首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homotypically pure cultures of rat brain astrocytes were used to examine some aspects of non-neuronal A-system (alanine preferring) amino acid uptake. The Asystem specific probe, alpha-aminoisobutyric acid is transported rapidly, and a steady state distribution ratio of 9–25 is reached after 30 minute incubations. Kinetic estimates derived from uptake progress curves indicated aK m of 1.35 mM and aV max of 133 nmol/min/mg protein. Uptake is reduced in the absence of either Na+ or K+. Elevations in extracellular K+, a putative metabolic modulator of neuroglia, did not affect uptake.  相似文献   

2.
Although the biological effects of thyroid hormones are mediated by nuclear receptors (genomic mechanisms), interactions with receptors associated with the plasma membrane (non-genomic mechanisms) of target cells are not clear. In this study we investigated the rapid stimulatory effect of thyroxine (T4) on 45Ca2+ uptake as well as ionic currents and intracellular messengers involved in the stimulatory action of T4 in amino acid accumulation in immature rat testes. Results indicated that 10?9 M or 10?6 M T4 was able to increase immediately 45Ca2+ uptake after 60 s of hormone exposure. These results indicate for the first time that voltage-dependent Ca2+ channels and ATP-dependent K+ channels can be seen as a set-point in the stimulatory effect of T4 on amino acid accumulation. Apamin-sensitive small-conductance Ca2+-activated K+ channels (SKCa) and chloride channels were shown to be partially involved in this mechanism. The amino acid accumulation triggered by the PKC pathway suggests a functional link between different ion channel activities and the stimulatory effect of T4 on amino acid accumulation. In conclusion, we show in this study a rapid and stimulatory effect of T4 on calcium uptake and on amino acid accumulation, both events initiated at the plasma membrane, which strongly characterizes a non-genomic effect of T4 in immature rat testes.  相似文献   

3.
Purified enterotoxin from the bacterium Clostridium perfringens rapidly decreased the hormonally induced uptake of alpha-aminoisobutyric acid in primary cultures of adult rat hepatocytes. At 5 min after toxin addition the decrease in alpha-aminoisobutyric acid uptake appeared not due to increased passive permeation (estimated with L-glucose) or to increased alpha-aminoisobutyric acid efflux. When short uptake assay times were employed a depression of alpha-aminoisobutyric acid influx was observed in toxin-treated hepatocytes. The depression of alpha-aminoisobutyric acid influx was correlated with a rapid increase in intracellular Na+ (estimated using 22Na+) apparently effected by membrane damage. In contrast, the uptake of cycloleucine in the presence of unlabeled alpha-aminoisobutyric acid (assay for Na+-independent amino acid uptake) by hepatocytes treated with toxin for 5 min was decreased to only a small extent or not at all depending upon experimental design. At later times, C. perfringens enterotoxin increased the exodus of L-glucose, 3-O-methylglucose and alpha-aminoisobutyric acid from pre-loaded cells indicating that the toxin effects progressive membrane damage. When enterotoxin was removed by repeated washing after 5--20 min the decay of alpha-aminoisobutyric acid uptake ceased and appeared to undergo recovery towards the hormonally induced control level. The degree of recovery of alpha-aminoisobutyric acid uptake was inverse to the length of time of exposure to toxin. Adding at 10 min specific rabbit antiserum against C. perfringens enterotoxin without medium change also reversed the effect of toxin on increased intracellular 22Na+, and on the exodus (from preloaded cells) of alpha-aminoisobutyric acid, L-glucose, and 3-O-methylglucose.  相似文献   

