首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensitive specific radioenzymatic procedure for determination of catecholamines originally described from our laboratory by Coyle and Henry (1) has been optimized for use in assay of human plasma levels of dopamine, norepinephrine and epinephrine. Dopamine and the total of norepinephrine and epinephrine are assayed by 0-methylation while norepinephrine is determined by N-methylation. Epinephrine is calculated from the difference between the 0-methylation and N-methylation procedures. In a group of 13 normal subjects, plasma levels of epinephrine were found to be 67 ± 9.2 pg/ml, norepinephrine 208 ± 16.9 pg/ml and dopamine 33 ± 8.1 pg/ml. Dopamine determinations are of low reliability because of relatively high blanks and necessary corrections.  相似文献   

2.
Analysis of plasma catecholamines (norepinephrine, epinephrine and dopamine) by high-performance liquid chromatography using 1,2-diphenylethylenediamine as a fluorescent reagent is described. We have developed an automatic catecholamine analyser, based on pre-column fluorescence derivatization and column switching. The analysis time for one assay was 15 min. The correlation coefficients of the linear regression equations were greater than 0.9996 in the range 10–10 000 pg/ml. The detection limit, at a signal-to-noise ratio of 3, was 2 pg/ml for dopamine. A new method of sample preparation for the pre-column fluorescence derivatization of plasma catecholamines was used. In order to protect the catecholamines from decomposition, an ion-pair complex between boric acid and the diol group in the catecholamine was formed at a weakly alkaline pH. The stabilities of plasma catecholamines were evaluated at several temperatures. After complex formation, the catecholamines were very stable at 17°C for 8 h, and the coefficients of variation for norepinephrine, epinephrine and dopamine were 1.2, 4.2 and 9.3%, respectively.  相似文献   

3.
Plasma free catecholamines rise during exercise, but sulfoconjugated catecholamines reportedly fall. This study examined the relationship between exercise intensity and circulating levels of sulfoconjugated norepinephrine, epinephrine, and dopamine. Seven exercise-trained men biked at approximately 30, 60, and 90% of their individual maximal oxygen consumption (VO2max) for 8 min. The 90% VO2max period resulted in significantly increased plasma free norepinephrine (rest, 219 +/- 85; exercise, 2,738 +/- 1,149 pg/ml; P less than or equal to 0.01) and epinephrine (rest, 49 +/- 49; exercise, 555 +/- 516 pg/ml; P less than or equal to 0.05). These changes were accompanied by consistent increases in sulfoconjugated norepinephrine at both the 60% (rest, 852 +/- 292; exercise, 1,431 +/- 639; P less than or equal to 0.05) and 90% (rest, 859 +/- 311; exercise, 2,223 +/- 1,015; P less than or equal to 0.05) VO2max periods. Plasma sulfoconjugated epinephrine and dopamine displayed erratic changes at the three exercise intensities. These findings suggest that sulfoconjugated norepinephrine rises during high-intensity exercise.  相似文献   

4.
C F Saller  M J Zigmond 《Life sciences》1978,23(11):1117-1130
Picogram quantities of the catecholamines, dopamine, norepinephrine, and epinephrine, and the dopamine metabolite, dihydroxyphenylacetic acid, can be measured in tissue or plasma samples utilizing a rapid radioenzymatic procedure. The catechols are converted to their 3H-methylated derivatives (3-methoxytyramine, normetanephrine, metanephrine and homovanillic acid, respectively) by the enzyme catechol-O-methyltransferase with 3H-S-adenosylmethionine serving as the 3H-methyl donor. Following the enzymatic reaction, unreacted 3H-S-Adenosylmethionine is removed by precipitation and the reaction products are separated by thin layer chromatography on silica plates. The areas corresponding to the 3H-methylated derivatives are scraped into scintillation vials, eluted with aqueous buffer, extracted into nonpolar scintillation cocktail, and counted by liquid scintillation spectrometry. Using the standard assay procedure described here, over 100 tubes can be assayed in a single day with a sensitivity of 15–25 pg for all compounds measured. With the application of additional procedures, as little as 1 pg norepinephrine and epinephrine and 5–10 pg dopamine and dihydroxyphenylacetic acid can be quantified in a single sample.  相似文献   

