首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A universal chemical assay used to detect the production of siderophores in a range of Rhizobium strains showed that production is strain specific. Iron nutrition bioassays carried out on Rhizobium meliloti strains to determine cross-utilization of their siderophores showed that R. meliloti 2011, 220-5, and 220-3 could each use the siderophores produced by the other two but not the siderophore produced by R. meliloti DM4 (and vice versa). Mutants of R. meliloti 2011 and 220-5 defective in siderophore production were isolated by Tn5-mob mutagenesis. The Tn5-mob-containing EcoRI fragment of mutant R. meliloti 220-5-1 was cloned into pUC19. By using this fragment as a probe, the presence of a homologous region was observed in R. meliloti 2011 and 220-3 but not in R. meliloti DM4. A complementing cosmid from a gene bank of R. meliloti 2011 was identified by using the same probe. Introduction of this cosmid into R. meliloti 102F34, a strain not producing a siderophore, resulted in the ability of this strain to produce a siderophore and also in the ability to utilize the siderophores produced by R. meliloti 2011, 220-5, and 220-3 but not the siderophore produced by R. meliloti DM4. A comparative analysis of the outer membrane proteins prepared from iron-deficient cultures of R. meliloti 102F34 and 102F34 harboring the cosmid revealed the presence, in the latter, of a low-iron-induced outer membrane protein corresponding to a low-iron-induced protein in R. meliloti 2011, 220-5, and 220-3. This protein is not present in R. meliloti DM4. The results suggest that R. meliloti 2011, 220-5, and 220-3 produce siderophores that are identical or sufficiently similar in structure to be transported by the membrane transport system of each strain while also indicating that utilization of a particular siderophore is correlated with the presence of specific outer membrane proteins.  相似文献   

2.
Siderophores of six fungi viz. Aspergillus sp. ABp4, Aureobacidium pullulans, Penicillium oxalicum, P. chrysosporium, Mycotypha africana and Syncephalastrum racemosum were examined for their (1) electrophoretic mobilities to determine the acidic, basic or neutral charge; (2) Fe (III) binding nature viz., mono-, di-, or trihydroxamate; (3) amino acid composition; and (4) NMR (nuclear magnetic resonance) spectroscopy to determine their structure. Electrophoretic mobilities of siderophores of 3 fungi (P. oxalicum, P. chrysosporium, and M, africana) exhibited net basic charge, siderophores of 2 fungi (Aspergillus sp. ABp4 and S. racemosum) were acidic and 1 fungus (A. pullullans) was neutral. Electrophoresis of ferrated siderophore at pH 2 and colour of the spots indicated that siderophores of Aspergillus sp. ABp4 and P. oxalicum and A. pullulans were trihydroxamates, whereas siderophore of P. chrysosporium was dihydroxamate. Amino acid composition of siderophores purified by XAD-2 column chromatography, revealed the presence of asparagine, histidine, and proline in Aspergillus sp. ABp4, serine and alanine in P. chrysosporium, and valine in M. africana. The structure of purified siderophores as revealed by NMR spectroscopy identified siderophore of AB - 2670 (A. pullulans) as asperchrome F1, and AB-513 (M. africana) as rhizoferrin. The peak obtained for siderophore AB-5 (Aspergillus sp. ABp4) did not show resemblance to any known siderophore, therefore may be an exception.  相似文献   

3.
Actively secreted iron chelating agents termed siderophores play an important role in the virulence and rhizosphere competence of fluorescent pseudomonads, including Pseudomonas aeruginosa which secretes a high affinity siderophore, pyoverdine, and the low affinity siderophore, pyochelin. Uptake of the iron-siderophore complexes is an active process that requires specific outer membrane located receptors, which are dependent of the inner membrane-associated protein TonB and two other inner membrane proteins, ExbB and ExbC. P. aeruginosa is also capable of using a remarkable variety of heterologous siderophores as sources of iron, apparently by expressing their cognate receptors. Illustrative of this feature are the 32 (of which 28 putative) siderophore receptor genes observed in the P. aeruginosa PAO1 genome. However, except for a few (pyoverdine, pyochelin, enterobactin), the vast majority of P. aeruginosa siderophore receptor genes still remain to be characterized. Ten synthetic iron chelators of catecholate type stimulated growth of a pyoverdine/pyochelin deficient P. aeruginosa PAO1 mutant under condition of severe iron limitation. Null mutants of the 32 putative TonB-dependent siderophore receptor encoding genes engineered in the same genetic background were screened for obvious deficiencies in uptake of the synthetic siderophores, but none showed decreased growth stimulation in the presence of the different siderophores. However, a double knock-out mutant of ferrienterobactin receptor encoding gene pfeA (PA 2688) and pirA (PA0931) failed to be stimulated by 4 of the tested synthetic catecholate siderophores whose chemical structures resemble enterobactin. Ferric-enterobactin also failed to stimulate growth of the double pfeA-pirA mutant although, like its synthetic analogues, it stimulated growth of the corresponding single mutants. Hence, we confirmed that pirA represents a second P. aeruginosa ferric-enterobactin receptor. The example of these two enterobactin receptors probably illustrates a more general phenomenon of siderophore receptor redundancy in P. aeruginosa.  相似文献   

