首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies showed that when the signal sequence plus 9 amino acid residues from the amino terminus of the major lipoprotein of Escherichia coli was fused to beta-lactamase, the resulting hybrid protein was modified, proteolytically processed, and assembled into the outer membrane as was the wild-type lipoprotein (Ghrayeb, J., and Inouye, M. (1983) J. Biol. Chem. 259, 463-467). We have constructed several hybrid proteins with mutations at the cleavage site of the prolipoprotein signal peptide. These mutations are known to block the lipid modification of the lipoprotein at the cysteine residue, resulting in the accumulation of unprocessed, unmodified prolipoprotein in the outer membrane. The mutations blocked the lipid modification of the hybrid protein. However, in contrast to the mutant lipoproteins, the cleavage of the signal peptides for the mutant hybrid proteins did occur, although less efficiently than the unaltered prolipo-beta-lactamase. The mutant prolipo-beta-lactamase proteins were cleaved at a site 5 amino acid residues downstream of the prolipoprotein signal peptide cleavage site. This new cleavage between alanine and lysine residues was resistant to globomycin, a specific inhibitor for signal peptidase II. This indicates that signal peptidase II, the signal peptidase which cleaves the unaltered prolipo-beta-lactamase, is not responsible for the new cleavage. The results demonstrate that the cleavage of the signal peptide is a flexible process that can occur by an alternative pathway when the normal processing pathway is blocked.  相似文献   

2.
Hybrid proteins were constructed by coupling beta-lactamase to the signal sequence (plus nine amino acids) of selected mutant prolipoproteins of Escherichia coli. The mutant prolipoprotein signal peptides contained lesions in two structural domains of the signal peptide, the basic amino-terminal domain and the hydrophobic core domain. We then compared the processing and localization of the mutant prolipo-beta-lactamases to the processing and localization of the comparable mutant prolipoproteins. We show that a mutant signal sequence with an anionic amino terminus exhibits similar limitations in the processing of prolipo-beta-lactamase as previously observed in prolipoprotein. Deletion of four hydrophobic residues from hydrophobic core results in a signal peptide which slowly translocates a fraction of the total mutant hybrid protein synthesized. This signal peptide was previously shown to translocate lipoprotein efficiently. Alteration of this hydrophobic core, which stimulated synthesis of mutant prolipoproteins, does not stimulate synthesis of prolipo-beta-lactamase. Finally mutations that slowed processing of prolipoprotein by affecting the proposed helical structure of the signal peptide had no significant effect on the processing of prolipo-beta-lactamase. These results suggest that the positively charged amino-terminal domain of the signal peptide has a common role in protein secretion regardless of the secretory protein. On the other hand, other domains of the signal peptide exhibit different phenotypes when the secretory protein is changed.  相似文献   

3.
Each of the 2 glycine residues in the hydrophobic region of the prolipoprotein signal peptide of Escherichia coli was systematically deleted or substituted with a valine residue by oligonucleotide-directed site-specific mutagenesis. Functional analysis of four such mutants as well as four double mutants, resulting from combinations of any two of the single mutations, revealed that (a) glycine residues at positions 9 and 14 could be replaced individually or at the same time with a valine residue without affecting the secretion of prolipoprotein; (b) the deletion of glycine at position 9 had no effect on the secretion of prolipoprotein whereas, when glycine at position 14 was deleted, the glyceride modification and the processing of the mutant prolipoprotein occurred at a much slower rate at 42 degrees C than those of the wild type prolipoprotein; and (c) the effects of deleting glycine at position 14 could be suppressed by the deletion of glycine at position 9, which resulted in shortening the hydrophobic region of the prolipoprotein signal peptide by 2 amino acid residues. These results indicate that the hydrophobic region of the prolipoprotein signal peptide has remarkable flexibility in terms of the relationship between its primary structure and function in protein secretion.  相似文献   

4.
We have investigated the importance of serine and threonine residues within the signal peptide in the secretion and processing of the major outer membrane lipoprotein precursor prolipoprotein in Escherichia coli. This was accomplished by systematically replacing these residues with alanine utilizing oligodeoxyribonucleotide-directed mutagenesis. The results demonstrated that the replacement of serine 15 but not threonine 16 alone caused an initial accumulation of membrane-bound unmodified prolipoprotein. In addition, replacement of both serine 15 and threonine 16 resulted in a greater accumulation of this membrane-bound precursor. The accumulated prolipoprotein could be matured to lipoprotein in a quantitative manner, and this process was inhibited by globomycin and carbonyl cyanide m-chlorophenylhydrazone. These results will be discussed in terms of the contribution that serine and threonine have in determining the overall secondary structure of the signal peptide and its importance in secretion and/or processing.  相似文献   