5.
A sensitive radioenzymatic—thin-layer chromatographic assay for the quantitative analysis of the tetrahydroisoquinoline alkaloid, salsolinol, in plasma and neonatal rat tissue is described. The assay involves the enzymatic O-methylation of salsolinol by catechol-O-methyltransferase in presence of [3H] S-adenosylmethionine, and subsequent separation by thin-layer chromatography of the resultant [3H] O-methyl-salsolinol from the O-methylated derivatives of dopamine, epinephrine and norepinephrine. The method allows the detection of as little as 100 pg salsolinol per g tissue, and the accurate quantitation of as little as 100 pg/ml plasma and 500 pg/g tissue. This assay permitted the detection of trace amounts of endogenous salsolinol in neonatal rat tissue (< 500 pg/g tissue).  相似文献   

6.
Liquid chromatography with electrochemical detection (LCEC) provides a rapid, sensitive, and specific technique for measuring human plasma norepinephrine (NE) and epinephrine (E) levels. We tested the reliability and validity of this technique against that of the catechol-O-methyl-transferase radioenzymatic (COMT-RE) assay. In healthy, resting humans, mean NE and E values were similar using the LCEC and COMT-RE techniques (311 vs. 300 pg/ml for NE; 57 vs. 52 pg/ml for E). In a series of 25 plasma samples obtained from a variety of sources, the correlation between the two methods was 0.99 for both NE and E. Coefficients of variation were similar for catecholamine levels above 100 pg/ml, but below this, the COMT-RE technique appeared to be more reliable. The advantages of the LCEC method are its speed, simplicity of sample preparation, low cost per assay, lack of use of radionuclides, and ease in trouble-shooting. The COMT-RE technique is preferable for small sample sizes or large numbers of samples. LCEC offers a reasonable alternative to the COMT-RE technique for measuring plasma norepineprhine and epinephrine.  相似文献   

7.
A radiometric-enzymatic assay for measuring simultaneously femtomole quantities of adrenaline, noradrenaline and dopamine has been developed. The three catecholamines are first converted to their O-methylated analogues by catechol-O-methyltransferase in the presence of S-adenosyl-methionine-3H and thereafter extracted following addition of sodium tetraphenylborate. This extraction, together with an improved quick chromatographic separation and the oxidation of the adrenaline and noradrenaline derivatives to vanillin, yields an extremely high sensitivity and specificity of the method.The present assay allows the determination of adrenaline, noradrenaline and dopamine in tissue samples with a protein content of 100 μg or less and in plasma volumes of 20 – 100 μl. The amine content of 40 – 50 samples can be determined in two days by one person.Due to the high sensitivity achieved, this method promises to be a valid alternative to the gas chromatography-mass spectrometry technique.  相似文献   

8.
We have presented a sensitive and relatively simple and inexpensive method for continuous sampling and determination of plasma catecholamines and a major dopamine metabolite, DOPAC. This method provides the basis for determination of the short-term magnitude of catecholamine response as well as the time course of such a response following several physical or psychological interventions. Resting levels of plasma catecholamines--norepinephrine 292 pg/ml, epinephrine 81 pg/ml and dopamine 29 pg/ml--are comparable to those obtained by other methods. Dopamine and free DOPAC were unaffected by physical or psychological interventions while norepinephrine was considerably increased by isometric handgrip, knee bends, and cold pressor and epinephrine increased during knee bends, mental arithmetic, cold pressor, and blood pressure measurement.  相似文献   

9.
The clinical importance of simultaneous analysis of 3,4-dihydroxyphenylglycol with other human plasma catecholamines has been investigated to better understand the sympathetic nervous system. However, previous reports have had analytical difficulties with both resolution and extraction. The current study uses a reversed-phase triacontylsilyl silica (C30) column under the mobile phase condition without ion-pair reagents to separate catecholamines and their metabolites, with above 91% recoveries for intra-assay, above 85% for inter-assay, and less than 10% (n=5) coefficient of variation. Lower detection limits (S/N=4) and quantification limits (S/N=6) were 40 and 100 pg/mL for norepinephrine, 3,4-dihydroxyphenylglycol, and 3,4-dihydroxyphenylalanine, 10 and 20 pg/mL for epinephrine, 10 and 40 pg/mL for dopamine. Linear ranges were from 40 to 5000 pg/mL for norepinephrine and 3,4-dihydroxyphenylalanine, from 100 to 5000 pg/mL for 3,4-dihydroxyphenylglycol, and from 10 to 2000 pg/mL for epinephrine and dopamine. The C30 column may prove clinically useful, as it provides a convenient and simultaneous method of evaluation of human plasma catecholamines.  相似文献   