4.
1,25D3 is critical for the maintenance of normal reproduction since reduced fertility is observed in male rats on a vitamin D-deficient diet. Vitamin D-deficient male rats have incomplete spermatogenesis and degenerative testicular changes. In the present study we have examined the ionic involvement and intracellular messengers of the stimulatory effect of 1,25D3 on amino acid accumulation in immature rat testis. 1,25D3 stimulates amino acid accumulation from 10−12 to 10−6 M by increasing the slope to reach a maximum value at 10−10 M, as compared to the control group. No effect was observed at a lower dose (10−13 M). Time-course showed an increase on amino acid accumulation after 15, 30, and 60 min of incubation with 1,25D3 (10−10 M). 1,25D3 stimulated amino acid accumulation in 11-day-old rat testis but not in testis that were 20 days old. Cycloheximide totally blocked the 1,25D3 action on amino acid accumulation. Furthermore, a localized elevation of cAMP increased the stimulatory effect of 1,25D3 and the blockage of PKA nullified the action of the hormone. In addition, 1,25D3 action on amino acid accumulation was also mediated by ionic pathways, since verapamil and apamine diminished the hormone effect. The stimulatory effect of 1,25D3 on amino acid accumulation is age-dependent and specific to this steroidal hormone since testosterone was not able to change amino acid accumulation in both ages studied. This study provides evidence for a dual effect for 1,25D3, pointing to a genomic effect that can be triggered by PKA, as well as to a rapid response involving Ca2+/K+ channels on the plasma membrane.  相似文献   

5.
The effects of glucagon on amino acid transport in rat hepatocytes are not fully understood. We examined the effect of this hormone on alanine, serine and cysteine preferring system (system ASC)-mediated amino acid transport in rat hepatocyte monolayers using 2-aminoisobutyric acid (AIB) and L -cysteine. Glucagon induced a time and protein synthesis-dependent stimulation of Na+-dependent alanine preferring system (system A)-independent AIB transport. The glucagon-induced increase in transport activity was not modified by substrate starvation and not related to changes in the intracellular pool of amino acids. Glucagon did not modify system ASC activity measured by L -cysteine. Therefore the transport activity of AIB independent of system A stimulated by glucagon cannot be attributed to system ASC. This suggests a Na+-dependent transport system in rat hepatocytes not identified until now.  相似文献   

6.
The membrane changes which occur during cellular maturation of erythroid cells have been investigated. The transport of alpha-aminoisobutyric acid, alanine, and N-methylated-alpha-aminoisobutyric acid have been studied in the erythroblastic leukemic cell, the reticulocyte, and the erythrocyte of the Long-Evans rat. The dependence of amino acid transport on extracellular sodium concentration was investigated. Erythrocytes were found to transport these amino acids only by Na-independent systems. The steady state distribution ratio was less than 1. Reticulocytes were found to transport alpha-aminoisobutyric acid and alanine by Na-dependent systems, but only small amounts of N-methylated-alpha-aminoisobutyric acid. Small amounts of these amino acids were transported by Na-independent systems. The steady state distribution ratio was greater than one for Na-dependent transport. The erythroblastic leukemia cell, a model immature erythroid cell, showed marked Na-dependence (greater than 90%) for alpha-aminoisobutyric acid and alanine transport, and greater than 80% for the Na-dependent transport of N-methyl-alpha-aminoisobutyric acid. The steady state distribution ratio for the Na-dependent transport was greater than 4. In the erythroblastic leukemic cell, at least three Na-dependent systems are present: one includes alanine and alpha-aminoisobutyric acid, but excludes N-methyl-alpha-aminoisobutyric acid; one is for alpha-aminoisobutyric acid, alanine and also N-methyl-alpha-aminoisobutyric acid; and one is for N-methyl-alpha-aminoisobutyric acid alone. In the reticulocyte, the number of Na-dependent systems are reduced to two: one for alpha-aminoisobutyric acid and alanine; one for N-methyl-alpha-aminoisobutyric acid. In the erythrocytes, no Na-dependent transport was found. Therefore, maturation of the blast cell to the mature erythrocyte is characterized by a systematic loss in the specificity and number of transport system for amino acids.  相似文献   

7.
The cyanobacteriumAnabaena siamensis Antarikanonda, isolated from rice paddies of Bangkok, Thailand, liberates substantial quantities of free amino acids into the external medium irrespective of whether it is growing on N2, NH4 +, NO3 or under nitrogen-starved conditions. Addition of such combined nitrogen causes changes in both intracellular and extracellular free amino acid pool patterns. No overall relationship exists between the amino acid efflux and the intracellular pools. The most abundant free amino acids found in the external media of N2, NO3 , NH4 +-grown and N-starved cultures were phenylalanine, threonine, glutamate, and glycine, respectively. These investigations suggest that amino acid liberation by the cyanobacterium is a selective diffusional process that is sensitive to environmental changes.  相似文献   

