首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have demonstrated in vitro the efficacy of the taurine-conjugated dihydroxy bile salts deoxycholate and chenodeoxycholate in solubilizing both cholesterol and phospholipid from hamster liver bile-canalicular and contiguous membranes and from human erythrocyte membrane. On the other hand, the dihydroxy bile salt ursodeoxycholate and the trihydroxy bile salt cholate solubilize much less lipid. The lipid solubilization by the four bile salts correlated well with their hydrophobicity: glycochenodeoxycolate, which is more hydrophobic than the tauro derivative, also solubilized more lipid. All the dihydroxy bile salts have a threshold concentration above which lipid solubilization increases rapidly; this correlates approximately with the critical micellar concentration. The non-micelle-forming bile salt dehydrocholate solubilized no lipid at all up to 32 mM. All the dihydroxy bile acids are much more efficient at solubilizing phospholipid than cholesterol. Cholate does not show such a pronounced discrimination. Lipid solubilization by chenodeoxycholate was essentially complete within 1 min, whereas that by cholate was linear up to 5 min. Maximal lipid solubilization with chenodeoxycholate occurred at 8-12 mM; solubilization by cholate was linear up to 32 mM. Ursodeoxycholate was the only dihydroxy bile salt which was able to solubilize phospholipid (although not cholesterol) below the critical micellar concentration. This similarity between cholate and ursodeoxycholate may reflect their ability to form a more extensive liquid-crystal system. Membrane specificity was demonstrated only inasmuch as the lower the cholesterol/phospholipid ratio in the membrane, the greater the fractional solubilization of cholesterol by bile salts, i.e. the total amount of cholesterol solubilized depended only on the bile-salt concentration. On the other hand, the total amount of phospholipid solubilized decreased with increasing cholesterol/phospholipid ratio in the membrane.  相似文献   

2.
Guinea pig gallbladder bile contains chenodeoxycholic acid (62 +/- 5%), ursodeoxycholic acid (8 +/- 5%), and 7-ketolithocholic acid (30 +/- 5%). All three bile acids became labeled to the same specific activity within 30 min after [3H]cholesterol was injected into bile fistula guinea pigs. When a mixture of [3H]ursodeoxycholic acid and [14C]chenodeoxycholic acid was infused into another bile fistula guinea pig, little 3H could be detected in either chenodeoxycholic acid or 7-ketolithocholic acid. But, 14C was efficiently incorporated into ursodeoxycholic and 7-ketolithocholic acids. Monohydroxylated bile acids make up 51% and ursodeoxycholic acid 38% of fecal bile acids. After 3 weeks of antibiotic therapy, lithocholic acid was reduced to 6% of the total, but ursodeoxycholic acid (5-11%) and 7-ketolithocholic (15-21%) acid persisted in bile. Lathosterol constituted 19% of skin sterols and was detected in the feces of an antibiotic-fed animal. After one bile fistula guinea pig suffered a partial biliary obstruction, ursodeoxycholic and 7-ketolithocholic acids increased to 46% and 22% of total bile acids, respectively. These results demonstrate that chenodeoxycholic acid, ursodeoxycholic acid, and 7-ketolithocholic acid can all be made in the liver of the guinea pig.  相似文献   

3.
Physiochemical damage of egg phosphatidylcholine liposomes, caused by the salts of three bile acids, chenodeoxycholic acid, ursodeoxycholic acid, and cholic acid, has been investigated. Of the three bile salts, that of chenodeoxycholic acid was the most destructive, and the effect of the damage was examined by monitoring the induced 6-carboxyfluorescein release from the liposomes. For all three of the bile salts and under the experimental conditions, the minimum (effective) concentrations causing the 6-carboxyfluorescein release were below their critical micelle concentrations. In the case of the salt of chenodeoxycholic acid, the presence of cholesterol in the liposomal bilayers did not show any significant effect on the induced 6-carboxyfluorescein release, while, for the salts of ursodeoxycholic acid and cholic acid, the presence of cholesterol tended to depress the release. Permeation of bile salts into the membranes of liposomal bilayers made these membranes more fluid, and this fluidity was monitored by measuring the change in fluorescence polarization using 1,6-diphenylhexatriene entrapped in the liposomes. Coating the liposomes with polysaccharides, to make them more hydrophobic, led to their easier lysis by the bile salts.  相似文献   