5.
A mutant of Escherichia coli that accumulated prolipoprotein, a secretory precursor of the outer membrane lipoprotein, was isolated. The prolipoprotein accumulated in this mutant was modified by glyceride, but the in vitro cleavage of the signal peptide of the accumulated prolipoprotein was found to be temperature sensitive. The mutation appears to be located outside the gene for the lipoprotein, thus suggesting that the gene for the signal peptidase for the prolipoprotein was mutated.  相似文献   

6.
The relationship between the modification and processing of prolipoprotein and the formation of murein-bound lipoprotein has been investigated using Escherichia coli mutants altered in the signal sequence of prolipoprotein and an E. coli strain producing OmpF-Lpp hybrid protein. The glyceride-modified prolipoprotein in mutant lppT20 and in globomycin-treated wild-type strain were covalently attached to the peptidoglycan. Likewise, the unmodified prolipoproteins in mutants lppL20, lppV20, and lppG21 were attached to the peptidoglycan. The OmpF-Lpp hybrid protein that is processed but not modified with lipid due to the absence of the cysteine-containing modification site in the hybrid protein was also covalently linked to the peptidoglycan. These results indicate that neither lipid modification nor the processing of prolipoprotein is essential for the formation of murein-bound lipoprotein in E. coli. In contrast, introduction of a charged amino acid residue such as Asp or Arg at the 14th position of prolipoprotein affected not only the lipid modification and processing of the mutant prolipoprotein but also the formation of murein-bound lipoprotein. Replacement of the Gly14 with Glu or Lys partially affected the lipid modification and processing of prolipoprotein; the peptidoglycan of the lppE14 and lppK14 mutants contained a reduced amount of mature lipoprotein but no mutant prolipoprotein. In addition, lpp mutants A20I23I24 and A20I23K24 were found to be defective in both lipid modification/processing of prolipoprotein and the formation of murein-bound lipoprotein. The defective formation of murein-bound lipoprotein in the latter mutants may be related to an alteration in the secondary structure at the modification/processing site of the mutant prolipoproteins.  相似文献   

7.
A signal peptidase specifically required for the secretion of the lipoprotein of the Escherichia coli outer membrane cleaves off the signal peptide at the bond between a glycine and a cysteine residue. This cysteine residue was altered to a glycine residue by guided site-specific mutagenesis using a synthetic oligonucleotide and a plasmid carrying an inducible lipoprotein gene. The induction of mutant lipoprotein production was lethal to the cells. A large amount of the prolipoprotein was accumulated in the outer membrane fraction. No protein of the size of the mature lipoprotein was detected. These results indicate that the prolipoprotein signal peptidase requires a glyceride modified cysteine residue at the cleavage site.  相似文献   

8.
We have examined the structural requirements at the NH2-terminal region of the lipoprotein for its assembly in the outer membrane of Escherichia coli by constructing a hybrid protein consisting of an NH2-terminal portion of the prolipoprotein, consisting of the signal peptide and 9 amino acid residues of lipoprotein, and the entire beta-lactamase sequence. The results from this study indicate that the hybrid protein is modified with glyceride, processed in a globomycin-sensitive step, and localized in the outer membrane. The translocation of the hybrid protein across the cytoplasmic membrane occurs post-translationally and is inhibited by carbonyl cyanide m-chlorophenylhydrazone. Our results, therefore, indicate that the signal peptide and 9 amino acid residues of prolipoprotein are sufficient for its modification, processing, and localization in the outer membrane.  相似文献   

