations in the taxonomy of Cryptosporidium parasites, the phylogenetic relationship was analyzed among various Cryptosporidium parasites at the actin locus. Nucleotide sequences of the actin gene were obtained from 9 putative Cryptosporidium species (C. parvum, C. andersoni, C. baileyi, C. felis, C. meleagridis, C. muris, C. saurophilum, C. serpentis, and C. wrairi) and various C. parvum genotypes. After multiple alignment of the obtained actin sequences, genetic distances were measured, and phylogenetic trees were constructed. Results of the analysis confirmed the presence of genetically distinct species within Cryptosporidium and various distinct genotypes within C. parvum. The phylogenetic tree constructed on the basis of the actin sequences was largely in agreement with previous results based on small subunit rRNA, 70-kDa heat shock protein, and Cryptosporidium oocyst wall protein genes. The Cryptosporidium species formed 2 major clades; isolates of C. andersoni, C. muris, and C. serpentis formed the first major group, whereas isolates of all other species, as well as various C. parvum genotypes, formed the second major group. Intragenotype variations were low or absent at this locus. 相似文献
7.
Victoria A. Miranda Patricia D. Navarro Goggy Davidowitz Judith Bronstein S. Patricia Stock 《Symbiosis (Philadelphia, Pa.)》2013,61(3):145-153
Insect host age and diet were evaluated as potential factors that could affect the fitness of the entomopathogenic nematode-bacterium mutualistic partnership. Two nematode species were considered: Steinernema carpocapsae and Heterorhabditis sonorensis, together with their symbionts Xenorhabdus nematophila and Photorhabdus luminescens, respectively. The tobacco hornworm, Manduca sexta, was used as the insect host. Insect developmental stage was a factor that impacted nematode virulence. Non-wandering 5th instar M. sexta were found to be more susceptible to nematode infection compared to wandering 5th instars. This was more noticeable for S. carpocapsae than for H. sonorensis. The nutritional status of the host also had an effect on the fitness of the two nematode species tested. In general, insects fed with the reduced diet content were less susceptible to nematode parasitism. The least observed mortality (0.5 %) was in those M. sexta larvae exposed to the low H. sonorensis dose. Host diet also had an effect on the production of IJ progeny in the insect cadavers. For both nematode species tested, the highest yield of emerging IJs was observed from those insect hosts fed with the low nutrient diet and exposed to the highest nematode inoculum. However, for both nematode species tested, the nutritional status of the host did not significantly affect time of emergence of IJ progeny or the reassociation with their bacterial symbionts (expressed as cfu/IJ). This is the first study on the effect of insect host physiology on both EPN and their symbiotic bacteria fitness. 相似文献
8.
Nematode–bacteria mutualism: Selection within the mutualism supersedes selection outside of the mutualism 下载免费PDF全文
Levi T. Morran McKenna J. Penley Victoria S. Byrd Andrew J. Meyer Timothy S. O'Sullivan Farrah Bashey Heidi Goodrich‐Blair Curtis M. Lively 《Evolution; international journal of organic evolution》2016,70(3):687-695
The coevolution of interacting species can lead to codependent mutualists. Little is known about the effect of selection on partners within verses apart from the association. Here, we determined the effect of selection on bacteria (Xenorhabdus nematophila) both within and apart from its mutualistic partner (a nematode, Steinernema carpocapsae). In nature, the two species cooperatively infect and kill arthropods. We passaged the bacteria either together with (M+), or isolated from (M?), nematodes under two different selection regimes: random selection (S?) and selection for increased virulence against arthropod hosts (S+). We found that the isolated bacteria evolved greater virulence under selection for greater virulence (M?S+) than under random selection (M?S?). In addition, the response to selection in the isolated bacteria (M?S+) caused a breakdown of the mutualism following reintroduction to the nematode. Finally, selection for greater virulence did not alter the evolutionary trajectories of bacteria passaged within the mutualism (M+S+ = M+S?), indicating that selection for the maintenance of the mutualism was stronger than selection for increased virulence. The results show that selection on isolated mutualists can rapidly breakdown beneficial interactions between species, but that selection within a mutualism can supersede external selection, potentially generating codependence over time. 相似文献
9.