4.
Microorganisms and plants sustain themselves under iron-deprived conditions by releasing siderophores. Among others, fluorescent pseudomonads are known to exert extensive biocontrol action against soil and root borne phytopathogens through release of antimicrobials and siderophores. In this study, production and regulation of siderophores by fluorescent Pseudomonas strain GRP3A was studied. Among various media tested, standard succinate medium (SSM) promoted maximum siderophore production of 56.59 mg l(-1). There were low levels of siderophore in complex media like King's B medium, trypticase soya medium and nutrient medium (41.27, 29.86 and 27.63 mg l(-1)), respectively. In defferrated SSM, siderophore level was quantified to be 68.74 mg l(-1). Supplementation with iron (FeCl3) resulted in decreased siderophore levels depending on concentration. Siderophore production was promoted by Zn2+ (78.94 mg l(-1)), Cu2+ (68.80 mg l(-1)) whereas Co2+ (57.33 mg l(-1)) and Fe3+ reduced siderophore production (37.44 mg l(-1) as compared to control (55.97 mg l(-1)). Strain GRP3A showed plant growth promotion under iron limited conditions.  相似文献   

5.
The siderophore produced by Azotobacter vinelandii strain UW belongs to a large family of peptidic siderophores collectively called pyoverdines. The biosynthesis of the peptidyl moiety of this siderophore was shown to involve activation of the constituent amino acids as their adenylates, as demonstrated by amino acid-dependent ATP-[32P]pyrophosphate exchange. The enzyme system responsible for this activation was partially purified by chromatographic techniques.  相似文献   

6.
Nodule isolates from the cowpea miscellany group of legumes produced varying concentrations of catecholate and hydroxamate types of siderophores under iron-limiting conditions. The nodule isolates differed with respect to siderophore cross-utilizing abilities; some were proficient at using siderophores of other nodule isolates (homologous siderophores) while others could utilize siderophores produced by other rhizospheric bacteria (heterologous siderophores). Utilization of siderophore of rhizospheric bacterium PsB, a plant pathogen, benefited the nodule isolate G11 in terms of growth under iron-limiting laboratory conditions, while PsB was clearly inhibited in the presence of G11. Plate assays showed that siderophore of G11 could withhold iron from PsB and hence PsB was inhibited in the presence of G11. Isolates G11 and PsB when applied simultaneously to peanut seedlings under sterile soil conditions, provided a clear advantage to the plant in terms of reduction in the inhibitory effect of PsB. The count of the nodule isolate G11 increased in the soil when co-inoculated with PsB, as compared to when inoculated alone. Thus, the increased growth of the plant can be attributed to the iron sequestration and plant growth promoting properties of G11. The isolate G11 could utilize the siderophores produced by many other rhizospheric isolates while the siderophore of G11 was not being utilized by these rhizospheric isolates.  相似文献   

7.
The effect of ferric iron [Fe(III)] on pyrene degradation and siderophore production was studied in Pseudomonas fluorescens 29L. In the presence of 0.5 muM of Fe(III) and 50 mg of pyrene per liter of medium as a carbon source, 2.2 mg of pyrene was degraded per liter of medium per day and 25.3 muM of 2,3-DHBA (2,3-dihydroxybenzoic acid) equivalent of siderophores was produced per day. However, the pyrene degradation rate was 1.3 times higher and no siderophores were produced with the addition of 1 muM of Fe(III). Similar trends were seen with 50 mg of succinate per liter of medium as a carbon source, although the growth of strain 29L and the succinate degradation rate were higher. In the absence of siderophore production, pyrene and succinate continued to be biodegraded. This indicates that Fe(III) and not siderophore production affects the hydrocarbon degradation rate. Only 18% of strain 29L mutants capable of growth on pyrene produced siderophores, while among the mutants capable of growth on succinate, only 10% produced siderophores. This indicates that siderophores are not required for pyrene biodegradation. Fe(III) enhances pyrene degradation in Pseudomonas fluorescens 29L but it may be utilized by mechanisms other than siderophores.  相似文献   