9.
The prolipoprotein, a secretory precursor of the outer membrane lipoprotein of Escherichia coli, is known to be accumulated in the cell envelope when cells are grown in the presence of a cyclic antibiotic, globomycin. The prolipoprotein was localized in the cytoplasmic membrane when it was separated from the outer membrane by sucrose-density gradient centrifugation. However, when the envelope fraction was treated with sodium sarcosinate, the prolipoprotein was found almost exclusively in the sarcosinate-insoluble outer membrane fraction. The prolipoprotein separated in the cytoplasmic membrane by sucrose-density gradient centrifugation was soluble in sarcosinate and could not form a complex with the outer membrane once solubilized in sarcosinate. Labeling of the two lysine residues at positions 2 and 5 of the prolipoprotein with [3H]dinitrophenylfluorobenzene was enhanced 26-fold when the cells were disrupted by sonication. On the other hand, a tryptic fragment of the ompA protein, which is known to exist in the periplasmic space, increased its susceptibility to [3H]dinitrophenylfluorobenzene only 5.3-times upon disruption of the cell structure. These results indicate that the prolipoprotein accumulated in the presence of globomycin is translocated across the cytoplasmic membrane and interacts with the outer membrane. At the same time, it is attached to the cytoplasmic membrane with its amino-terminal signal peptide in such a way that the amino-terminal portion of the signal peptide containing two lysine residues is left inside the cytoplasm.  相似文献   

10.
A globomycin-resistant mutant of Escherichia coli was found to produce a precursor of the major outer membrane lipoprotein (prolipoprotein), in which the glycine residue at position 14 within the signal peptide was replaced by an aspartic acid residue. The same mutation has been reported by Lin et al. (Proc. Natl. Acad. Sci. U.S.A. 175:4891-4895, 1978). The structural gene of the mutant prolipoprotein was inserted into an inducible expression cloning vehicle. When the mutant prolipoprotein was produced in lipoprotein-minus host cells, 82% of the unprocessed protein was found in the membrane fraction, with the remaining 18% localized in the soluble fraction. However, when the production of the mutant prolipoprotein was induced in the wild-type lpp+ host cells, only 31% of the mutant prolipoprotein was found in the membrane fraction, leaving the remaining 69% in the soluble, cytoplasmic fraction. In addition, the assembly of the wild-type lipoprotein in these cells was not affected, whether the mutant prolipoprotein was produced or not. These results suggest that secretions of both mutant and wild-type prolipoproteins utilize the same component(s) responsible for the initial stages of secretion across the cytoplasmic membrane. However, it appears that the wild-type lipoprotein has a higher affinity for these components than does the mutant lipoprotein.  相似文献   

11.
The signal peptide of secretory proteins requires a basic amino terminus followed by a stretch of hydrophobic residues to effect efficient translocation of precursor proteins. Replacement of the positively charged amino-terminal residues of prolipoprotein by acidic amino acids decreased the rate of precursor translocation (Inouye, S., Soberon, X., Franceschini, T., Nakamura, K., Itakura, K., and Inouye, M. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 3438-3441; Vlasuk, G. P., Inouye, S., Ito, H., Itakura, K., and Inouye, M. (1983) J. Biol. Chem. 258, 7141-7148). We demonstrate here that an arginine residue, but not an aspartate, when localized at position 9 of the hydrophobic region of the lipoprotein signal peptide, is able to suppress intramolecularly the processing defect caused by an acidic amino terminus. Furthermore, when present at position 14 of the signal peptide, this positive residue, but not aspartate, was able to support efficient translocation of unmodified prolipoprotein. This demonstrates that a positive residue can restore the function of a severely defective signal peptide and need not be localized at the amino terminus to do so. Both aspartate and arginine substitution at position 14 of the lipoprotein signal peptide stimulated prolipoprotein synthesis. This effect was position-specific, did not require precursor translocation, and was dominant to the inhibition of synthesis caused by an acidic amino terminus.  相似文献   

12.
The variant surface lipoprotein VlpC of Mycoplasma hyorhinis was shown to be processed by cleavage of a characteristic prokaryotic prolipoprotein signal peptide. In addition, a vlpC::phoA fusion protein expressed and translocated in Escherichia coli was recognized by surface-binding monoclonal antibodies, which identified the characteristic region II of Vlps, containing divergent external sequences proximal to the membrane, as an exposed portion of these surface proteins subject to immune recognition and selection.  相似文献   