4.
The effects of cholestyramine feeding on biliary ursodeoxycholic acid, fecal excretion of bile acids and neutral sterols on cholesterol 7α-hydroxylase and hepatic HMG-CoA reductase were examined in the guinea pig. In the bile there was a 57% decrease in the concentration of ursodeoxycholic acid while an increase was observed in the concentration of chenodeoxycholic acid. Cholestyramine feeding for ten days resulted in a decrease in plasma cholesterol levels and an increase in both hepatic HMG-CoA reductase and cholesterol 7α-hydroxylase activities. The fecal excretion of both bile acids and neutral sterols was significantly increased.  相似文献   

5.
We have studied the effect of ursodeoxycholic acid on the serum and urinary bile acids in seven patients with moderate to severe primary biliary cirrhosis. Bile acids were characterized by gas-liquid chromatography-mass spectrometry and quantified by capillary gas-liquid chromatography. Serum bile acids were elevated 26-fold over control values, with 2.2 times more cholic acid than chenodeoxycholic acid. Urinary bile acid output was elevated 22-fold over control values with a cholic acid:chenodeoxycholic acid ratio of 1.6. In addition, lithocholic acid, deoxycholic acid, ursodeoxycholic acid, 1 beta-hydroxycholic acid, 1 beta-hydroxydeoxycholic acid, and hyocholic acid were identified in both serum and urine; the proportions of the 1- and 6-hydroxylated bile acids were much higher in urine than in serum of the patients (32.1% versus 4.2%). Three months of placebo administration did not change the serum and urinary bile acid composition. In contrast, ursodeoxycholic acid feeding (12-15 mg/kg body weight per day) for 6 months resulted in a 25% decline in the total serum bile acid concentration from the pretreatment values. The proportion of ursodeoxycholic acid increased from 2.1 to 41.2% of total bile acids, so that total fasting serum endogenous bile acid levels decreased 62.4%. Ursodeoxycholic acid feeding substantially increased urinary bile acid output, with ursodeoxycholic acid comprising 58.1%. The proportion of 1- and 6- hydroxylated endogenous bile acids was reduced by 45.5% from pretreatment levels and approximately 4.5% of the urinary bile acids were omega-muricholic acid, 1 beta-hydroxyursodeoxycholic acid, and 21-hydroxyursodeoxycholic acid. These results demonstrate significant changes in the serum and urinary bile acid pattern in primary biliary cirrhosis during ursodeoxycholic acid treatment. The beneficial effect of ursodeoxycholic acid may be due to reduction of the hydroxylated derivatives of endogenous bile acids together with the appearance of hydroxylated derivatives of ursodeoxycholic acid or it may be due to displacement of the more hydrophobic endogenous bile acids by the hydrophilic ursodeoxycholic acid.  相似文献   

6.
Ursodeoxycholic acid was estimated in bile samples from humans and wild North American black bears using 7 beta-hydroxysteroid dehydrogenase purified from Clostridium absonum by Procion Red affinity chromatography. The percentage ursodeoxycholic acid was calculated by two methods: (a) 7 beta-hydroxyl groups were quantified using 7 beta-hydroxysteroid dehydrogenase and 3 alpha-hydroxyl groups (total bile acids) were quantified using 3 alpha-hydroxysteroid dehydrogenase. The percentage ursodeoxycholic acid was calculated on the basis of [7 beta-hydroxyl groups]/[3 alpha-hydroxyl groups] X 100. (b) Bile was hydrolyzed with sodium hydroxide and subjected to thin-layer chromatography. Bands corresponding to cholic acid, chenodeoxycholic acid plus deoxycholic acid, and ursodeoxycholic acid were identified by the use of standards and Komarowsky's spray reagent. Total bile acids and total ursodeoxycholic acid were measured by elution of silica gel in unsprayed areas corresponding to the bile acid standards and quantification of the total bile acid in each eluate. Direct comparison of these methods validated the use of 7 beta-hydroxysteroid dehydrogenase in the estimation of ursodeoxycholic acid in the biles of black bears and of patients fed ursodeoxycholic acid for cholesterol gallstone dissolution. Relative percentages of ursodeoxycholic acid were 8-24% in four bears and 22 and 27% in the patients ingesting 500 and 750 mg ursodeoxycholic acid per day for 3 months, respectively. Predictably lower values were obtained in two control subjects and one patient ingesting 750 mg chenodeoxycholic acid per day for 3 months.  相似文献   

