首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micromolar concentrations of HOCl, an oxidant produced by activated neutrophils, inhibited Ca2+ uptake and Ca2+ATPase of isolated dog heart sarcoplasmic reticulum (SR). DTT antagonized completely the HOCl effect only when it was given within 5 min after the addition of HOCl. When the pharmacological intervention was delayed, the recovery with DTT was not complete, and administration of DTT 30 min after the start of HOCl's reaction with SR resulted in only a small improvement in SR Ca2+ uptake. Although H2O2 and Fe ion-chelate (a free radical-generating procedure) also inhibited Ca2+ uptake and ATPase, the concentrations required were very large. The response of cardiac sarcolemmal and skeletal muscle SR calcium pumps to oxidants was similar to that of the cardiac SR calcium pump.  相似文献   

2.
Effects of cyclic adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase were studied in sarcoplasmic reticulum prepared from cardiac and slow and fast (white) skeletal muscle. Cyclic AMP-dependent protein kinase failed to catalyze phosphorylation of fast skeletal muscle microsomes as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cyclic AMP-dependent protein kinase was without effect on calcium uptake by these microsomes. Treatment of cardiac microsomes obtained from dog, cat, rabbit, and guinea pig with cyclic AMP-dependent protein kinase and ATP resulted in phosphorylation of a 22,000-dalton protein component in the amounts of 0.75, 0.25, 0.30, and 0.14 nmol of phosphorus/mg of microsomal protein, respectively. Calcium uptake by cardiac microsomes was stimulated 1.8- to 2.5-fold when microsomes were treated with cyclic AMP-dependent protein kinase. Protein kinases partially purified from bovine heart and rabbit skeletal muscle were both effective in mediating these effects on phosphorylation and calcium transport in dog cardiac sarcoplasmic reticulum. Slow skeletal muscle sarcoplasmic reticulum also contains a protein with a molecular weight of approximately 22,000 that can be phosphorylated by protein kinase. Phosphorylation of this component ranged from 0.005 to 0.016 nmol of phosphorous/mg of microsomal protein in dog biceps femoris. A statistically significant increase in calcium uptake by these membranes was produced by the protein kinase. Increases in protein kinase-catalyzed phosphorylation of a low molecular weight microsomal component and in calcium transport by sarcoplasmic reticulum of cardiac and slow skeletal muscle may be related to the relaxation-promoting effects of epinephrine seen in these types of muscle. Conversely, the absence of a relaxation-promoting effect of epinephrine in fast skeletal muscle may be associated with the lack of effect of cyclic AMP and protein kinase on calcium transport by the sarcoplasmic reticulum of this type of muscle.  相似文献   

3.
We have proposed that the naturally occurring alkaloid ryanodine reduces the release of calcium from the sarcoplasmic reticulum (SR) in cardiac muscle cells. We summarize the data that support this hypothesis and discuss possible mechanisms for 1) the differences in sensitivity to ryanodine displayed by intact skeletal and cardiac muscle preparations vs. that of skinned cardiac cells and isolated SR membranes, 2) the ability of ryanodine to cause either an increase or a decrease in calcium accumulation by isolated skeletal muscle SR vesicles depending on experimental conditions, and 3) the positive inotropic effects produced by ryanodine in cardiac muscle preparations under certain experimental circumstances. In addition, we also show how ryanodine can be used to evaluate the contributions made by SR calcium release to cellular events in striated muscle.  相似文献   