10.
E R Micalizzi  D T Pals 《Life sciences》1979,24(22):2071-2076
Measurement of plasma norepinephrine and epinephrine concentrations in the conscious, unrestrained rat yielded values of 138±10 and 55±8 pg/ml, respectively. Ganglionic blockade reduced basal norepinephrine levels without affecting plasma epinephrine levels. Adrenal demedullation reduced plasma epinephrine to undetectable levels (<20 pg/ml) and gave rise to an apparent compensatory increase in plasma norepinephrine levels. Adrenal demedullation in combination with ganglionic blockade reduced plasma norepinephrine to the same level as did ganglionic blockade alone. These observations indicated that the plasma epinephrine was of adrenal origin. Furthermore, under these experimental conditions, the results suggested that the major portion of the plasma norepinephrine was of neuronal origin. When specific destruction of the sympathetic nerve terminals without alteration of adrenal medullary function was accomplished with 6-hydroxydopamine, a fivefold increase in plasma epinephrine concentration was observed at 24 hours. Plasma norepinephrine levels at 24 hours were not significantly altered from the control levels by the 6-hydroxydopamine suggesting that the rodent adrenal medulla was capable of secreting substantial amounts of norepinephrine under these conditions. It was concluded that plasma norepinephrine concentrations reflect both sympathetic neuronal and adrenomedullary activity. However, in the absence of changes in plasma epinephrine, plasma norepinephrine appears to be an index of sympathetic neuron function.  相似文献   

11.
Summary Dopamine, norepinephrine and epinephrine were measured by radioenzymatic assay in blood plasma samples drawn from the umbilical arteries of 30 anaesthetised Landrace pig fetuses. Just prior to term, the concentrations of dopamine (0.46±0.14 ng·ml–1) and norepinephrine (1.74±0.60 ng·mg–1) were lower than earlier in gestation, whereas epinephrine concentrations at term (0.80±0.31 ng·ml–1) were similar to those at mid-gestation, intervening stages of gestation having higher levels of plasma epinephrine. Fetal hypoxia was induced by clamping the umbilical cord for 2 min and the catecholamines determined in arterial blood samples immediately thereafter, then again 3 min after removal of the clamp. Inconsistent effects of cord clamping on catecholamine levels were seen at 55 days, but thereafter, in all but one instance, the hormone levels were increased. Fetuses near term tended to respond less than fetuses at 75 and 96 days gestation (term=114±1 day). Catecholamines were also present in the circulation of fetuses decapitated at 42 days gestation and studied at 109±1 days. The average concentrations of dopamine (1.12±0.27 ng·ml–1) and norepinephrine (8.23±3.04 ng·ml–1) were greater than in intact fetuses, the plasma epinephrine levels being comparable to, or slightly higher than, those in intact fetuses. The results demonstrate that catecholamines are present in the circulation of the intact and decapitated pig fetus and that the actual concentrations and the type of response to umbilical cord clamping are dependent on gestation age.  相似文献   

12.
This study evaluated whether attenuation of sympathoadrenal responses to recurrent hypoglycemia is mediated by diminished noradrenergic activity in the hypothalamus. Male Sprague-Dawley rats received either once daily insulin (1.0 units/kg) injections or an equal administration of saline for 3 days. Both groups received an administration of insulin on the fourth day, during which blood glucose and plasma catecholamines were determined, and extracellular norepinephrine (NE) in the ventromedial hypothalamus (VMH) or paraventricular hypothalamic nucleus (PVN) was monitored with microdialysis. The peak response of plasma epinephrine to insulin-induced hypoglycemia (nadir approximately 3.2 mmol/l) was significantly reduced during the fourth hypoglycemic episode (774 +/- 134 pg/ml) compared with the first episode (2,561 +/- 410 pg/ml, P < 0.001). Baseline levels of extracellular NE were elevated approximately 25% (P = 0.07) in the VMH and approximately 46% (P = 0.03) in the PVN after multiple hypoglycemic episodes. There was no difference in noradrenergic activity during the first or fourth hypoglycemic episode in either brain area. The reduced sympathoadrenal output after recurrent hypoglycemia is likely postsynaptic from hypothalamic NE release or is mediated via a collateral pathway.  相似文献   