Nasopharyngeal colonization by Streptococcus pneumoniae is an important initial step for the subsequent development of pneumococcal infections. Pneumococci have many virulence factors that play a role in colonization. Pneumolysin (PLY), a pivotal pneumococcal virulence factor for invasive disease, causes severe tissue damage and inflammation with disruption of epithelial tight junctions. In this study, we evaluated the role of PLY in nasal colonization of S. pneumoniae using a mouse colonization model. A reduction of numbers of PLY-deficient pneumococci recovered from nasal tissue, as well as nasal wash, was observed at days 1 and 2 post-intranasal challenges, but not later. The findings strongly support an important role for PLY in the initial establishment nasal colonization. PLY-dependent invasion of local nasal mucosa may be required to establish nasal colonization with S. pneumoniae. The data help provide a rationale to explain why an organism that exists as an asymptomatic colonizer has evolved virulence factors that enable it to occasionally invade and kill its hosts. Thus, the same pneumococcal virulence factor, PLY that can contribute to killing the host, may also play a role early in the establishment of nasopharynx carriage. 相似文献
10.
The parotid salivary gland in an omnivorous neotropical bat, Carollia perspicillata (L.), was studied by transmission electron microscopy and compared to the parotid gland in other species of bats and in mammals in general. The parotid acinar secretory granules were found to be unique among mammals: they consist of a finely punctate matrix containing a variety of electron dense inclusions ranging from punctate densities to complex cage-like geodesic structures. The parotid acinar product in Carollia perspicillata is intermediate in morphology between that formed by homologous secretory cells in insectivorous/carnivorous bats and that in frugivorous bats. Both the intercalated and striated ducts probably release additional secretory products into the saliva. 相似文献
11.
Alternating terminal electron‐acceptors at the basis of symbiogenesis: How oxygen ignited eukaryotic evolution 下载免费PDF全文
Dave Speijer 《BioEssays : news and reviews in molecular, cellular and developmental biology》2017,39(2)
12.
Molecular evolutionary clock and the neutral theory 总被引:6,自引:0,他引:6
Motoo Kimura 《Journal of molecular evolution》1987,26(1-2):24-33
Summary From the standpoint of the neutral theory of molecular evolution, it is expected that a universally valid and exact molecular evolutionary clock would exist if, for a given molecule, the mutation rate for neutral allelesper year were exactly equal among all organisms at all times. Any deviation from the equality of neutral mutation rate per year makes the molecular clock less exact. Such deviation may be due to two causes: one is the change of the mutation rate per year (such as due to change of generation span), and the other is the alteration of the selective constraint of each molecule (due to change of internal molecular environment). A statistical method was developed to investigate the equality of evolutionary rates among lineages. This was used to analyze protein data to demonstrate that these two causes are actually at work in molecular evolution. It was emphasized that departures from exact clockwise progression of molecular evolution by no means invalidates the neutral theory. It was pointed out that experimental studies should be done to settle the issue of whether the mutation rate for nucleotide change is more constant per year or per generation among organisms whose generation spans are very different. 相似文献
13.