4.
Summary The effects of various lysophospholipids on the calcium transport activity of sarcoplasmic reticulum (SR) from rabbit skeletal and canine cardiac muscles were examined. The lipids decreased calcium transport activity in both membrane types; the effectiveness being in the order lysoPC > lsyoPS, lysoPG > lysoPE. The maximum inhibition induced by lysoPC, lysoPG and lysoPS was greater than 85% of the normal Ca2+-transport rate. In cardiac SR lysoPE had a maximal inhibition of about 50%. Half maximal inhibition of calcium transport by lysoPC was achieved at 110 nmoles lysoPC/mg SR. At this concentration of lysoPC, the (Ca2+ + Mg2+)-ATPase and Ca2+-uptake activities were inhibited to the same extent (about 60%) in skeletal sarcoplasmic reticulum, while in cardiac sarcoplasmic reticulum, there was less than 20% inhibition of the Ca2+ + Mg2+-ATPase activity. Studies with EGTA-induced passive calcium efflux showed that up to 200 nmoles lysoPC/mg SR did not alter calcium permeability significantly in cardiac sarcoplasmic reticulum. In skeletal muscle membranes the lysophospholipid mediated decrease in calcium uptake correlated well with the increase in passive calcium efflux due to lysophosphatidylcholine. The difference in the lysophospholipid-induced effects on the sarcoplasmic reticulum from the two muscle types probably reflects variations in protein and other membrane components related to the respective calcium transport systems.  相似文献   

5.
Sarcoplasmic reticulum fragments capable of accumulating calcium were isolated from rat skeletal muscle by differential and sucrose gradient centrifugation. The ability of these fragments to accumulate calcium was impaired by adding 2,2-bis-(p-chlorophenyl)-1,1,1-trichloroethane (DDT) to the assay medium at concentrations of 0.06 to 6 muM. DDT (6 muM) caused a sharp lag in calcium uptake, with an 82% reduction in reaction rate 30 sec after calcium was added and a 62% reduction after one min. Basal ATPase activity of the microsomal fraction was inhibited by DDT but the calcium-stimulated increment of ATP hydrolysis was not. The findings show that DDT hinders calcium uptake by sarcoplasmic reticulum, but by some means other than inhibition of the calcium-stimulated ATPase. An apparent antagonism between DDT and ouabain or oligomycin was indicated. We propose that the presence of the lipid-soluble DDT molecule within the membrane of the sarcoplasmic reticulum interferes with the normal rapid uptake of calcium ions required for muscle relaxation, and that this interference may contribute to loss of muscle control in organisms poisoned by DDT.  相似文献   

6.
Calsequestrin is a high-capacity Ca(2+)-binding protein and a major constituent of the sarcoplasmic reticulum (SR) of both skeletal and cardiac muscle. Two isoforms of calsequestrin, cardiac and skeletal muscle forms, have been described which are products of separate genes. Purified forms of the two prototypical calsequestrin isoforms, dog cardiac and rabbit fast-twitch skeletal muscle calsequestrins, serve as excellent substrates for casein kinase II and are phosphorylated on distinct sites (Cala, S.E. and Jones, L.R. (1991) J. Biol. Chem 266, 391-398). Dog cardiac calsequestrin is phosphorylated at a 50 to 100-fold greater rate than is rabbit skeletal muscle calsequestrin, and only the dog cardiac isoform contains endogenous Pi on casein kinase II phosphorylation sites. In this study, we identified and examined both calsequestrin isoforms in rat muscle cultures and homogenates to demonstrate that the cardiac isoform of calsequestrin in rat skeletal muscle was phosphorylated in vivo on sites which are phosphorylated by casein kinase II in vitro. Phosphorylation of rat skeletal muscle calsequestrin was not detected. In tissue homogenates, cardiac and skeletal muscle calsequestrin isoforms were both found to be prominent substrates for endogenous casein kinase II activity with cardiac calsequestrin the preferred substrate. In addition, these studies revealed that the cardiac isoform of calsequestrin was the predominant form expressed in skeletal muscle of fetal rats and cultured myotubes.  相似文献   

7.
The ability of a sudden increase in pH to initiate a release of calcium from isolated skeletal and cardiac muscle sarcoplasmic reticulum following calcium accumulation in the absence of a precipitating anion (calcium binding) is described. In skeletal sarcoplasmic reticulum a sudden increase in pH caused a rapid release of accumulated calcium. In cardiac sarcoplasmic reticulum a sudden increase in pH before the calcium binding process was complete caused the release of a small amount of calcium at a relatively slow rate. A sudden change in pH after the completion of calcium binding failed to trigger a release of calcium. The effect of pH on oxalate supported calcium uptake and on unidirectional calcium efflux rate by cardiac sarcoplasmic reticulum was also studied. Both the rate of calcium uptake and of unidirectional calcium efflux increased as the pH was raised from 6.4 to 7.2, reflecting an increased permeability of the sarcoplasmic reticulum membrane to calcium. These results indicate that in cardiac muscle a sudden increase in pH is unlikely to be the in vivo signal for calcium release from the sarcoplasmic reticulum. However, the effect of pH on calcium uptake and efflux by cardiac sarcoplasmic reticulum may contribute to the negative inotropic effect of an acidosis on the heart.  相似文献   