7.
We explored the influence of the hydrophilic-hydrophobic balance of a series of natural bile acids on cholesterol absorption in the mouse. Male C57L/J mice were fed standard chow or chow supplemented with 0.5% cholic; chenodeoxycholic; deoxycholic; dehydrocholic; hyocholic; hyodeoxycholic; alpha-, beta-, or omega-muricholic; ursocholic; or ursodeoxycholic acids for 7 days. Biliary bile salts were measured by reverse-phase HPLC, and hydrophobicity indices were estimated by Heuman's method. Cholesterol absorption efficiency was determined by a plasma dual-isotope ratio method. In mice fed chow, natural proportions of tauro-beta-muricholate (42 +/- 6%) and taurocholate (50 +/- 7%) with a hydrophobicity index of -0.35 +/- 0.04 produced cholesterol absorption of 37 +/- 5%. Because bacterial and especially hepatic biotransformations of specific bile acids occurred, hydrophobicity indices of the resultant bile salt pools differed from fed bile acids. We observed a significant positive correlation between hydrophobicity indices of the bile salt pool and percent cholesterol absorption. The principal mechanism whereby hydrophilic bile acids inhibit cholesterol absorption appears to be diminution of intraluminal micellar cholesterol solubilization. Gene expression of intestinal sterol efflux transporters Abcg5 and Abcg8 was upregulated by feeding cholic acid but not by hydrophilic beta-muricholic acid nor by hydrophobic deoxycholic acid. We conclude that the hydrophobicity of the bile salt pool predicts the effects of individual fed bile acids on intestinal cholesterol absorption. Natural alpha- and beta-muricholic acids are the most powerful inhibitors of cholesterol absorption in mice and might act as potent cholesterol-lowering agents for prevention of cholesterol deposition diseases in humans.  相似文献   

8.
Patients suffering from cerebrotendinous xanthomatosis, an inborn error of metabolism in bile acid synthesis, excrete excessive amounts of 23-hydroxylated bile alcohols, 23-norcholic acid and 23-hydroxycholic acid into urine. In this study the configuration of this excreted 23-hydroxycholic acid was established as (23R)-hydroxycholic acid. Urine samples of two treated patients, receiving chenodeoxycholic acid, were investigated to see whether this administered bile acid was partly converted into 23-hydroxychenodeoxycholic acid. One patient was treated with ursodeoxycholic acid for 1 month and subsequently with chenodeoxycholic acid, and the urinary excretion of both (23R)-hydroxychenodeoxycholic acid and (23R)-hydroxyursodeoxycholic acid were followed. Indeed, all three patients excreted (23R)-hydroxylated chenodeoxycholic acid during oral treatment with chenodeoxycholic acid, and the patient treated with ursodeoxycholic acid excreted (23R)-hydroxylated ursodeoxycholic acid. During treatment with chenodeoxycholic acid the excretion of (23R)-hydroxychenodeoxycholic acid increases at first and later on decreases markedly. These findings suggest increased (23R)-hydroxylase activity in patients suffering from cerebrotendinous xanthomatosis, acting both on endogenously synthesized bile alcohols and on exogenously administered bile acids; during continuation of chenodeoxycholic acid treatment in an effective dose (750 mg/day) this enzyme activity gradually disappears.  相似文献   