8.
Further studies of amino acid transport by the rat liver slice have shown that the transport of α-aminoisobutyric acid is inhibited by glycine as well as dinitrophenol, Na+-free medium, and iodoacetate. Glycine itself is actively transported by the rat liver slice, although some metabolism also takes place. Cystine is transported by a single transport system, although reduction to cysteine occurs intracellularly and to some extent in the medium also. Cysteine is transported faster than cystine and to greater concentration gradients. Kinetic studies showed that cystine was transported by a single system that was inhibited by glycine but not by α-amino-isobutyric acid. Two transport systems were involved in cysteine transport, each inhibited to a certain extent by α-aminoisobutyric acid and glycine. Lysine and valine both exist at a higher concentration intracellularly than in the plasma in vivo but no intracellular gradients were obtained after in vitro incubations. It is suggested that the intracellular gradients for these amino acids are maintained by protein catabolism.  相似文献   

9.
Abstract— With the single rat brain cortical slice serving as an in vitro bio-assay system, the effects of neurotransmitter amino acids (1 mm ) on brain swelling, water, sodium and potassium content, inulin space, and lactate production were studied. The putative dicarboxylic amino acid neurotransmitters, l -glutamic acid and l -aspartic acids, greatly increased intracellular brain swelling with increased intracellular Na+, water content and lactate production, and decreased inulin space and intracellular K+. Equimolar GABA, taurine, glycine, the putative inhibitory neurotransmitter amino acids, and equimolar α-amino-isobutyric acid had no effect. Brain swelling and intracellular Na+/K+ ratios were greatly increased by l -glutamate and l -aspartate at a concentration of 10 mm . However, l -aspartate at these concentrations greatly depleted the K+ content and lactate production as compared to l -glutamate. Further studies indicated that only the structural analogs and isomers of the dicarboxylic amino acids possessing two acidic groups and an α-amino group had a similar effect on the induction of brain swelling. Among the analogs of glutamic acid, dl -homocysteic acid and kainic acid had a greater effect on brain swelling, as observed from the total adenosine 5′-triphosphate (ATP) levels and the time-course and dose-response. A biphasic response in lactate production was induced by dl -homocysteic acid and kainic acid, suggesting that these analogs had a neurotoxic effect on cellular metabolism at higher concentrations.  相似文献   

10.
Amino acid transport was studied in primary cultures of parenchymal cells isolated from adult rat liver by a collagenase perfusion technique and maintained as a monolayer in a serum-free culture medium. Amino acid transport was assayed by measuring the uptake of the nonmetabolizable amino acid, alpha-aminoisobutyric acid. Rat liver parenchymal cells transported alpha-aminoisobutyric acid by an energy-dependent Na+-requiring system which displayed Michaelis-Menten kinetics. Addition of insulin to cultured rat liver parenchymal cells resulted in an increased influx of alpha-aminoisobutyric acid which was reflected in a higher initial rate of alpha-aminoisobutyric acid transport as well as an increased accumulation of alpha-aminoisobutyric acid at later time points. Cycloheximide effectively blocked the increase while results with actinomycin D were equivocal. Insulin at concentrations as low as 50 pM was effective in stimulating alpha-aminoisobutyric acid transport while the maximal response was observed at 80 nM.  相似文献   