8.
Calcium transport into sarcoplasmic reticulum fragments isolated from dog cardiac and mixed skeletal muscle (quadriceps) and from mixed fast (tibialis), pure fast (caudofemoralis) and pure slow (soleus) skeletal muscles from the cat was studied. Cyclic AMP-dependent protein kinase and phosphorylase b kinase stimulated the rate of calcium transport although some variability was observed. A specific protein kinase inhibitor prevented the effect of protein kinase but not of phosphorylase b kinase. The addition of cyclic AMP to the sarcoplasmic reticulum preparations in the absence of protein kinase had only a slight stimulatory effect despite the presence of endogenous protein kinase. Cyclic AMP-dependent protein kinase catalyzed the phosphorylation of several components present in the sarcoplasmic reticulum fragments; a 19000 to 21 000 dalton peak was phosphorylated with high specific activity in sarcoplasmic reticulum preparations isolated from heart and from slow skeletal muscle, but not from fast skeletal muscle. Phosphorylase b kinase phosphorylated a peak of molecular weight 95000 in all of the preparations. Cyclic AMP-dependent protein kinase-stimulated phosphorylation was optimum at pH 6.8; phosphorylase b kinase phosphorylation had a biphasic curve in cardiac and slow skeletal muscle with optima at pH 6.8 and 8.0. The addition of exogenous phosphorylase b kinase or protein kinase increased the endogenous level of phosphorylation 25-100%. All sarcoplasmic reticulum preparations contained varying amounts of adenylate cyclase, phosphorylase b and a (b:a = 30.1), "debrancher" enzyme and glycogen (0.3 mg/mg protein), as well as varying amounts of protein kinase and phosphorylase b kinase which were responsible for a significant endogenous phosphorylation. Thus, the two phosphorylating enzymes stimulated calcium uptake in the sarcoplasmic reticulum of a variety of muscles possessing different physiologic characteristics and different responses to drugs. In addition, the phosphorylation catalyzed by these enzymes occurred at two different protein moieties which make physiologic interpretation of the role of phosphorylation difficult. While the role phosphorylation in these mechanisms is complex, the presence of a glycogenolytic enzyme system may be an important link in this phenomenon. The sarcoplasmic reticulum represents a new substrate for phosphorylase b kinase.  相似文献   

9.
Sarcoplasmic reticulum isolated from moderately fast rabbit skeletal muscle contains intrinsic adenosine 3',5'-monophosphate (cAMP)-independent protein kinase activity and a substrate of 100 000 Mr. Phosphorylation of skeletal sarcoplasmic reticulum by either endogenous membrane bound or exogenous cAMP-dependent protein kinase results in stimulation of the initial rates of Ca2+ transport and Ca2+-ATPase activity. To determine the molecular mechanism by which protein kinase-dependent phosphorylation regulates the calcium pump in skeletal sarcoplasmic reticulum, we examined the effects of protein kinase on the individual steps of the Ca2+-ATPase reaction sequence. Skeletal sarcoplasmic reticulum vesicles were preincubated with cAMP and cAMP-dependent protein kinase in the presence (phosphorylated sarcoplasmic reticulum) and absence (control sarcoplasmic reticulum) of adenosine 5'-triphosphate (ATP). Control and phosphorylated sarcoplasmic reticulum were subsequently assayed for formation (5-100 ms) and decomposition (0-73 ms) of the acid-stable phosphorylated enzyme (E approximately P) of Ca2+-ATPase. Protein kinase mediated phosphorylation of skeletal sarcoplasmic reticulum resulted in pronounced stimulation of initial rates and levels of E approximately P in sarcoplasmic reticulum preincubated with either ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) prior to assay (Ca2+-free sarcoplasmic reticulum), or with calcium/EGTA buffer (Ca2+-bound sarcoplasmic reticulum). These effects were evident within a wide range of ionized Ca2+. Phosphorylation of skeletal sarcoplasmic reticulum by protein kinase also increased the initial rate of E approximately P decomposition. These findings suggest that protein kinase-dependent phosphorylation of skeletal sarcoplasmic reticulum regulates several steps in the Ca2+-ATPase reaction sequence which result in an overall stimulation of the active calcium transport observed at steady state.  相似文献   