13.
A radioenzymatic assay has been developed for the sensitive determination of plasma catecholamines in perchloric acid extracts using α-methyldopamine as an internal standard. With 25 μl of plasma extract in a total volume of 40 μl the assay gives blank values equivalent to approcximately 2 femtomoles (fmole) for epinephrine (E), norepinephrine (NE), 6 fmole for α-methyldopamine (MeDA) and approximately 15 femtomoles for dopamine (DA). Recoveries of 25 dpm/fmole NE, 40 dpm/fmole E, 56 dpm/fmole DA and 80 dpm/fmole MeDA have been obtained. The assay is linear to at least 1 picomole catecholamine (CA) and shows less than 0.5% crossover between E, NE and DA and a 4.7% crossover of αMeDA into DA. The interassay variability was ± 7% for DA, ± 4% for E and ±3% for NE.  相似文献   

14.
A reversed-phase, high-performance liquid chromatographic method employing fluorescence detection is described for the rapid quantification of plasma levels of quinidine, dihydroquinidine and 3-hydroxyquinidine. It involves protein precipitation with acetonitrile followed by direct injection of the supernatant into the chromatograph. For the preparation of plasma standards, pure 3-hydroxyquinidine was isolated from human urine by a simplified thin-layer chromatographic procedure. The mobile phase for the chromatography was a mixture of 1.5 mM aqueous phosphoric acid and acetonitrile (90:10) at a flow-rate of 2 ml/min. The intra-assay coefficient of variation for the assay of quinidine and 3-hydroxyquinidine over the concentration range 2.5–20 μmole/l was < 1% for both. Interassay coefficients of variation for quinidine (10 μmole/l) and 3-hydroxyquinidine (5 μmole/l) were 3.5% and 4.0% with detection limits of 50 and 25 μmole/l respectively. The method correlated well (r2 = 0.96) with an independently developed gas—liquid chromatographic—nitrogen detection assay for quinidine which also possessed a high degree of precision. (Intra-assay coefficient of variation 3.6% at 20 μmole/l). As expected, comparison of the high-performance liquid chromatographic assay with a published protein precipitation—fluorescence assay showed poor correlation (r2 = 0.78).  相似文献   

15.
Effects of asphyxia at birth on postnatal glucose regulation in the rat   总被引:1,自引:0,他引:1  
We have characterized the effect of a period of asphyxia at birth, followed by recovery, upon newborn rats. Asphyxiated pups were subjected to 3 to 5% (v/v) inspired oxygen during the first 20 min of life and then maintained in room air for 6 h. Control pups were maintained in room air throughout the 6-h period. Hypoxia produced severe asphyxia as reflected by a pH of 6.76 +/- 0.05, PaCO2 of 87 +/- 3 mm Hg and PaO2 of 15.4 +/- 4 mm Hg, and by a greatly increased blood lactate/pyruvate ratio. Plasma catecholamine concentrations in asphyxiated pups were elevated (epinephrine 13,866 +/- 250 pg/ml, norepinephrine 9611 +/- 1813 pg/ml) compared to control animals (epinephrine 973 +/- 234 pg/ml, norepinephrine 774 +/- 133 pg/ml) at 20 min. Asphyxia initially increased plasma glucose concentration, and then with recovery it fell below controls. Hepatic glycogen stores did not differ between asphyxiated and control pups. Plasma insulin concentrations remained elevated during asphyxia and the usual neonatal surge of plasma glucagon was significantly delayed. Neonatal asphyxia increases catecholamines, causes lactic acidemia, and alters insulin and glucagon levels. The interactions between these variables alters the normal pattern of glucose availability during the neonatal period.  相似文献   

16.
The responses of plasma free and sulfate-conjugated catecholamines to acute physiological stimulation was examined in normal male subjects. Catecholamines were measured with a sensitive radioenzymatic assay incorporating simultaneous hydrolysis of sulfate conjugates and O-methylation of free norepinephrine and epinephrine. Following 20 minutes recumbency after venepuncture 30 +/- 3% of norepinephrine and 16 +/- 5% of epinephrine was in thr free form. Free catecholamines generally increased during standing, cold immersion and isometric handgrip, but sulfates did not change. Bicycle ergometry markedly increased free catecholamines which rapidly returned to basal levels at the end of exercise. In contrast, sulfated norepinephrine decreased substantially with exercise in all subjects but returned to basal levels 3 minutes after stopping exercise. Epinephrine sulfate varied considerably between subjects but showed a similar, although smaller, fall with exercise. Thus, during physiological stimulation, which caused increases in free norepinephrine and epinephrine levels in plasma, the only consistent change in sulfated catecholamines was a marked fall in norepinephrine sulfate after bicycle exercise. This may indicate saturation of sulfotransferase activity, substrate inhibition or impaired tissue conjugation.  相似文献   