11.
The effects of the phosphoinositide-mobilizing agonist bradykinin (BK) on membrane potential and intracellular calcium in monolayers of normal rat kidney (NRK) fibroblasts were investigated. BK induced a rapid transient depolarization in these cells, which was mimicked by other phosphoinositide-mobilizing factors such as prostaglandin F (PGF), lysophosphatidic acid (LPA), platelet-derived growth factor (PDGF-BB), and serum. Depolarization by BK was independent of extracellular Ca2+ or Na+. It was shown using extracellular Cl substitutions that the depolarization was caused by an increased Cl conductance. Depolarization was inhibited by 5-nitro-2-3-phenylpropyl(amino)benzoic acid (NPPB), niflumic acid, and flufenamic acid, inhibitors of calcium-dependent chloride channels. The depolarization provoked by BK could be mimicked by raising intracellular calcium with ionomycin or thapsigargin and could be blocked with geneticin, a blocker of phospholipase C. When intracellular calcium was buffered by loading the cells with 1,2-bis(2-aminophenoxy)ethane-NNN′N′-tetra-acetic acid (BAPTA), depolarization was prevented. We conclude that in NRK fibroblasts extracellular stimuli that increase intracellular calcium, depolarize the cells via the activation of a calcium-dependent chloride conductance. In addition to an increase in intracellular calcium, depolarization may be an important effector pathway in response to extracellular stimuli in fibroblasts. It is hypothesized that, in electrically coupled cells such as NRK fibroblasts, intercellular transmission of these depolarizations may represent a mechanism to coordinate uniform multicellular responses to Ca2+-mobilizing agonists. J. Cell. Physiol. 170:166–173, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Glucagon and cAMP analogs stimulate amino acid transport in freshly isolated hepatocytes by inducing the synthesis of new transport proteins. The role of the cell nucleus in the glucagon regulation of amino acid transport has been studied in rat hepatocytes enucleated by centrifugation through a discontinuous Ficoll gradient in the presence of cytochalasin B. Enucleated hepatocytes take up alpha-aminoisobutyric acid (AIB) through a Na+-dependent transport component with kinetic properties similar to those found in intact hepatocytes. Cytoplasts prepared from glucagon-stimulated cells retain the increase AIB transport induced by the hormone in the intact cells. The direct addition of glucagon to cytoplasts has no effect on AIB transport, in spite of the fact that the cytoplasts exhibit a higher capacity to bind glucagon than their nucleated counterparts. These data indicate that the nucleus is required for the glucagon stimulation of amino acid transport in isolated hepatocytes.  相似文献   

13.
—The blood-brain barrier transport of amino acids has been measured using the carotid injection technique in the rat. The synthetic amino acids, 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH) and α-(methylamino)isobutyric acid (MeAIB), were model substrates in the Ehrlich cell for the leucine (L) and alanine (A) neutral amino acid transport mechanisms, respectively. The uptake (±)b-[carboxyl-14C]BCH at the same rate for the five brain regions tested suggested a similarity between regions for the L transport mechanism. At injectant concentrations of 0·1 mm (similar to naturally occurring aromatic neutral amino acids), BCH was mainly taken up by a saturable mediated transport mechanism (K1, 0·16 mm and Vmax, 0·03/μmol/g per min). At higher concentrations, uptake by a nonsaturable or diffusional mechanism could be demonstrated. When BCH was added as a second amino acid to l -[3-14C]DOPA, the saturable component of l -DOPA transport was significantly inhibited. MeAIB had no measurable effect on the rate of l -DOPA transport. These results suggested that the mediated transport mechanism for l -DOPA at the cerebral capillaries is similar to the l -neutral amino acid transport system.  相似文献   

14.
(1) The metabolism of glucose and amino acids in vitro was compared in the rat cerebral cortex and the optic and vertical lobes of the octopus brain. (2) Specific activities and pool sizes of the five amino acids, glutamate, aspartate, glutamine, alanine and γ-aminobutyric acid (GABA), were determined in octopus and rat brain slices after 2 hr incubation with 10 mm -[U-14C]glucose, 10 mm -L-[U-14C]glutamate, and 10mm -L-[U-14C]glutamate with added 10 mM-glucose. Amino acid pool sizes were similar in rat and octopus brain, with the exception of alanine, which was higher in the octopus. Generally specific activities were from four- to 20-fold higher in rat brain. With [U-14C]glucose as substrate, specific activities of GABA and glutamate were highest in rat; those of alanine and glutamine highest in octopus brain. With L-[U-14C]glutamate the specific activities of GABA and aspartate were highest in rat, that of aspartate highest and GABA lowest in octopus. The addition of glucose to L-[U-14C]glutamate as substrate had little effect on the specific activities of any of the amino acids. (3) The uptake of some amino acids was determined by incubation with [U-14C]amino acids for 2 hr, and 14CO2 formation was also measured. The amount of label taken up by octopus was uniformly 20-25 per cent of that found for rat brain. The amount of 14CO2, however, differed according to the amino acid. Four times as much 14CO2 was generated from alanine by octopus optic lobe and twice as much by the vertical lobe than rat cortex, but from glutamate, only 24 per cent in the optic and 15 per cent in the vertical lobe. No 14CO2 was generated from [U-14C]GABA in the octopus, by contrast with the rat. (4) Activity of some of the enzymes involved in amino acid metabolism was determined in homogenates of rat cortex and octopus optic and vertical lobes, with and without activation by Triton X-100. Enzymic activities in the octopus, with the exception of alanine aminotransferase, were lower than in the rat, and glutamate decarboxylase could not be detected in octopus brain, in the absence of detergent.  相似文献   