10.
Sarcoplasmic reticulum preparations from rabbit cardiac and fast skeletal muscle react differentially with low concentrations of 1-fluoro- and 1,5-difluoro-2,4-dinitrobenzene. Dinitrophenylation of cardiac sarcoplasmic reticulum by 1-fluoro-2,4-dinitrobenzene is not affected by Ca2+ and is limited to the lipoprotein-lipid region. This contrasts sharply with the predominant Ca2+-dependent dinitrophenylation of the ATPase protein of rabbit skeletal sarcoplasmic reticulum by this reagent. Formation of non-serial high mol. wt. oligomers by 1,5-difluoro-2,4-dinitrobenzene is significantly greater in cardiac than in skeletal vesicles. Substrate MgATP2- does not protect rabbit cardiac sarcoplasmic reticulum ATPase activity or Ca2+ uptake from dinitrophenylation when monofunctional and bifunctional reagents are used. Chemical differences in the overall structure of the two kinds of membrane preparations can be ascertained from a comparison of the effects of Ca2+ and MgATP2- on the reactivity of these reagents.  相似文献   

11.
Quinidine potentiates twitch tension and (at higher concentrations) causes contracture of skeletal muscle whereas the same drug reduces tension development of cardiac muscle. To gain insight into the possible differences in the excitation-contraction coupling mechanism of the two types of muscle the effect of quinidine on calcium accumulation by isolated sarcoplasmic reticulum from skeletal and cardiac muscle was investigated. In a medium containing ATP, Mg++, oxalate, and 45Ca, pharmacologically active concentrations of the drug inhibited calcium accumulation by both skeletal and cardiac sarcoplasmic reticulum. The inhibition of the rates of calcium, uptake by the skeletal muscle preparation ranged from 11% with 10-4 M quinidine to 90% with 10-3 M quinidine. With the cardiac muscle preparation the inhibition ranged from 16% with 3 x 10-6 M quinidine to 100% with 10-3 M quinidine. With both preparations the inhibition of calcium transport was accompanied by an inhibition of the Ca++-activated ATPase activity of the sarcoplasmic reticulum. The effect of quinidine on the skeletal sarcoplasmic reticulum supports the hypothesis that this compound produces twitch potentiation and contracture by interfering with intracellular calcium, sequestration. Its effect on cardiac sarcoplasmic reticulum. has been interpreted in terms of the hypothesis that cardiac contractility is a function of the amount of calcium released from the sarcoplasmic reticulum which is in turn dependent upon the absolute calcium content of the reticulum. Hence, following inhibition of calcium transport there would be less calcium available for coupling.  相似文献   

12.
Thapsigargin is a natural product that specifically inhibits all known SERCA calcium pumps with high affinity. We investigated the effects of thapsigargin on cardiac sarcoplasmic reticulum (SR) by measuring the oxalate-supported calcium uptake rate in the unfractionated homogenate and in the isolated SR fraction. The uptake rate in both the isolated SR and unfractionated homogenate are stimulated about two-fold by preincubation with high concentrations of ryanodine, which closes the SR efflux channel. Thapsigargin stoichiometrically and completely inhibited the calcium uptake rate in the isolated SR, both in the presence and absence of SR channel blockade. In contrast, thapsigargin nearly completely inhibited the homogenate calcium uptake only in the absence of SR channel blockade; in the presence of blockade, about 20% of the uptake activity was insensitive to thapsigargin. This result unmasks a thapsigargin-insensitive, ryanodine-sensitive component of calcium uptake in the heart. This activity is in an oxalate-permeable pool and is inhibited by cyclopiazonic acid, another inhibitor of the SERCA calcium pumps. There was no TG-insensitive activity in the rat EDL muscle homogenate. The absence of thapsigargin-insensitive uptake activity in the isolated SR can be attributed to its inactivation during the isolation of the SR. The oxalate permeability and ryanodine sensitivity suggest that the TG-insensitive calcium uptake activity is closely related to the classical SR. The different thapsigargin sensitivities suggests the existence of two kinds of intracellular calcium pumps in the heart.  相似文献   