13.
We have cloned the Escherichia coli lipoprotein structural gene (lpp) into a shuttle vector and studied its expression in both E. coli and in Bacillus subtilis. Using in vitro gene fusion techniques, the lpp gene was placed under the control of the promoter for the erythromycin-resistance (ery) gene. This fusion gene directed the synthesis of Braun's prolipoprotein which can be subsequently processed into the mature lipoprotein. In addition to the prolipoprotein, two ery-lpp hybrid proteins containing a 45- and a 22-amino acid extension preceding the NH2 terminus of prolipoprotein, respectively, are also synthesized in E. coli. The synthesis of these three proteins appears to involve the utilization of three distinct translation initiation sites. In B. subtilis, only two proteins are synthesized, the hybrid protein with a 45-amino acid extension and the prolipoprotein. In both E. coli and B. subtilis, the precursor forms of the hybrid proteins are lipid-modified, and they are processed to mature lipoprotein in vivo. These results indicate that internalized signal sequence containing the prolipoprotein modification and processing site (Leu-Ala-Glys-Cys) can function normally and permit the modification of hybrid proteins to lipid-modified precursors which can be subsequently processed by the globomycin-sensitive prolipoprotein signal peptidase.  相似文献   

14.
The Ipp gene from Proteus mirabilis was cloned onto pBR322 and expressed in Escherichia coli. The P. mirabilis lpp gene is unique in that it has two tandem promoters transcribing two mRNAs that differ in length by approximately 70 nucleotides at their 5'-ends. The two mRNAs thus encode the identical lipoprotein. The P. mirabilis prolipoprotein has a 19-amino acid signal peptide and a 59-amino acid lipoprotein sequence. In spite of the substantial differences in the amino acid sequence from the E. coli prolipoprotein, the P. mirabilis prolipoprotein is normally modified and processed in E. coli, and the resultant lipoprotein is assembled in the E. coli outer membrane as is the E. coli lipoprotein.  相似文献   

15.
The coding of two rare lipoproteins by two genes, rlpA and rlpB, located in the leuS-dacA region (15 min) on the Escherichia coli chromosome was demonstrated by expression of subcloned genes in a maxicell system. The formation of these two proteins was inhibited by globomycin, which is an inhibitor of the signal peptidase for the known lipoproteins of E. coli. In each case, this inhibition was accompanied by formation of a new protein, which showed a slightly lower mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and which we suppose to be a prolipoprotein with an N-terminal signal peptide sequence similar to those of the bacterial major lipoproteins and lysis proteins of some bacteriocins. The incorporation of 3H-labeled palmitate and glycerol into the two lipoproteins was also observed. Sequencing of DNA showed that the two lipoprotein genes contained sequences that could code for signal peptide sequences of 17 amino acids (rlpA lipoprotein) and 18 amino acids (rlpB lipoprotein). The deduced sequences of the mature peptides consisted of 345 amino acids (Mr 35,614, rlpA lipoprotein) and 175 amino acids (Mr 19,445, rlpB lipoprotein), with an N-terminal cysteine to which thioglyceride and N-fatty acyl residues may be attached. These two lipoproteins may be important in duplication of the cells.  相似文献   

16.
A simple and accurate assay for prolipoprotein signal peptidase activity has been described that is based on the solubility of the signal peptide in 80% acetone. The unprocessed precursor and the mature form of the lipoprotein are quantitatively recovered in the precipitate. The signal peptide, from the acetone supernatant utilizing the purified signal peptidase, contains labeled methionine at its NH2 terminus and has Mr = 2200 (S.E. = 69). A specific signal peptidase that processes the modified form of Braun's prolipoprotein to its correct mature form has been purified. This enzyme is globomycin sensitive and has been purified 35,000-fold from the membranes of Escherichia coli by extraction at pH 4.0 with 2% Triton X-100 and heating, followed by conventional column chromatography at room temperature. This prolipoprotein signal peptidase has a pH optimum at 6.0, is not inhibited by EDTA, and requires 1 mM dithiothreitol for stability. The monomer molecular weight of this specific signal peptidase is 17,800 (S.E. = 900) as determined by sodium dodecyl sulfate-gel electrophoresis.  相似文献   