15.
Isolated rat hepatocytes prepared by an enzyme perfusion technique possess a functional amino acid transport system and retain the capacity to synthesize protein. Amino acid transport was studied using the non-metabolizable amino acid analog alpha-aminoisobutyric acid. The transport process was time, temperature and concentration dependent. Similarly, leucine incorporation into protein was time and temperature dependent being optimal at 3m degrees C. Amino acid, fetal calf serum, growth hormone and glucose all produced small, reproducible increases in protein synthesis rates. Bovine serum albumin diminished the uptake of alpha-aminoisobutyric acid and leucine incorporation into protein. The amino acid content on either side of the cell membrane was found to affect transport into or out of the cellular compartment (transconcentration effects). High cell concentrations decreased transport and protein synthesis as a result of isotopic dilution of labelled amino acids with those released by the hepatocytes. This was consistent with the capacity of naturally occurring amino aicds to compete with alpha-aminoisobutyric acid for uptake into the hepatocyte. In order to define more precisely the effects of bioregulators on transport and protein synthesis it will be necessary to define and subfractionate cellular compartments and proteins which are the specific targets of cellular regulation.  相似文献   

16.
With several pairs of rel+ and rel strains of Escherichia coli, the effects of amino acid starvation on the intracellular concentration of K+ and the rate of uptake of 42K+ were investigated. In the early phase of the experiments, the intracellular concentration of K+ was estimated by the conventional method in which the cell volume per A660 value of the culture was assumed to be constant, being not influenced by the variation of growth condition and strain. Apparently, the K+ concentration of rel+ cells was kept almost constant, while that of rel cells increased about 1.5-fold 2 h after the exposure to amino acid starvation. Unexpectedly, however, the above assumption was found not to be valid in the present study. The cell volume per A660 changed only slightly in CP78 (rel+) cells, while it increased markedly in CP79 (rel) cells after the exposure to amino acid starvation. Reestimation of the K+ concentrations based on the estimated respective values of cell volumes per A660 revealed no significant difference between both strains. After all, the above apparent phenomenon was found to be due to the fact that the increase in cell volume of the rel+ cells was arrested upon amino acid starvation whereas that in the rel cells was not. The 42K+ uptake by the rel+ cells was depressed upon amino acid starvation, whereas that by the rel cells increased. Some regulatory mechanism was suggested to operate in both strains to keep their K+ concentrations constant. When intracellular concentration of a metabolite is to be determined, importance of measurement of cell volume under the respective conditions, without assuming the constancy of the cell volume per A660 of the culture, was pointed out.  相似文献   

17.
Insulin and glucagon stimulate amino acid transport in isolated rat hepatocytes. Amiloride, a specific Na+-influx inhibitor, completely inhibited the hormonal (glucagon or insulin) stimulation of alpha-aminoisobutyric acid influx by preventing the emergence of a high-affinity transport component. The drug also inhibited [14C]valine incorporation into hepatocyte protein. The half-maximal concentration of amiloride for inhibition of protein synthesis was similar to that required for inhibition of hormone-stimulated amino acid transport (approx. 0.1 mM). In primary cultured rat hepatocytes, amiloride markedly depressed the stimulation of alpha-aminoisobutyric acid transport by glucagon, or a mixture of glucagon, insulin and epidermal growth factor. These results suggest that amiloride inhibits the hormonal stimulation of hepatocyte amino acid transport by preventing the synthesis of high-affinity transport proteins. They also suggest that the hormonal stimulation of hepatocyte amino acid transport is dependent, at least partly, on Na+ influx.  相似文献   