13.
The rate and capacity of oxalate-supported calcium uptake was measured in homogenates of rat fast, slow, and cardiac muscle. The contribution of the releasing fraction of the sarcoplasmic reticulum (SR) to the calcium uptake abilities was estimated using ruthenium red or ryanodine to block the release channel. A relatively small fraction (12-20%) of the calcium pumping activity was associated with the release channel in skeletal muscle compared to 50% or more in cardiac muscle. The total capacity of the SR in the muscle types was in the ratio 1:0.75:1.5 for cardiac, slow, and fast muscle, respectively, while the rates of uptake were in the ratio 1:3.8:14.4. The major difference in the muscle types appears to be the density of pumping activity in the SR rather than the volume of the SR. The difference in the density of pumping activity is due to intrinsic differences in the kinetics of the calcium pump units and in their surface density.  相似文献   

14.
Transient-state kinetics of phosphorylation and dephosphorylation of the Ca2+-ATPase of sarcoplasmic reticulum vesicles from rabbit skeletal and dog cardiac muscles were studied in the presence of varying concentrations of monovalent and divalent cations. Monovalent cations affect the two types of sarcoplasmic reticulum differently. When the rabbit skeletal sarcoplasmic reticulum was Ca2+ deficient, preincubation with K+ (as compared with preincubation with choline chloride) did not affect initial phosphorylation at various concentrations of Ca2+, added with ATP to phosphorylate the enzyme. This is in contrast to preincubation with K+ of the Ca2+-deficient dog cardiac sarcoplasmic reticulum, which resulted in an increase in the phosphoenzyme level. When Ca2+ was bound to the rabbit skeletal sarcoplasmic reticulum, K+ inhibited E - P formation; but under the same conditions, E - P formation of dog cardiac sarcoplasmic reticulum was activated by K+ at 12 microM Ca2+ and inhibited at 0.33 and 1.3 microM Ca2+. Li+, Na+ and K+ also have different effects on E - P decomposition of skeletal and cardiac sarcoplasmic reticulum. The latter responded less to these cations than the former. Studies with ADP revealed differences between the two types of sarcoplasmic reticulum. For rabbit skeletal sarcoplasmic reticulum, 40% of the phosphoenzyme formed was 'ADP sensitive', and the decay of the remaining E - P was enhanced by K+ and ADP. Dog cardiac sarcoplasmic reticulum yielded about 40--48% ADP-sensitive E - P, but the decomposition rate of the remaining E - P was close to the rate measured in the absence of ADP. Thus, these studies showed certain qualitative differences in the transformation and decomposition of phosphoenzymes between skeletal and cardiac muscle which may have bearing on physiological differences between the two muscle types.  相似文献   