8.
Siderophore-binding proteins play an essential role in the uptake of iron in many Gram-positive and Gram-negative bacteria. FhuD is an ATP-binding cassette-type (ABC-type) binding protein involved in the uptake of hydroxamate-type siderophores in Escherichia coli. Structures of FhuD complexed with the antibiotic albomycin, the fungal siderophore coprogen and the drug Desferal have been determined at high resolution by x-ray crystallography. FhuD has an unusual bilobal structure for a periplasmic ligand binding protein, with two mixed beta/alpha domains connected by a long alpha-helix. The binding site for hydroxamate-type ligands is composed of a shallow pocket that lies between these two domains. Recognition of siderophores primarily occurs through interactions between the iron-hydroxamate centers of each siderophore and the side chains of several key residues in the binding pocket. Rearrangements of side chains within the binding pocket accommodate the unique structural features of each siderophore. The backbones of the siderophores are not involved in any direct interactions with the protein, demonstrating how siderophores with considerable chemical and structural diversity can be bound by FhuD. For albomycin, which consists of an antibiotic group attached to a hydroxamate siderophore, electron density for the antibiotic portion was not observed. Therefore, this study provides a basis for the rational design of novel bacteriostatic agents, in the form of siderophore-antibiotic conjugates that can act as "Trojan horses," using the hydroxamate-type siderophore uptake system to actively deliver antibiotics directly into targeted pathogens.  相似文献   

9.
10.
11.
Some microbial public goods can provide both individual and community‐wide benefits, and are open to exploitation by non‐producing species. One such example is the production of metal‐detoxifying siderophores. Here, we investigate whether conflicting selection pressures on siderophore production by heavy metals – a detoxifying effect of siderophores, and exploitation of this detoxifying effect – result in a net increase or decrease. We show that the proportion of siderophore‐producing taxa increases along a natural heavy metal gradient. A causal link between metal contamination and siderophore production was subsequently demonstrated in a microcosm experiment in compost, in which we observed changes in community composition towards taxa that produce relatively more siderophores following copper contamination. We confirmed the selective benefit of siderophores by showing that taxa producing large amounts of siderophore suffered less growth inhibition in toxic copper. Our results suggest that ecological selection will favour siderophore‐mediated decontamination, with important consequences for potential remediation strategies.  相似文献   

12.
More than 60% of species examined from a total of 421 strains of heterotrophic marine bacteria which were isolated from marine sponges and seawater were observed to have no detectable siderophore production even when Fe(III) was present in the culture medium at a concentration of 1.0 pM. The growth of one such non-siderophore-producing strain, alpha proteobacterium V0210, was stimulated under iron-limited conditions with the addition of an isolated exogenous siderophore, N,N'-bis (2,3-dihydroxybenzoyl)-O-serylserine from a Vibrio sp. Growth was also stimulated by the addition of three exogenous siderophore extracts from siderophore-producing bacteria. Radioisotope studies using (59)Fe showed that the iron uptake ability of V0210 increased only with the addition of exogenous siderophores. Biosynthesis of a hydroxamate siderophore by V0210 was shown by paper electrophoresis and chemical assays for the detection of hydroxamates and catechols. An 85-kDa iron-regulated outer membrane protein was induced only under iron-limited conditions in the presence of exogenous siderophores. This is the first report of bacterial iron uptake through an induced siderophore in response to exogenous siderophores. Our results suggest that siderophores are necessary signaling compounds for growth and for iron uptake by some non-siderophore-producing marine bacteria under iron-limited conditions.  相似文献   

13.
The majority of bacteria isolated from rhizospheres of Arachis hypogea (Groundnut) and Vigna radiata (Mung bean) predominantly produced catechol-type siderophores except for a few fluorescent pseudomonads that produced hydroxamates in addition to catecholates. The rhizospheric isolates differed in their ability to cross-utilize siderophores produced by other rhizospheric isolates (heterologous); some were highly proficient at utilizing heterologous siderophores, while others were poor cross-utilizers. Isolate G9, which utilized hydroxamate as well as catecholate siderophores, was found to be an efficient siderophore cross-utilizer, while isolates G2 and G6 were poor-utilizers of catecholate and non-utilizers of hydroxamate siderophores. Growth stimulation of two isolates G9 and G6 was seen when grown in the presence of externally supplied heterologous siderophores, which they cross-utilized. The iron-regulated outer membrane protein (IROMP) profiles differed for the most cross-utilizer and the least cross-utilizer strains, but in both the cases no new outer membrane proteins (OMP) were induced in response to the exogenous siderophores supplied. The growth of the organisms in the presence of heterologous siderophores that they failed to cross-utilize led to growth inhibition in the case of isolate G9. This appears to be due to a lower affinity of the siderophore of G9 as compared to the exogenously supplied G6 siderophore. A simple method was devised to measure relative affinities of respective siderophores for iron based on CAS solution decolorization by the siderophore preparations. The effect on the growth of the differential affinities of the siderophores for iron and the interactions of the organisms through cross-utilization is also discussed.  相似文献   