Sharon Eisenberg Ehud Haimov Glenn F. W. Walpole Jonathan Plumb Michael M. Kozlov Sergio Grinstein 《Molecular biology of the cell》2021,32(3):301
Anionic phospholipids can confer a net negative charge on biological membranes. This surface charge generates an electric field that serves to recruit extrinsic cationic proteins, can alter the disposition of transmembrane proteins and causes the local accumulation of soluble counterions, altering the local pH and the concentration of physiologically important ions such as calcium. Because the phospholipid compositions of the different organellar membranes vary, their surface charges are similarly expected to diverge. Yet, despite the important functional implications, remarkably little is known about the electrostatic properties of the individual organellar membranes. We therefore designed and implemented approaches to estimate the surface charges of the cytosolic membranes of various organelles in situ in intact cells. Our data indicate that the inner leaflet of the plasma membrane is most negative, with a surface potential of approximately –35 mV, followed by the Golgi complex > lysosomes > mitochondria ≈ peroxisomes > endoplasmic reticulum, in decreasing order.Lipids and (glyco)proteins are the main constituents of biological membranes. Sugar moieties of glycoproteins, glycolipids, and adherent glycocalyx components such as hyaluronic acid can bear ionizable groups that confer a net negative charge on the outer surface of the plasma membrane. The aggregate surface charge of the outer membrane has been estimated indirectly by measuring the ζ potential—the potential at the slipping plane—by electrophoretic means (e.g., Tippe, 1981; Silva Filho et al., 1987) or by measuring streaming potentials (Vandrangi et al., 2012). The plasma membrane, however, is highly asymmetric; its inner (cytosolic) aspect is virtually devoid of carbohydrate moieties. Nevertheless, the cytosolic leaflet is also thought to be negatively charged, due primarily to the accumulation of anionic phospholipids, namely phosphoinositides and phosphatidylserine (PtdSer). Based on biochemical determinations of its lipid composition, the net negative charge of the plasmalemmal inner leaflet is estimated to generate an electrical field of 105 V/cm (Olivotto et al., 1996). The membranes of intracellular organelles can also contain anionic lipids, but their precise lipid composition and topology have been difficult to assess and hence their surface charge has not been estimated.The surface potentials of biological membranes have important functional implications: they can alter the disposition of charged regions of transmembrane proteins, cause local accumulation of soluble counterions in the vicinity—altering the local pH as well as the concentration of physiologically important ions such as calcium—and serve to recruit extrinsic cationic proteins (McLaughlin, 1989). It is therefore important to determine the electrostatic properties of each of the organellar membranes. In principle, this could be accomplished by measuring the ζ potentials of isolated organelles. However, the purity of such preparations is imperfect, changes in lipid composition (particularly phosphoinositide degradation) and sidedness cannot be avoided, and loosely adherent components that may alter the surface charge can be removed during the isolation process. Alternative approaches to estimating the surface potential are therefore required.Here we used recombinant and synthetic polycationic peptides to obtain a quantitative estimate of the surface potential of the inner leaflet of the plasma membrane and to establish a hierarchical map of the potentials of the cytosolic surfaces of the major intracellular organelles in live cells. 相似文献
14.
Mark D. Rausher 《Journal of insect physiology》1985,31(11):873-889
Two models that explain variation in behaviour associated with locating and accepting different habitats (host plants) are described and analyzed. One model describes the dynamics of search-mode ontogeny in Battus philenor butterflies. This model predicts that the proportion of females using either of two search modes at any given time reflects an equilibrium between the rate at which females switch from using a narrow-leaf search mode to using a broad-leaf search mode and the rate at which the opposite switch is made. Preliminary data suggest that the model predicts reasonably well the observed seasonal change in predominant search mode in the field. The second model, really a set of related models, describes the dynamics of genes that influence searching behaviour. Several predictions of these models are: (1) gentic variation for proportional allocation of offspring to different habitats should be more common under soft-selection regimes than under hard-selection regimes. (2) Polyphagy should be more common under soft selection than under hard selection. (3) Whether changes in the relative abundances or relative quality of different habitats lead to evolutionary change in apportionment of offspring to habitats depends in a complex way on mode of population regulation, method of search, type of limitation of fecundity and genetic properties of loci affecting preference. Although the two types of models superficially appear to address different types of behavioural variation, they may be used in a complementary fashion to understand the evolution of habitat selection behaviour. 相似文献
15.