17.
An I125 radioimmunoassay (RIA) has been developed for the measurement of plasma and tissue epinephrine (E) and norepinephrine (NE). The assay utilizes an antibody which specifically binds metanephrine. E and NE are detected by conversion to metanephrine with the enzymes catechol-0-methyltransferase and phenylethanol-amine-N-methyltransferase. The assay is very specific and will allow the measurement of E and NE in less than 500 μl of normal human plasma. E and NE concentrations were determined by both the RIA and a radioenzymatic assay in canine, human and rat biologic samples. The correlation coefficients between the two assays were .962 for E and .956 for NE. The RIA is sensitive, specific, precise and significantly less costly and time consuming than present radioenzymatic methods.  相似文献   

18.
Plasma epinephrine and norepinephrine concentrations were measured in seventeen unanaesthetized 3 to 4 days-old piglets while in a thermoneutral environment (31.3 degrees C) and 30, 45 and 60 min after induction of environmental cold stress (19.9-23.1 degrees C). Plasma epinephrine and norepinephrine concentrations in a warm environment were 142 +/- 26 pg/ml, and 456 +/- 44 pg/ml respectively. Environmental cold stress evoked significant increases in norepinephrine values after 30 (624 +/- 58 pg/ml), 45 (626 +/- 60 pg/ml) and 60 (626 +/- 54 pg/ml) min of cold stress. Plasma epinephrine concentrations did not significantly change during environmental cold stress. Post-hoc stratification of piglets into normothermic (deep rectal temperature 38.6 degrees C-38.8 degrees C, n = 9) and hypothermic (deep rectal temperature 37.1 degrees C-37.7 degrees C, n = 7) subgroups revealed significant increases in plasma norepinephrine concentrations only in the hypothermic subgroup. We conclude that plasma norepinephrine, but not epinephrine, is increased in newborn piglets during environmental cold stress and that the changes in norepinephrine concentrations are related to body core hypothermia. We speculate that hypothermia-mediated reductions in peripheral norepinephrine breakdown and re-uptake contribute to the rise in circulating levels.  相似文献   

19.
Estimation of catecholamines in human plasma was made by ion-exchange chromatography coupled with fluorimetry.Catecholamines in deproteinized plasma were adsorbed onto Amberlite CG-50 (pH 6.5, buffered with 0.4 M phosphate buffer) and selectively eluted by 0.66 M boric acid. The catecholamine fraction was separated further on a column of Amberlite IRC-50 which was coupled with a device for the automated performance of the trihydroxyindole method (epinephrine and norepinephrine) or the 4-aminobenzoic acid—oxidation method (dopamine). One sample could be analysed within 25 min with either method. The lower detection limits were 0.02 ng for epinephrine and dopamine, and 0.04 ng for norepinephrine.Plasma catecholamine contents of healthy adults at rest were epinephrine 0.07 ± 0.01 ng/ml (n = 19), norepinephrine 0.27 ± 0.03 ng/ml (n = 19) and dopamine 0.22 ± 0.03 ng/ml (n = 26).The procedure of adsorption and elution of the plasma catecholamines by ion-exchange resin was simple, the simplicity contributing to constant recovery. The catecholamine fraction could be analysed without evaporation of the eluate. The analytical column could be used for the analysis of more than 1000 samples before excessive back-pressure developed. Our method of continuous measurement of plasma catecholamine fulfils clinical requirements.  相似文献   

20.
A simplified radiometric assay for plasma norepinephrine and epinephrine   总被引:30,自引:0,他引:30  
An assay for plasma norepinephrine and epinephrine levels has been developed by the modification of published procedures. The plasma norepinephrine and epinephrine assay, when compared to currently available methods, provides a substantial decrease in the assay time while providing a 10-fold increase in sensitivity which allows the analysis to be performed on 0.75 ml or less of plasma. Norepinephrine and epinephrine are converted to their O-methylated analogs in the presence of catechol-O-methyl transferase and S-adenosylmethionine-methyl-3H. Following purification of the labelled normetanephrine and metanephrine by solvent extraction and thinlayer chormatography, the amines are oxidized to vanillin, purified by solvent extraction and counted. The specificity, linearity and precision of the assay are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号