17.
Escherichia coli contains several lipoproteins in addition to the major outer membrane lipoprotein (Ichihara, S., Hussain, M., and Mizushima, S. (1981) J. Biol. Chem. 256, 3125-3129). We cloned the gene for one of these new lipoproteins by using a synthetic 15-mer oligonucleotide probe identical to the DNA sequence at the signal peptide cleavage site of the major lipoprotein. The DNA sequence of the cloned gene revealed an open reading frame encoding a 272-amino acid protein with a signal peptide of 23 amino acid residues. The amino acid sequence of the putative cleavage site region of the signal peptide, -Leu-Leu-Ala-Gly-Cys-, is identical to that of the major lipoprotein. When the cloned gene was expressed in E. coli, a gene product with an apparent molecular weight of approximately 29,000 was identified which agrees well with the calculated molecular weight (27,800). The product was labeled with [3H]glycerol, and a precursor molecule of increased molecular weight was accumulated when cells were treated with globomycin, a specific inhibitor for prolipoprotein signal peptidase. We thus designed the gene product as lipoprotein-28. Unlike the major lipoprotein, lipoprotein-28 was found to be localized in the cytoplasmic membrane. A possible orientation of lipoprotein-28 in the E. coli envelope is discussed.  相似文献   

18.
N Kosic  M Sugai  C K Fan    H C Wu 《Journal of bacteriology》1993,175(19):6113-6117
The kinetics of processing of glyceride-modified prolipoprotein that accumulated in globomycin-treated Escherichia coli has been found to be affected by sec mutations, i.e., secA, secE, secY, secD, and secF, and by metabolic poisons which affect proton motive force (PMF). The effect of sec mutations on processing of glyceride-modified prolipoprotein in vivo was not due to a secondary effect on PMF. Neither a secF mutation nor metabolic poisons affected the processing of previously accumulated proOmpA protein in vivo, suggesting that the requirements for functional sec gene products and PMF are specific to the processing of lipoprotein precursors by signal peptidase II.  相似文献   

19.
We have compared the rate of assembly of outer membrane proteins including the lipoprotein in a pair of isogenic mlpA+ (lpp+) and mlpA (lpp) strains by pulse-chase experiments. The rate of assembly of the mutant prolipoprotein into the outer membrane was slightly slower than that of the wild-type lipoprotein. The rate of assembly of protein I and protein H-2 was similar in the wild type and the mutant, whereas the rate of assembly of protein II into the outer membrane was slightly reduced in the mutant strain. The organization of outer membrane was slightly reduced in the mutant strain. The organization of outer membrane proteins in the mutant cells appeared not to be grossly altered, based on the apparent resistance (or susceptibility) of these proteins toward trypsin treatment and their resistance to solubilization by Sarkosyl. Like the wild-type lipoprotein, the mutant prolipoprotein in the outer membrane was resistant to trypsin. On the other hand, the prolipoprotein in the cytoplasmic membrane fraction of the mutant cell envelope was susceptible to trypsin digestion. We conclude from these data that proteolytic cleavage of prolipoprotein is not essential for the translocation and proper assembly of lipoprotein into outer membrane.  相似文献   

20.
Biogenesis of membrane lipoproteins in Escherichia coli.   总被引:5,自引:0,他引:5       下载免费PDF全文
H C Wu  J S Lai  S Hayashi    C Z Giam 《Biophysical journal》1982,37(1):307-315
Globomycin-resistant mutants of Escherichia coli have been isolated and partially characterized. Approximately 2-5% of these mutants synthesize structurally altered Braun's lipoprotein. The majority of these mutants contain unprocessed and unmodified prolipoprotein. One mutant is found to contain modified, processed, but structurally altered lipoprotein. Mutants containing lipid-deficient prolipoprotein or lipoprotein also show increased resistance to globomycin. These results suggest that the inhibition of processing of modified prolipoprotein by globomycin may require fully modified prolipoprotein as the biochemical target of this novel antibiotic. Our failure to isolate mutant containing cleaved but unmodified lipoprotein among globomycin-resistant mutants is consistent with the possibility that modification of prolipoprotein precedes the removal of signal sequence by a unique signal peptidase. Recent evidence indicates that the minor lipoproteins in the cell envelope of E. coli are also synthesized as lipid-containing prolipoproteins and the processing of these prolipoproteins is inhibited by globomycin. These results suggest the existence of modifying enzymes in E. coli which would transfer glyceryl and fatty acyl moieties to cysteine residues located in the proper sequences of the precursor proteins. This speculation is confirmed by our demonstration that Bacillus licheniformis penicillinase synthesized in E. coli as well as in B. licheniformis is a lipoprotein containing glyceride-cysteine at its NH2-terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号