15.
Sarcoplasmic reticulum (SR) Ca2+-ATPase was purified from dog cardiac and rabbit skeletal muscle using Triton X-100 at optimal ratios of 0.5 for cardiac and 0.5 to 1.0 for skeletal SR. The yields of Ca2+-ATPase were 4 to 5 and 1 to 2.2 mg/100 mg of cardiac and skeletal SR protein, respectively. The enzyme activities were 547 +/- 67 mumol ADP/mg/h for cardiac and 1192 +/- 172 mumol ADP/mg/h for skeletal Ca2+-ATPase. Removal of excess Triton X-100 increased the enzyme activities to 719 +/- 70 and 1473 +/- 206 mumol ADP/mg/h, respectively. The residual content of Triton X-100 for cardiac and skeletal Ca2+-ATPase was 20 and 5 mol/mol of enzyme, respectively. Maximum levels of phosphoenzyme were 4.4 +/- 0.2 and 5.6 +/- 0.6 nmol/mg in each case. A single protein band of 100 kDa was obtained for each purified Ca2+-ATPase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The preparations were stable at -80 degrees C for 5 months in the presence of 1 mM Ca2+. The phospholipid content of the purified enzyme was 2-fold greater than that of native cardiac and skeletal SR microsomes. Repeated washing of the purified enzyme preparation did not alter the phospholipid content or the specific activities.  相似文献   

16.
Sarcomplasmic reticulum from rabbit fast skeletal muscle contains intrinsic protein kinase activity (ATP:protein phosphotransferase, EC 2.7.1.37) and a substrate. The protein kinase activity was Mg2+ dependent and could also phosphorylate exogenous protein substrates. Autophosphorylation of sarcoplasmic reticulum vesicles was not stimulated by cyclic AMP, neither was it inhibited by the heat-stable protein kinase inhibitor protein. The phosphorylated membranes had the characteristics of a protein with a phosphoester bond. An average of 73 pmol Pi/mg protein were incorporated in 10 min at 30 degrees C. Addition of exogenous cyclic AMP-dependent protein kinase increased the endogenous level of phosphorylation by 25-100%. Sarcoplasmic reticulum membrane phosphorylation, mediated by either endogenous cyclic AMP-independent or exogenous cyclic AMP-dependent protein kinase, occurred on a 100 000 dalton protein and both enzyme activities resulted in enhanced calcium uptake and Ca2+-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3), in a manner similar to cardiac microsomal preparations. Regulation of Ca2+ transport in skeletal sarcoplasmic reticulum may be mediated by phosphorylation of a 100 000 dalton component of these membranes.  相似文献   

17.
Sarcoplasmic reticulum fragments isolated from dog cardiac muscle possess a calcium-accumulating system associated with a series of enzymes linked to glycogenolysis. These enzymes include: adenylate cyclase, cyclic AMP-dependent protein kinase, phosphorylase b kinase, phosphorylase (b/a, 30/1),"debrancher" enzyme, and glycogen (0.3 to 0.7 mg/mg of protein). The sarcoplasmic reticulum preparation produced glucose 1-phosphate and glucose from either endogenous or exogenous glycogen. Both the calcium-accumulating and glycogenolytic enzymes sediment in a single peak at 33% sucrose on a linear continous sucrose density gradient, and the complex remains intact throughout repeated washing. Glycogen particles appear to be associated with the sarcoplasmic reticulum in situ as well as in the isolated microsomal fraction. The sarcoplasmic reticulum-glycogenolytic complex, monitored by a linked enzyme spectrophotometric assay, shows several features: (a) activation of phosphorylase activity to peak rate occurs over a very rapid time course which cannot be duplicated using combinations of purified enzymes; (b) activation is inhibited by protein kinase inhibitor; (c) phosphorylase b functions as in the purified form with respect to AMP (Km, 0.3 mM); (d) in the presence of limiting amounts of glycogen, optimal phosphorylase b activity in the sarcoplasmic reticulum requires the presence of debrancher, and the activity is sensitive to inhibitors of that enzyme such as Tris, which suggests the possiblity that the enzymes bear a specific structual relationship to the glycogen present. Phosphorylase b leads to a activation in the sarcoplasmic reticulum was completely resistant to ethylene glycol bis(beta-aminoethyl either)-N,N'-tetraacetic acid (EGTA). Inhibition of calcium accumulation by or release of bound calcium from sarcoplasmic reticulum by X537A (RO 2-2985) did not alter the EGTA resistance. These results suggest that cardiac sarcoplasmic reticulum is a complex organelle containing functions that may be related to excitation-contraction coupling and intermediary metabolism.  相似文献   