Molecular data and the evolutionary history of dinoflagellates 总被引:7,自引:3,他引:7
Juan F. Saldarriaga F. J. R. Max
Taylor Thomas Cavalier-Smith Susanne Menden-Deuer P.J.Patrick J. Keeling 《European journal of protistology》2004,40(1):418-111
We have sequenced small-subunit (SSU) ribosomal RNA (rRNA) genes from 16 dinoflagellates, produced phylogenetic trees of the group containing 105 taxa, and combined small- and partial large-subunit (LSU) rRNA data to produce new phylogenetic trees. We compare phylogenetic trees based on dinoflagellate rRNA and protein genes with established hypotheses of dinoflagellate evolution based on morphological data. Protein-gene trees have too few species for meaningful in-group phylogenetic analyses, but provide important insights on the phylogenetic position of dinoflagellates as a whole, on the identity of their close relatives, and on specific questions of evolutionary history. Phylogenetic trees obtained from dinoflagellate SSU rRNA genes are generally poorly resolved, but include by far the most species and some well-supported clades. Combined analyses of SSU and LSU somewhat improve support for several nodes, but are still weakly resolved. All analyses agree on the placement of dinoflagellates with ciliates and apicomplexans (=Sporozoa) in a well-supported clade, the alveolates. The closest relatives to dinokaryotic dinoflagellates appear to be apicomplexans, Perkinsus, Parvilucifera, syndinians and Oxyrrhis. The position of Noctiluca scintillans is unstable, while Blastodiniales as currently circumscribed seems polyphyletic. The same is true for Gymnodiniales: all phylogenetic trees examined (SSU and LSU-based) suggest that thecal plates have been lost repeatedly during dinoflagellate evolution. It is unclear whether any gymnodinialean clades originated before the theca. Peridiniales appear to be a paraphyletic group from which other dinoflagellate orders like Prorocentrales, Dinophysiales, most Gymnodiniales, and possibly also Gonyaulacales originated. Dinophysiales and Suessiales are strongly supported holophyletic groups, as is Gonyaulacales, although with more modest support. Prorocentrales is a monophyletic group only in some LSU-based trees. Within Gonyaulacales, molecular data broadly agree with classificatory schemes based on morphology. Implications of this taxonomic scheme for the evolution of selected dinoflagellate features (the nucleus, mitosis, flagella and photosynthesis) are discussed. 相似文献
16.
17.
Molecular and cellular events at the site of myocardial infarction: from the perspective of rebuilding myocardial tissue 总被引:17,自引:0,他引:17
Lu L Zhang JQ Ramires FJ Sun Y 《Biochemical and biophysical research communications》2004,320(3):907-913
The potential for bone marrow-derived progenitor cells (BMDPC) to regenerate myocardial tissue following infarction depends on homing, migration, nourishment, and spatially appropriate growth of BMDPC. Requisite to these objectives is the expression of adhesion molecules (ICAM-1) and chemoattractant cytokines (MCP-1), matrix metalloproteinase (MMP) activity, a neovasculature, and fibrillar collagen scaffolding. We found that enhanced ICAM-l and MCP-1, as well as MMP activity on day 3 and 7 postMI, are present to facilitate the homing, chemotaxis, and migration of circulating cells into the infarct site. The vascular network formed at the infarct site contains a ratio of conduit to exchange vessels that is greater than that for control tissue and therefore its ability to nourish BMDPC for their growth appears to be tenuous. These findings, together with the dense formation of a fibrillar collagen scar beyond week 2, suggest the optimal time to rebuild myocardium from BMDPC resides within 2 week postMI. 相似文献
18.
Kooijman SA Auger P Poggiale JC Kooi BW 《Biological reviews of the Cambridge Philosophical Society》2003,78(3):435-463
The merging of two independent populations of heterotrophs and autotrophs into a single population of mixotrophs has occurred frequently in evolutionary history. It is an example of a wide class of related phenomena, known as symbiogenesis. The physiological basis is almost always (reciprocal) syntrophy, where each species uses the products of the other species. Symbiogenesis can repeat itself after specialization on particular assimilatory substrates. We discuss quantitative aspects and delineate eight steps from two free-living interacting populations to a single fully integrated endosymbiotic one. The whole process of gradual interlocking of the two populations could be mimicked by incremental changes of particular parameter values. The role of products gradually changes from an ecological to a physiological one. We found conditions where the free-living, epibiotic and endobiotic populations of symbionts can co-exist, as well as conditions where the endobiotic symbionts outcompete other symbionts. Our population dynamical analyses give new insights into the evolution of cellular homeostasis. We show how structural biomass with a constant chemical composition can evolve in a chemically varying environment if the parameters for the formation of products satisfy simple constraints. No additional regulation mechanisms are required for homeostasis within the context of the dynamic energy budget (DEB) theory for the uptake and use of substrates by organisms. The DEB model appears to be dosed under endosymbiosis. This means that when each free-living partner follows DEB rules for substrate uptake and use, and they become engaged in an endosymbiotic relationship, a gradual transition to a single fully integrated system is possible that again follows DEB rules for substrate uptake and use. 相似文献
19.