9.
Cerebrotendinous xanthomatosis (CTX) is a rare inherited lipid storage disease caused by a defect in bile acid synthesis in which cholesterol and its product cholestanol are deposited in neurological and vascular tissue. Therapy with chenodeoxycholic acid but not with the 7 beta-epimeric ursodeoxycholic acid is usually successful. In an untreated patient, total and low density lipoprotein (LDL) cholesterol were found to be low (134 +/- 11 and 78 +/- 8 mg/dl, respectively). The production rate (PR) and fractional catabolic rate (FCR) of very low density (VLDL) apolipoprotein B (apoB) were, however, both markedly increased (34.7 mg/kg per day and 13.7 pools/day, respectively vs. 15.1 +/- 5.0 mg/kg per day and 6.2 +/- 3.8 pools/day in controls) while the PR and FCR of LDL apoB were moderately elevated (16.3 mg/kg per day and 0.65 pools/day, respectively vs. 12.9 +/- 1.2 mg/kg per day and 0.52 +/- 0.10 pools/day in controls). After 1 month of 750 mg/day of chenodeoxycholic acid, the FCR and PR of both VLDL and LDL apoB became normal while total plasma cholesterol increased significantly to 145 +/- 18 mg/dl. In a second patient who had been receiving 750 mg/day of chenodeoxycholic acid for 6 months lipoprotein kinetics were normal. These parameters did not change when the subject was switched to 750 mg/day ursodeoxycholic acid. We postulate that cholesterol biosynthesis in CTX is derepressed by a diminished hepatic pool of chenodeoxycholic acid and that the elevated secretion of apoB is a response to the increased rate of cholesterol production.  相似文献   

10.
During the decade in which the medical dissolution of gall stones has become feasible several drugs have been introduced but only the two listed in the British National Formulary have been intensively evaluated and shown to be effective--chenodeoxycholic acid and the closely allied ursodeoxycholic acid. The dissolution of gall stones was last reviewed in the "BMF" in 1976, at which stage experience with chenodeoxycholic acid was limited. Since then the indications and potential for this bile acid in treating gall stones have become better understood, and data on the newly introduced ursodeoxycholic acid are being evaluated. Cholesterol, but not pigment, gall stones are amenable to oral dissolution treatment. This review will cover firstly, chenodeoxycholic acid, secondly, ursodeoxycholic acid, then a comparison of the two drugs, an assessment of the place of medical dissolution in the management of gall stones, and, finally, the dissolution of stones in the common bile duct.  相似文献   

11.
The effect of individual 7 beta-hydroxy bile acids (ursodeoxycholic and ursocholic acid), bile acid analogues of ursodeoxycholic acid, combination of bile acids (taurochenodeoxycholate and taurocholate), and mixtures of bile acids, phospholipids and cholesterol in proportions found in rat bile, on bile acids synthesis was studied in cultured rat hepatocytes. Individual steroids tested included ursodeoxycholate (UDCA), ursocholate (UCA), glycoursodeoxycholate (GUDCA) and tauroursodeoxycholate (TUDCA). Analogues of UDCA (7-methylursodeoxycholate, sarcosylursodeoxycholate and ursooxazoline) and allochenodeoxycholate, a representative of 5 alpha-cholanoic bile acid were also tested in order to determine the specificity of the bile acid biofeedback. Each individual steroid was added to the culture media at concentrations ranging from 10 to 200 microM. Mixtures of taurochenodeoxycholate (TDCA) and taurocholate in concentrations ranging from 150 to 600 microM alone and in combination with phosphatidylcholine (10-125 microM) and cholesterol (3-13 microM) were also tested for their effects on bile acid synthesis. Rates of bile acid synthesis were determined as the conversion of added lipoprotein [4-14C]cholesterol or [2-14C]mevalonate into 14C-labeled bile acids and by GLC quantitation of bile acids secreted into the culture media. Individual bile acids, bile acid analogues, combination of bile acids and mixture of bile acids with phosphatidylcholine and cholesterol failed to inhibit bile acid synthesis in cultured hepatocytes. The addition of UDCA or UCA to the culture medium resulted in a marked increase in the intracellular level of both bile acids, and in the case of UDCA there was a 4-fold increase in beta-muricholate. These results demonstrate effective uptake and metabolism of these bile acids by the rat hepatocytes. UDCA, UCA, TUDCA and GUDCA also failed to inhibit cholesterol-7 alpha-hydroxylase activity in microsomes prepared from cholestyramine-fed rats. The current data confirm and extend our previous observations that, under conditions employed, neither single bile acid nor a mixture of bile acids with or without phosphatidylcholine and cholesterol inhibits bile acid synthesis in primary rat hepatocyte cultures. We postulate that mechanisms other than a direct effect of bile acids on cholesterol-7 alpha-hydroxylase might play a role in the regulation of bile acid synthesis.  相似文献   