18.
Magnesium-dependent ATPase (MgATPase) activity is associated with many E1-E2 or P-type transport ATPases including the sarcoplasmic reticulum (SR) calcium ATPase. The SR isolated from rat heart has a MgATPase activity which is 6-12 times faster than the MgATPase activity of the SR isolated from dog heart. To determine the origin of the high MgATPase activity of rat heart SR, we compared and contrasted cardiac SR isolated from both species. The preparations were similar in the following ways: (i) contamination by other organelles; (ii) the comigration of MgATPase activity with calcium-dependent ATPase (CaATPase) activity through a sucrose gradient; (iii) a similar ATPase activity sensitivity to pH and ATP concentration; (iv) the high and similar of sensitivity of ATPase activity to detergent; and (v) a similar protein profile. In both preparations, a single protein in the 105,000-Da region of polyacrylamide gels was phosphorylated by ATP, and the phosphorylated species was an acylphosphate formed in the presence and absence of calcium. Dimethyl sulfoxide, which slows acylphosphoenzyme breakdown, markedly inhibited both CaATPase and MgATPase activities of both preparations but not other enzyme activities. Importantly, the specific inhibitor of the SR calcium pump, thapsigargin, completely inhibited the CaATPase activity with an I50 of 6-7 nM; however, a higher concentration (I50 of 2 microM) was required to inhibit the MgATPase activity of the rat cardiac SR. These results provide evidence that the MgATPase activity of rat cardiac SR is part of the enzyme cycle of the calcium ATPase protein.  相似文献   

19.
[3H]Ryanodine binding to skeletal muscle and cardiac sarcoplasmic reticulum (SR) vesicles was compared under experimental conditions known to inhibit or stimulate Ca2+ release. In the skeletal muscle SR, ryanodine binds to a single class of high-affinity sites (Kd of 11.3 nM). In cardiac SR vesicles, more than one class of binding sites is observed (Kd values of 3.6 and 28.1 nM). Ryanodine binding to skeletal muscle SR vesicles requires high concentrations of NaCl, whereas binding of the drug to cardiac SR is only slightly influenced by ionic strength. In the presence of 5'-adenylyl imidodiphosphate (p[NH]ppA), increased pH, and micromolar concentration of Ca2+ (which all induce Ca2+ release from SR) binding of ryanodine to SR is significantly increased in skeletal muscle, while being unchanged in cardiac muscle. Ryanodine binding to skeletal but not to cardiac muscle SR is inhibited in the presence of high Ca2+ or Mg2+ concentrations (all known to inhibit Ca2+ release from skeletal muscle SR). Ruthenium red or dicyclohexylcarbodiimide modification of cardiac and skeletal muscle SR inhibit Ca2+ release and ryanodine binding in both skeletal and cardiac membranes. These results indicate that significant differences exist in the properties of ryanodine binding to skeletal or cardiac muscle SR. Our data suggest that ryanodine binds preferably to site(s) which are accessible only when the Ca2+ release channel is in the open state.  相似文献   

20.
The effect of corticotropin (ACTH1-39), synacthen (ACTH1-24) and hydrocortisone-hemisuccinate on the activity of Ca-ATPase of skeletal muscle sarcoplasmic reticulum (SR) and calcium (Ca) accumulation in SR vesicles has been studied. It has been shown that ACTH1-39 (I U per 100 g body weight) increased the activity of Ca-ATPase in skeletal muscle SR of rats, while hydrocortisone (5 mg per 100 g body weight) did not change the activity of Ca-ATPase in skeletal muscle SR. However, both hormones increase the total activity of ATPase. ACTH1-39 and ACTH1-24 (0.05-0.0005 U/ml) and hydrocortisone (2.8 X 10(-7)-2.8 X 10(-9) mol/l) increased in vitro Ca-ATPase isolated from rabbit skeletal muscle SR and accumulation of Ca is SR vesicles. At the same time, hydrocortisone reduced calcium/phosphorus ratio, while ACTH1-39 and ACTH1-24 increased it, i.e. hydrocortisone facilitated Ca accumulation in SR requiring more ATP energy, whereas ACTH facilitated Ca accumulation in SR requiring less ATP energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号