18.
Abstract— A correlation has been attempted between the uptake characteristics of l - and d -homocysteate and the time courses of neuronal excitation by these and other amino acids related to l -glutamate. The uptake of l - and d -homocysteate and of l -[35S]homocysteate was studied in individual slices of rat cerebral cortex at 37°C. Tissue: medium ratios attained over l0 min for the unlabelled enantiomers at 2.5 mM were 3.7 for l -homocysteate but only 0.8 for the d -isomer. The uptake of l -[35S]homocysteate over the concentration range 0.09 μm -2 mm can be attributed mainly to a low-affinity transport process with Km approx 3 mm and Vmax 1.7 μmol/g/min, but a high-affinity process of low Vmax may make a minor contribution at the lower concentrations within this range. In terms of dependence on energy metabolism and [Na+], and on inhibition by p-chloromercuriphenylsulphonate, ouabain and structural analogues of the amino acid, the main uptake system for L-[35S]homocysteate appears to be similar to that mediating low-affinity uptake of l -glutamate and other acidic amino acids. d -Homocysteate was but a weak inhibitor of this uptake system compared with other structural analogues. The time courses of excitation by 6 amino acids were determined by microelectrophoretic application to rat spinal neurones. d -Homocysteate induced responses with recovery times considerably longer than those of the other amino acids; this correlates with the absence of rapid uptake systems demonstrated for this amino acid in cortical tissue. d -Glutamate and l -homocysteate, which are only accumulated by low-affinity transport mechanisms, induced responses with recovery periods similar to those of l -glutamate, l -aspartate and d -aspartate, which are accumulated by both high- and low-affinity uptake systems. Although contributions of other factors to the observed time courses, such as rates of association and dissociation of the amino acid-receptor complexes, cannot be excluded, the present results are consistent with the hypothesis that low-affinity uptake systems of high Vmax play an important role in the rapid termination of the effects of amino acid excitants.  相似文献   

19.
Carboxylation, the completion step in prothrombin biosynthesis   总被引:2,自引:0,他引:2  
It has been found that [14C]CO2 is incorporated into prothrombin in vivo in two hours. The amount of incorporation is increased 3 to 4 fold by the administration of vitamin K1 to the warfarin-treated vitamin K-deficient rat, over incorporation in the “normal” rat. The radioactivity is found in one acidic peptide following trypsin digestion and following pronase and aminopeptidase digestion is found in one acidic amino acid. The [14C] is lost on heating of this amino acid at pH 2, leaving unlabeled glutamic acid. It appears that the vitamin K-dependent step in the “completion” of prothrombin is carboxylation of a glutamyl residue of the preformed protein molecule.  相似文献   

20.
Abstract: The aim was to study the extent to which leu-cine furnishes α-NH2 groups for glutamate synthesis via branched-chain amino acid aminotransferase. The transfer of N from leucine to glutamate was determined by incubating astrocytes in a medium containing [15N]leucine and 15 unlabeled amino acids; isotopic abundance was measured with gas chromatography-mass spectrometry. The ratio of labeling in both [15N]glutamate/[15N]leucine and [2-15N]glutamine/[15N]leucine suggested that at least one-fifth of all glutamate N had been derived from leucine nitrogen. At the same time, enrichment in [15N]leucine declined, reflecting dilution of the 16N label by the unlabeled amino acids that were in the medium. Isotopic abundance in [16N]-isoleucine increased very quickly, suggesting the rapidity of transamination between these amino acids. The appearance of 15N in valine was more gradual. Measurement of branched-chain amino acid transaminase showed that the reaction from leucine to glutamate was approximately six times more active than from glutamate to leucine (8.72 vs. 1.46 nmol/min/mg of protein). However, when the medium was supplemented with α-ketoisocaproate (1 mM), the ketoacid of leucine, the reaction readily ran in the “reverse” direction and intraastrocytic [glutamate] was reduced by ~50% in only 5 min. Extracellular concentrations of α-ketoisocaproate as low as 0.05 mM significantly lowered intracellular [glutamate]. The relative efficiency of branched-chain amino acid transamination was studied by incubating astrocytes with 15 unlabeled amino acids (0.1 mM each) and [15N]glutamate. After 45 min, the most highly labeled amino acid was [15N]alanine, which was closely followed by [15N]leucine and [15N]isoleucine. Relatively little 15N was detected in any other amino acids, except for [15N]serine. The transamination of leucine was ~17 times greater than the rate of [1-14C]leucine oxidation. These data indicate that leucine is a major source of glutamate nitrogen. Conversely, reamination of a-ketoisocaproate, the ketoacid of leucine, affords a mechanism for the temporary “buffering” of intracellular glutamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号