12.
A gram-positive, anaerobic, chain-forming, rod-shaped anaerobe (isolate G20-7) was isolated from normal human feces. This organism was identified by cellular morphology as well as fermentative and biochemical data as Eubacterium aerofaciens. When isolate G20-7 was grown in the presence of Bacteroides fragilis or Escherichia coli (or another 7 alpha-hydroxysteroid dehydrogenase producer) and chenodeoxycholic acid, ursodeoxycholic acid produced. Time course curves revealed that 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid produced by B. fragilis or E. coli or introduced into the medium as a pure substance was reduced by G20-7 specifically to ursodeoxycholic acid. The addition of glycine- and taurine-conjugated primary bile acids (chenodeoxycholic and cholic acids) and other bile acids to binary cultures of B. fragilis and G20-7 revealed that (i) both conjugates were hydrolyzed to give free bile acids, (ii) ursocholic acid (3 alpha, 7 beta, 12 alpha-trihydroxy-5 beta-cholanoic acid) was produced when conjugated (or free) cholic acid was the substrate, and (iii) the epimerization reaction was at least partially reversible. Corroborating these observations, an NADP-dependent 7 beta-hydroxysteroid dehydrogenase (reacting specifically with 7 beta-OH-groups) was demonstrated in cell-free preparations of isolate G20-7; production of the enzyme was optimal at between 12 and 18 h of growth. This enzyme, when measured in the oxidative direction, was active with ursodeoxycholic acid, ursocholic acid, and the taurine conjugate of ursodeoxycholic acid (but not with chenodeoxycholic, deoxycholic, or cholic acids) and displayed an optimal pH range of 9.8 to 10.2  相似文献   

13.
14.
A gram-positive, anaerobic, chain-forming, rod-shaped anaerobe (isolate G20-7) was isolated from normal human feces. This organism was identified by cellular morphology as well as fermentative and biochemical data as Eubacterium aerofaciens. When isolate G20-7 was grown in the presence of Bacteroides fragilis or Escherichia coli (or another 7 alpha-hydroxysteroid dehydrogenase producer) and chenodeoxycholic acid, ursodeoxycholic acid produced. Time course curves revealed that 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid produced by B. fragilis or E. coli or introduced into the medium as a pure substance was reduced by G20-7 specifically to ursodeoxycholic acid. The addition of glycine- and taurine-conjugated primary bile acids (chenodeoxycholic and cholic acids) and other bile acids to binary cultures of B. fragilis and G20-7 revealed that (i) both conjugates were hydrolyzed to give free bile acids, (ii) ursocholic acid (3 alpha, 7 beta, 12 alpha-trihydroxy-5 beta-cholanoic acid) was produced when conjugated (or free) cholic acid was the substrate, and (iii) the epimerization reaction was at least partially reversible. Corroborating these observations, an NADP-dependent 7 beta-hydroxysteroid dehydrogenase (reacting specifically with 7 beta-OH-groups) was demonstrated in cell-free preparations of isolate G20-7; production of the enzyme was optimal at between 12 and 18 h of growth. This enzyme, when measured in the oxidative direction, was active with ursodeoxycholic acid, ursocholic acid, and the taurine conjugate of ursodeoxycholic acid (but not with chenodeoxycholic, deoxycholic, or cholic acids) and displayed an optimal pH range of 9.8 to 10.2  相似文献   