14.
We report the production of two types of siderophores namely catecholate and hydroxamate in modified succinic acid medium (SM) from Alcaligenes faecalis. Two fractions of siderophores were purified on amberlite XAD, major fraction was hydroxamate type having a λmax at 224 nm and minor fraction appeared as catecholate with a λmax of 264 nm. The recovery yield obtained from major and minor fractions was 297 and 50 mg ml−1 respectively. The IEF pattern of XAD-4 purified siderophore suggested the pI value of 6.5. Cross feeding studies revealed that A. faecalis accepts heterologous as well as self (hydroxamate) siderophore in both free and iron complexed forms however; the rate of siderophore uptake was more in case of siderophores complexed to iron. Siderophore iron uptake studies indicated the differences between hydroxamate siderophore of A. faecalis and Alc E, a siderophore of Alcaligenes eutrophus.  相似文献   

15.
Aspergillus nidulans and Penicillium chrysogenum produce specific cellular siderophores in addition to the well-known siderophores of the culture medium. Since this was found previously in Neurospora crassa, it is probably generally true for filamentous ascomycetes. The cellular siderophore of A. nidulans is ferricrocin; that of P. chrysogenum is ferrichrome. A. nidulans also contains triacetylfusigen, a siderophore without apparent biological activity. Conidia of both species lose siderophores at high salt concentrations and become siderophore dependent. This has also been found in N. crassa, where lowering of the water activity has been shown to be the causal factor. We used an assay procedure based on this dependency to reexamine the extracellular siderophores of these species. During rapid mycelial growth, both A. nidulans and P. chrysogenum produced two highly active, unidentified siderophores which were later replaced by a less active or inactive product--coprogen in the case of P. chrysogenum and triacetylfusigen in the case of A. nidulans. N. crassa secreted coprogen only. Fungal siderophore metabolism is varied and complex.  相似文献   

16.
X. Hu  G. L. Boyer 《Applied microbiology》1996,62(11):4044-4048
The bacterium Bacillus megaterium ATCC 19213 is known to produce two hydroxamate siderophores, schizokinen and N-deoxyschizokinen, under iron-limited conditions. In addition to their high affinity for ferric ions, these siderophores chelate aluminum. Aluminum was absorbed by B. megaterium ATCC 19213 through the siderophore transport receptor, providing an extra pathway for aluminum accumulation into iron-deficient bacteria. At low concentrations of the metal, siderophore-mediated uptake was the dominant process for aluminum accumulation. At high concentrations of aluminum, passive transport dominated and siderophore production slowed the passive transport of aluminum into the cell. Siderophore production was affected by the aluminum content in the media. High concentrations of aluminum increased production of siderophores in iron-limited cultures, and this production continued into stationary phase. Aluminum did not stimulate siderophore production in iron-replete cultures. The production of siderophores markedly affected aluminum uptake. This has direct implications on the toxicity of heavy metals under iron-deficient conditions.  相似文献   

17.
Production of extracellular siderophores is typical for many plant-associated microbes, both mutualistic and antagonistic. Various strains of mycorrhizal fungi produce siderophores, and siderophore production by pathogenic fungi is typically associated with virulence. We analyzed extracellular siderophore production along with production of antibacterial and antioxidant compounds in foliar endophytic fungi of Scots pine (Pinus sylvestris L.) and Labrador tea (Rhododendron tomentosum Harmaja). The siderophore produced in vitro was ferricrocin, quantities ranging between 7.9 and 17.6 μg/l. Only the fungi with antibacterial activity produced ferricrocin and any well-known siderophores were not detected in the broths of antioxidant-producing fungi. Therefore, production of ferricrocin is typical for some, but not all foliar endophytic fungi. Ferricrocin was detected in the leaves of Labrador tea, which suggests that ferricrocin may play a role in vivo in the interaction between the endophyte and plant host.  相似文献   

18.