15.
Bile acid structure and bile formation in the guinea pig   总被引:2,自引:0,他引:2  
The effects of intravenous infusions (1-4 mumol/min/kg) of 14 bile acids, cholic, deoxycholic, ursodeoxycholic, chenodeoxycholic, dehydrocholic, and their glycine and taurine conjugates, on bile flow and composition and on the biliary permeation of inert carbohydrates have been studied in the guinea pig bile fistula. Hydroxy bile acids were eliminated in bile without major transformation, except for conjugation (over 90%) when unconjugated bile acids were infused. During infusion of dehydrocholate and taurodehydrocholate, 77-100% of the administered dose was recovered in bile as 3-hydroxy bile acids, thus indicating that reduction of the keto group in position 3 was virtually complete. All bile acids produced choleresis at the doses employed: the strongest choleretic was deoxycholate (81.78 microliters/mumol), the weakest was taurodehydrocholate (10.2 microliters/mumol). Choleretic activity was directly and linearly related to bile acid hydrophobicity, as inferred by HPLC, both for similarly conjugated bile acids, and for bile acids having the same number, position, or configuration of the hydroxyl groups. In all instances, the rank ordering was: deoxycholate greater than chenodeoxycholate greater than cholate greater than ursodeoxycholate. During choleresis produced by any of the bile acids tested, bicarbonate concentration in bile slightly declined, but the calculated concentration in bile-acid-stimulated bile (45-57 mmol/l) was always higher than that measured in plasma (23-26 mmol/l). Biliary concentrations of cholesterol (20-68 mumol/l) and phospholipid (14-63 mumol/l) were very low during spontaneous secretion, and declined even further following bile acid choleresis. None of the infused bile acids consistently modified biliary excretion of cholesterol and phospholipid. Consistent with a previous observation from this laboratory, all hydroxy bile acids reversibly diminished [14C]erythritol and [14C]mannitol biliary entry during choleresis, while they increased or failed to modify that of [3H]sucrose and [3H]inulin. The rank ordering for the inhibitory effect on [14C]erythritol and [14C]mannitol permeation was: 3 alpha,7 alpha,12 alpha-trihydroxy greater than 3 alpha,7 alpha-dihydroxy greater than 3 alpha,7 beta-dihydroxy greater than 3 alpha,12 alpha-dihydroxy bile acids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The formation of tubules by p-tert-butylphenylamide derivatives of chenodeoxycholic and ursodeoxycholic acids in aqueous solution is investigated. The critical aggregation concentrations of the new surfactants are much lower than those of ursodeoxycholate and chenodeoxycholate, indicating the enhanced surfactant properties resulting by the presence of the hydrophobic p-tert-butylphenyl group. The molecular areas at the air-water interface suggest the formation of monolayer films with molecules upright oriented. The shape of the aggregates was investigated by TEM. The main structure present in solution corresponds to tubules. The estimated value for the wall thickness of tubules suggests that a bilayer structure is formed. Host of positively charged latex beads by tubules suggests that their inner and outer surfaces are negatively charged. The acid form of the chenodeoxycholate derivative was recrystallized from toluene and its crystal structure analyzed.  相似文献   

17.
The metabolic fate of the bile add analogs, 3α,7α-dihydroxy-7β-methyl-5β-cholanoic acid and 3α,7β-dihydroxy-7α-methyl-5β-cholanoic acid, was investigated and compared with that of chenodeoxycholic acid in hamsters. Both bile acid analogs were absorbed rapidly from the intestine and excreted into bile at similar to that of chenodeoxycholic acid. In the strain of hamster studied, the biliary bile were conjugated with both glycine and taurine. After continuous intravenous infusion, chenodeoxycholic acid the analogs became the major bile acid constituents in bile. After oral administration of a single dose of these compounds, fecal analysis revealed the existence of unchanged material (25–35%) as well as considerable amounts of metabolites (65–75%). The major metabolites excreted into feces were more polar than the starting material and were tentatively identified as trifaydroxy-7-methyl compounds by radioactive thin-layer chromatography. However, monohydroxy compounds were also found in the fecal extracts. These results show that chenodeoxycholic acid and ursodeoxycholic acid with a methyl group at the 7-position are resistant to bacterial 7-dehydroxylation than the normally occurring bile acids and that a certain proportion of these analogs is hydroxylated to give the corespondiag trihydroxy compound(s), In a control experiment, about 5% of administered chenodeoxychoulic acid was metabolized to a trihydroxy feile acid, but most of the compound (95%) was transformed into lithocholic acid.  相似文献   