Background

Bacteria produce small molecule iron chelators, known as siderophores, to facilitate the acquisition of iron from the environment. The synthesis of more than one siderophore and the production of multiple siderophore uptake systems by a single bacterial species are common place. The selective advantages conferred by the multiplicity of siderophore synthesis remains poorly understood. However, there is growing evidence suggesting that siderophores may have other physiological roles besides their involvement in iron acquisition.

Methods and Principal Findings

Here we provide the first report that pyochelin displays antibiotic activity against some bacterial strains. Observation of differential sensitivity to pyochelin against a panel of bacteria provided the first indications that catecholate siderophores, produced by some bacteria, may have roles other than iron acquisition. A pattern emerged where only those strains able to make catecholate-type siderophores were resistant to pyochelin. We were able to associate pyochelin resistance to catecholate production by showing that pyochelin-resistant Escherichia coli became sensitive when biosynthesis of its catecholate siderophore enterobactin was impaired. As expected, supplementation with enterobactin conferred pyochelin resistance to the entE mutant. We observed that pyochelin-induced growth inhibition was independent of iron availability and was prevented by addition of the reducing agent ascorbic acid or by anaerobic incubation. Addition of pyochelin to E. coli increased the levels of reactive oxygen species (ROS) while addition of ascorbic acid or enterobactin reduced them. In contrast, addition of the carboxylate-type siderophore, citrate, did not prevent pyochelin-induced ROS increases and their associated toxicity.

Conclusions

We have shown that the catecholate siderophore enterobactin protects E. coli against the toxic effects of pyochelin by reducing ROS. Thus, it appears that catecholate siderophores can behave as protectors of oxidative stress. These results support the idea that siderophores can have physiological roles aside from those in iron acquisition.  相似文献   

19.
Yeasts produce hydroxamate-type siderophores (iron-binding compounds) in response to Fe-stress conditions. Because these siderophores are important to the biocontrol of postharvest diseases of apple and pears, a method for screening siderophore producer yeast was developed.The screening method was carried out in special Petri dishes with eight or nine wells (25-mm diameter). These wells were filled with siderophore production medium and seeded with yeasts isolated from epiphytic apple microflora. After yeasts grew (24-48 h), holes (2-mm diameter) were made in the agar of each well. Holes were filled with an acid solution of ferric perchlorate. After 10-15 min, reddish halos appeared in the bottom of the plate and their intensities were compared with standards. Standards were prepared in the same special dish with rhodotorulic acid solutions (concentrations between 0.05 and 1 g/l) plus 2% agar. When agar solidified into wells, holes were made and filled with ferric perchlorate solution. Color intensities of reddish halos were proportional to siderophore concentration and the detection limit was 0.1 g/l. It was possible to correlate the production of siderophore in solid medium with the results obtained in liquid medium. The methodology was also a useful tool for making a preliminary assessment of the influence of different factors on the siderophore production.  相似文献   

20.
Accumulation of iron by yersiniae.   总被引:40,自引:2,他引:38       下载免费PDF全文
Escherichia coli, Bacillus megaterium, and three species of yersiniae grew rapidly without significant production of soluble siderophores in a defined iron-sufficient medium (20 microM Fe3+). In iron-deficient medium (0.1 to 0.3 microM Fe3+) all organisms showed reduced growth, and there was extensive production of siderophores by E. coli and B. megaterium. Release of soluble siderophores by Yersinia pestis, Y. pseudotuberculosis, or Y. enterocolitica in this medium was not detected. Citrate (1 mM) inhibited growth of yersiniae in iron-deficient medium, indicating that the organisms lack an inducible Fe3+-citrate transport mechanism. Uptake of 59Fe3+ by all yersiniae was an energy-dependent saturable process, showing increased accumulation after adaptation to iron-deficient medium. Growth of Y. pseudotuberculosis and Y. enterocolitica but not Y. pestis on iron-limited solid medium was enhanced to varying degrees by exogenous siderophores (desferal, schizokinen, aerobactin, and enterochelin). Only hemin (0.1 pmol) or a combination of inorganic iron plus protoporphyrin IX promoted growth of Y. pestis on agar rendered highly iron deficient with egg white conalbumin (10 microM). Growth of Y. pseudotuberculosis and Y. enterocolitica was stimulated on this medium by Fe3+ or hemin. These results indicate that hemin can serve as a sole source of iron for yersiniae and that the organisms possess an efficient cell-bound transport system for Fe3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号