18.
Y Ayaki  Y Ogura  S Kitayama  S Endo  M Ogura 《Steroids》1983,41(4):509-520
Some difference in functional pool of cholesterol acting as the precursor of bile acids is pointed out between cholic acid and chenodeoxycholic acid. In order to elucidate this problem further, some experiments were performed with rats equilibrated with [7(n)-3H, 4-(14)C] cholesterol by subcutaneous implantation. The bile duct was cannulated in one series of experiments and ligated in another. After the operation 14C-specific radioactivity of serum cholesterol fell, but reached practically a new equilibrium within three days. 14C-Specific radioactivity of serum cholesterol as well as of biliary bile acids in bile-fistula rats and urinary bile acids in bile duct-ligated rats was determined during a three days-period in the new equilibrated state. The results were as follows: (1) 14C-Specific radioactivity of cholic acid and chenodeoxycholic acid in bile was lower than that of serum cholesterol, and 14C-specific radioactivity of cholic acid was clearly lower than that of chenodeoxycholic acid. (2) 14C-Specific radioactivity of cholic acid and beta-muricholic acid in urine was lower than that of serum cholesterol, and 14C-specific radioactivity of cholic acid was lower than that of beta-muricholic acid. (3) Biliary as well as urinary beta-muricholic acid lost tritium label at 7-position entirely during the course of formation from [7(n)-3H, 4-(14)C]cholesterol.  相似文献   

19.
A gram-positive, rod-shaped anaerobe (isolate F-14) was isolated from soil. This organism was identified by cellular morphology as well as by fermentative and biochemical data as Clostridium limosum. Isolate F-14 formed ursocholic acid (UC) and 7-ketodeoxycholic acid (7-KDC) from cholic acid (CA), and ursodeoxycholic acid (UDC) and 7-ketolithocholic acid (7-KLC) from chenodeoxycholic acid (CDC) in whole cell cultures, but did not transform deoxycholic acid (DC). No hydrolysis or transformation occurred when either taurine- or glycine-conjugated bile acids were incubated with F-14. The type stain of Clostridium limosum (American Type Culture Collection 25620) did not transform bile acids. The structures of ursocholic, ursodeoxycholic, 7-ketodeoxycholic, and 7-ketolithocholic acids were verified by mass spectroscopy and by thin-layer chromatography using Komarowsky's spray reagent. The organism transformed cholic and chenodeoxycholic acids at concentrations of 20 mM and 1 mM, respectively; higher concentrations of bile acids inhibited growth. Optimal yields of ursocholic and ursodeoxycholic acids were obtained at 9-24 hr of incubation and depended upon the substrate used. Increasing yields of 7-ketodeoxycholic and 7-ketolithocholic acids, and decreasing yields of ursocholic and ursodeoxycholic acids were observed with longer periods of incubation. Culture pH changed with time and was characterized by a small initial drop (0.2-0.4 pH units) and a subsequent increase to a pH (8.1-8.2) that was above the starting pH (7.4).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Biliary and urinary bile alcohol and bile acid composition has been determined by high performance liquid chromatography in patients with cerebrotendinous xanthomatosis before and after treatment with chenodeoxycholic acid. Most of the bile acids and bile alcohols in the bile and urine were separated in less than 30 min using a radial pack C18 muBondapak 5 micron particle size column with a mobile phase of acetonitrile-water-methanol-acetic acid 70:70:20:1 (v/v/v/v) at a flow rate of 2 ml/min, and a refractive index detector. Before treatment, cholic acid (49%) and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25-tetrol (27%) were the major biliary bile acid and bile alcohol, respectively, but were not detected in the urine of five patients. 5 beta-Cholestane-pentols were, instead, the major urinary bile alcohols with 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 23 xi, 25-pentol (56%) predominating. Whereas 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 24S,25-pentol was not detected in the bile, it was isolated in the urine of all patients (27%). The only urinary bile acid isolated by high performance liquid chromatography was nor-cholic acid. After 1 month of treatment with chenodeoxycholic acid, 0.75 g/day, chenodeoxycholic acid became the major bile acid in the bile of all patients (71%) along with its metabolite, ursodeoxycholic acid (21%). Cholic acid and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25-tetrol were drastically reduced and were only 3% each. The excretion of 5 beta-cholestane-pentols in the urine was also drastically reduced from 130 mg/day to 15 mg/day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号